
19 System PCF of Recursive Functions

We introduced the language T as a basis for discussing total computations, those for which
the type system guarantees termination. The language M generalizes T to admit inductive
and coinductive types, while preserving totality. In this chapter, we introduce PCF as a
basis for discussing partial computations, those that may not terminate when evaluated,
even when they are well-typed. At first blush, this may seem like a disadvantage, but as we
shall see in Chapter 20, it admits greater expressive power than is possible in T.

The source of partiality in PCF is the concept of general recursion, which permits the
solution of equations between expressions. The price for admitting solutions to all such
equations is that computations may not terminate—the solution to some equations might
be undefined (divergent). In PCF, the programmer must make sure that a computation
terminates; the type system does not guarantee it. The advantage is that the termination
proof need not be embedded into the code itself, resulting in shorter programs.

For example, consider the equations

f (0) � 1

f (n+ 1) � (n+ 1)× f (n).

Intuitively, these equations define the factorial function. They form a system of simultaneous
equations in the unknown f , which ranges over functions on the natural numbers. The
function we seek is a solution to these equations—a specific function f : N → N such that
the above conditions are satisfied.

A solution to such a system of equations is a fixed point of an associated functional
(higher-order function). To see this, let us re-write these equations in another form:

f (n) �
{

1 if n = 0

n× f (n′) if n = n′ + 1.

Re-writing yet again, we seek f given by

n �→
{

1 if n = 0

n× f (n′) if n = n′ + 1.

Now define the functional F by the equation F (f ) = f ′, where f ′ is given by

n �→
{

1 if n = 0

n× f (n′) if n = n′ + 1.
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162 System PCF of Recursive Functions

Note well that the condition on f ′ is expressed in terms of f , the argument to the functional
F , and not in terms of f ′ itself! The function f we seek is a fixed point of F , a function
f : N → N such that f = F (f ). In other words e is defined to be fix(F ), where fix is a
higher-order operator on functionals F that computes a fixed point for it.

Why should an operator such as F have a fixed point? The key is that functions in PCF

are partial, which means that they may diverge on some (or even all) inputs. Consequently,
a fixed point of a functional F is the limit of a series of approximations of the desired
solution obtained by iterating F . Let us say that a partial function φ on the natural numbers,
is an approximation to a total function f if φ(m) = n implies that f (m) = n. Let⊥: N ⇀ N

be the totally undefined partial function—⊥(n) is undefined for every n ∈ N. This is the
“worst” approximation to the desired solution f of the recursion equations given above.
Given any approximation φ of f , we may “improve” it to φ′ = F (φ). The partial function
φ′ is defined on 0 and on m + 1 for every m ≥ 0 on which φ is defined. Continuing,
φ′′ = F (φ′) = F (F (φ)) is an improvement on φ′, and hence a further improvement on φ.
If we start with ⊥ as the initial approximation to f , then pass to the limit

lim
i≥0

F (i)(⊥),

we will obtain the least approximation to f that is defined for every m ∈ N, and hence is
the function f itself. Turning this around, if the limit exists, it is the solution we seek.

Because this construction works for any functional F , we conclude that all such operators
have fixed points, and hence that all systems of equations such as the one given above have
solutions. The solution is given by general recursion, but there is no guarantee that it is a
total function (defined on all elements of its domain). For the above example, it happens to
be true, because we can prove by induction that this is so, but in general, the solution is a
partial function that may diverge on some inputs. It is our task as programmers to ensure
that the functions defined by general recursion are total, or at least that we have a grasp of
those inputs for which it is well-defined.

19.1 Statics

The syntax of PCF is given by the following grammar:

Typ τ ::= nat nat naturals
parr(τ1; τ2) τ1 ⇀ τ2 partial function

Exp e ::= x x variable
z z zero
s(e) s(e) successor
ifz{e0; x.e1}(e) ifz e {z ↪→ e0 | s(x) ↪→ e1} zero test
lam{τ }(x.e) λ (x : τ ) e abstraction
ap(e1; e2) e1(e2) application
fix{τ }(x.e) fix x : τ is e recursion
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163 19.2 Dynamics

The expression fix{τ }(x.e) is general recursion; it is discussed in more detail below. The
expression ifz{e0; x.e1}(e) branches according to whether e evaluates to z, binding the
predecessor to x in the case that it is not.

The statics of PCF is inductively defined by the following rules:

�, x : τ � x : τ
(19.1a)

� � z : nat
(19.1b)

� � e : nat
� � s(e) : nat (19.1c)

� � e : nat � � e0 : τ �, x : nat � e1 : τ

� � ifz{e0; x.e1}(e) : τ
(19.1d)

�, x : τ1 � e : τ2

� � lam{τ1}(x.e) : parr(τ1; τ2)
(19.1e)

� � e1 : parr(τ2; τ ) � � e2 : τ2

� � ap(e1; e2) : τ
(19.1f)

�, x : τ � e : τ

� � fix{τ }(x.e) : τ
(19.1g)

Rule (19.1g) reflects the self-referential nature of general recursion. To show that
fix{τ }(x.e) has type τ , we assume that it is the case by assigning that type to the variable
x, which stands for the recursive expression itself, and checking that the body, e, has type
τ under this very assumption.

The structural rules, including in particular substitution, are admissible for the static
semantics.

Lemma 19.1. If �, x : τ � e′ : τ ′, � � e : τ , then � � [e/x]e′ : τ ′.

19.2 Dynamics

The dynamic semantics of PCF is defined by the judgments e val, specifying the closed
values, and e �−→ e′, specifying the steps of evaluation.

The judgment e val is defined by the following rules:

z val
(19.2a)

[e val]
s(e) val

(19.2b)
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164 System PCF of Recursive Functions

lam{τ }(x.e) val
(19.2c)

The bracketed premise on rule (19.2b) is included for the eager interpretation of the
successor operation, and omitted for the lazy interpretation. (See Chapter 36 for a further
discussion of laziness.)

The transition judgment e �−→ e′ is defined by the following rules:[
e �−→ e′

s(e) �−→ s(e′)

]
(19.3a)

e �−→ e′

ifz{e0; x.e1}(e) �−→ ifz{e0; x.e1}(e′) (19.3b)

ifz{e0; x.e1}(z) �−→ e0
(19.3c)

s(e) val

ifz{e0; x.e1}(s(e)) �−→ [e/x]e1
(19.3d)

e1 �−→ e′1
ap(e1; e2) �−→ ap(e′1; e2)

(19.3e)

[
e1 val e2 �−→ e′2

ap(e1; e2) �−→ ap(e1; e′2)

]
(19.3f)

[e2 val]
ap(lam{τ }(x.e); e2) �−→ [e2/x]e

(19.3g)

fix{τ }(x.e) �−→ [fix{τ }(x.e)/x]e
(19.3h)

The bracketed rule (19.3a) is included for an eager interpretation of the successor and
omitted otherwise. Bracketed rule (19.3f) and the bracketed premise on rule (19.3g) are
included for a call-by-value interpretation, and omitted for a call-by-name interpretation, of
function application. Rule (19.3h) implements self-reference by substituting the recursive
expression itself for the variable x in its body; this is called unwinding the recursion.

Theorem 19.2 (Safety).

1. If e : τ and e �−→ e′, then e′ : τ .

2. If e : τ , then either e val or there exists e′ such that e �−→ e′.

Proof The proof of preservation is by induction on the derivation of the transition judg-
ment. Consider rule (19.3h). Suppose that fix{τ }(x.e) : τ . By inversion and substitution
we have [fix{τ }(x.e)/x]e : τ , as required. The proof of progress proceeds by induction
on the derivation of the typing judgment. For example, for rule (19.1g) the result follows
because we may make progress by unwinding the recursion.

https://doi.org/10.1017/CBO9781316576892.021 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.021


165 19.3 Definability

It is easy to check that if e val, then e is irreducible in that there is no e′ such that e �−→ e′.
The safety theorem implies the converse, that an irreducible expression is a value, provided
that it is closed and well-typed.

Definitional equality for the call-by-name variant of PCF, written � � e1 ≡ e2 : τ , is
the strongest congruence containing the following axioms:

� � ifz{e0; x.e1}(z) ≡ e0 : τ
(19.4a)

� � ifz{e0; x.e1}(s(e)) ≡ [e/x]e1 : τ
(19.4b)

� � fix{τ }(x.e) ≡ [fix{τ }(x.e)/x]e : τ
(19.4c)

� � ap(lam{τ1}(x.e2); e1) ≡ [e1/x]e2 : τ
(19.4d)

These rules suffice to calculate the value of any closed expression of type nat: if e : nat,
then e ≡ n : nat iff e �−→∗ n.

19.3 Definability

Let us write fun x(y:τ1):τ2 is e for a recursive function within whose body, e : τ2, are
bound two variables, y : τ1 standing for the argument and x : τ1 ⇀ τ2 standing for the
function itself. The dynamic semantics of this construct is given by the axiom

(fun x(y:τ1):τ2 is e)(e1) �−→ [fun x(y:τ1):τ2 is e, e1/x, y]e
.

That is, to apply a recursive function, we substitute the recursive function itself for x and
the argument for y in its body.

Recursive functions are defined in PCF using recursive functions, writing

fix x : τ1 ⇀ τ2 is λ (y : τ1) e

for fun x(y:τ1):τ2 is e. We may easily check that the static and dynamic semantics of
recursive functions are derivable from this definition.

The primitive recursion construct of T is defined in PCF using recursive functions by
taking the expression

rec e {z ↪→ e0 | s(x) with y ↪→ e1}
to stand for the application e′(e), where e′ is the general recursive function

fun f (u:nat):τ is ifz u {z ↪→ e0 | s(x) ↪→ [f (x)/y]e1}.
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166 System PCF of Recursive Functions

The static and dynamic semantics of primitive recursion are derivable in PCF using this
expansion.

In general, functions definable in PCF are partial in that they may be undefined for some
arguments. A partial (mathematical) function, φ : N ⇀ N, is definable in PCF iff there is
an expression eφ : nat ⇀ nat such that φ(m) = n iff eφ(m) ≡ n : nat. So, for example,
if φ is the totally undefined function, then eφ is any function that loops without returning
when it is applied.

It is informative to classify those partial functions φ that are definable in PCF. The
partial recursive functions are defined to be the primitive recursive functions extended with
the minimization operation: given φ(m, n), define ψ(n) to be the least m ≥ 0 such that
(1) for m′ < m, φ(m′, n) is defined and non-zero, and (2) φ(m, n) = 0. If no such m exists,
then ψ(n) is undefined.

Theorem 19.3. A partial function φ on the natural numbers is definable in PCF iff it is
partial recursive.

Proof sketch Minimization is definable in PCF, so it is at least as powerful as the set of
partial recursive functions. Conversely, we may, with some tedium, define an evaluator for
expressions of PCF as a partial recursive function, using Gödel-numbering to represent
expressions as numbers. Therefore, PCF does not exceed the power of the set of partial
recursive functions.

Church’s Law states that the partial recursive functions coincide with the set of effectively
computable functions on the natural numbers—those that can be carried out by a program
written in any programming language that is or will ever be defined.1 Therefore, PCF is as
powerful as any other programming language with respect to the set of definable functions
on the natural numbers.

The universal function φuniv for PCF is the partial function on the natural numbers
defined by

φuniv(�e�)(m) = n iff e(m) ≡ n : nat.

In contrast to T, the universal function φuniv for PCF is partial (might be undefined for some
inputs). It is, in essence, an interpreter that, given the code �e� of a closed expression of
type nat⇀nat, simulates the dynamic semantics to calculate the result, if any, of applying
it to the m, obtaining n. Because this process may fail to terminate, the universal function
is not defined for all inputs.

By Church’s Law, the universal function is definable in PCF. In contrast, we proved
in Chapter 9 that the analogous function is not definable in T using the technique of
diagonalization. It is instructive to examine why that argument does not apply in the
present setting. As in Section 9.4, we may derive the equivalence

e�(�e��) ≡ s(e�(�e��))

https://doi.org/10.1017/CBO9781316576892.021 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.021


167 19.5 Totality and Partiality

for PCF. But now, instead of concluding that the universal function, euniv, does not exist as
we did for T, we instead conclude for PCF that euniv diverges on the code for e� applied
to its own code.

19.4 Finite and Infinite Data Structures

Finite data types (products and sums), including their use in pattern matching and generic
programming, carry over verbatim to PCF. However, the distinction between the eager
and lazy dynamics for these constructs becomes more important. Rather than being a
matter of preference, the decision to use an eager or lazy dynamics affects the meaning
of a program: the “same” types mean different things in a lazy dynamics than in an eager
dynamics. For example, the elements of a product type in an eager language are pairs of
values of the component types. In a lazy language, they are instead pairs of unevaluated,
possibly divergent, computations of the component types, a very different thing indeed.
And similarly for sums.

The situation grows more acute for infinite types such as the type nat of “natural
numbers.” The scare quotes are warranted, because the “same” type has a very different
meaning under an eager dynamics than under a lazy dynamics. In the former case, the
type nat is, indeed, the authentic type of natural numbers—the least type containing zero
and closed under successor. The principle of mathematical induction is valid for reasoning
about the type nat in an eager dynamics. It corresponds to the inductive type nat defined
in Chapter 15.

On the other hand, under a lazy dynamics the type nat is no longer the type of natural
numbers at all. For example, it includes the value

ω � fix x : nat is s(x),

which has itself as predecessor! It is, intuitively, an “infinite stack of successors,” growing
without end. It is clearly not a natural number (it is larger than all of them), so the principle
of mathematical induction does not apply. In a lazy setting, nat could be renamed lnat to
remind us of the distinction; it corresponds to the type conat defined in Chapter 15.

19.5 Totality and Partiality

The advantage of a total programming language such as T is that it ensures, by type
checking, that every program terminates, and that every function is total. There is no way
to have a well-typed program that goes into an infinite loop. This prohibition may seem
appealing, until one considers that the upper bound on the time to termination may be
large, so large that it might as well diverge for all practical purposes. But let us grant for
the moment that it is a virtue of T that it precludes divergence. Why, then, bother with
a language such as PCF that does not rule out divergence? After all, infinite loops are
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168 System PCF of Recursive Functions

invariably bugs, so why not rule them out by type checking? The notion seems appealing
until one tries to write a program in a language such as T.

Consider the computation of the greatest common divisor (gcd) of two natural numbers.
It can be programmed in PCF by solving the following equations using general recursion:

gcd(m, 0) = m

gcd(0, n) = n

gcd(m, n) = gcd(m− n, n) if m > n

gcd(m, n) = gcd(m, n−m) if m < n

The type of gcd defined this way is (nat× nat) ⇀ nat, which suggests that it may not
terminate for some inputs. But we may prove by induction on the sum of the pair of
arguments that it is, in fact, a total function.

Now consider programming this function in T. It is, in fact, programmable using only
primitive recursion, but the code to do it is rather painful (try it!). One way to see the problem
is that in T the only form of looping is one that reduces a natural number by one on each
recursive call; it is not (directly) possible to make a recursive call on a smaller number
other than the immediate predecessor. In fact, one may code up more general patterns of
terminating recursion using only primitive recursion as a primitive, but if you check the
details, you will see that doing so comes at a price in performance and program complexity.
Program complexity can be mitigated by building libraries that codify standard patterns of
reasoning whose cost of development should be amortized over all programs, not just one
in particular. But there is still the problem of performance. Indeed, the encoding of more
general forms of recursion into primitive recursion means that, deep within the encoding,
there must be a “timer” that goes down by ones to ensure that the program terminates. The
result will be that programs written with such libraries will be slower than necessary.

But, one may argue, T is simply not a serious language. A more serious total pro-
gramming language would admit sophisticated patterns of control without performance
penalty. Indeed, one could easily envision representing the natural numbers in binary,
rather than unary, and allowing recursive calls by halving to get logarithmic complexity.
Such a formulation is possible, as would be quite a number of analogous ideas that avoid
the awkwardness of programming in T. Could we not then have a practical language that
rules out divergence?

We can, but at a cost. We have already seen one limitation of total programming lan-
guages: they are not universal. You cannot write an interpreter for T within T, and this
limitation extends to any total language whatever. If this does not seem important, then
consider the Blum Size Theorem (BST), which places another limitation on total languages.
Fix any total language L that permits writing functions on the natural numbers. Pick any
blowup factor, say 22n

. The BST states that there is a total function on the natural numbers
that is programmable in L, but whose shortest program in L is larger by the given blowup
factor than its shortest program in PCF!

The underlying idea of the proof is that in a total language the proof of termination of a
program must be baked into the code itself, whereas in a partial language the termination
proof is an external verification condition left to the programmer. There are, and always
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will be, programs whose termination proof is rather complicated to express, if you fix in
advance the means of proving it total. (In T it was primitive recursion, but one can be
more ambitious, yet still get caught by the BST.) But if you leave room for ingenuity, then
programs can be short, because they do not have to embed the proof of their termination in
their own running code.

19.6 Notes

The solution to recursion equations described here is based on Kleene’s fixed point theorem
for complete partial orders, specialized to the approximation ordering of partial functions.
The language PCF is derived from Plotkin (1977) as a laboratory for the study of semantics
of programming languages. Many authors have used PCF as the subject of study of many
problems in semantics. It has thereby become the E. coli of programming languages.

Exercises

19.1. Consider the problem considered in Section 10.3 of how to define the mutually
recursive “even” and “odd” functions. There we gave a solution in terms of primitive
recursion. You are, instead, to give a solution in terms of general recursion. Hint:
consider that a pair of mutually recursive functions is a recursive pair of functions.

19.2. Show that minimization, as explained before the statement of Theorem 19.3, is
definable in PCF.

19.3. Consider the partial function φhalts such that if e : nat ⇀ nat, then φhalts(�e�)
evaluates to zero iff e(�e�) converges, and evaluates to one otherwise. Prove that
φhalts is not definable in PCF.

19.4. Suppose that we changed the specification of minimization given prior to Theo-
rem 19.3 so that ψ(n) is the least m such that φ(m, n) = 0 and is undefined if no
such m exists. Is this “simplified” form of minimization definable in PCF?

19.5. Suppose that we wished to define, in the lazy variant of PCF, a version of the
parallel or function specified a function of two arguments that returns z if either
of its arguments is z, and s(z) otherwise. That is, we wish to find an expression e

satisfying the following properties:

e(e1)(e2) �−→∗ z if e1 �−→∗ z

e(e1)(e2) �−→∗ z if e2 �−→∗ z

e(e1)(e2) �−→∗ s(z) otherwise

Thus, e defines a total function of its two arguments, even if one of the arguments
diverges. Clearly, such a function cannot be defined in the call-by-value variant of
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170 System PCF of Recursive Functions

PCF, but can it be defined in the call-by-name variant? If so, show how; if not, prove
that it cannot be, and suggest an extension of PCF that would allow it to be defined.

19.6. We appealed to Church’s Law to argue that the universal function for PCF is definable
in PCF. See what is behind this claim by considering two aspects of the problem:
(1) Gödel-numbering, the representation of abstract syntax by a number; (2) evalua-
tion, the process of interpreting a function on its inputs. Part (1) is a technical issue
arising from the limited data structures available in PCF. Part (2) is the heart of the
matter; explore its implementation in terms of a solution to Part (1).

Note

1 See Chapter 21 for further discussion of Church’s Law.
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