
16 System F of Polymorphic Types

The languages we have considered so far are all monomorphic in that every expression has a
unique type, given the types of its free variables, if it has a type at all. Yet it is often the case
that essentially the same behavior is required, albeit at several different types. For example,
in T there is a distinct identity function for each type τ , namely λ (x : τ ) x, even though the
behavior is the same for each choice of τ . Similarly, there is a distinct composition operator
for each triple of types, namely

◦τ1,τ2,τ3 = λ (f : τ2 → τ3) λ (g : τ1 → τ2) λ (x : τ1) f (g(x)).

Each choice of the three types requires a different program, even though they all have the
same behavior when executed.

Obviously, it would be useful to capture the pattern once and for all, and to instantiate this
pattern each time we need it. The expression patterns codify generic (type-independent)
behaviors that are shared by all instances of the pattern. Such generic expressions are
polymorphic. In this chapter, we will study the language F, which was introduced by Girard
under the name System F and by Reynolds under the name polymorphic typed λ-calculus.
Although motivated by a simple practical problem (how to avoid writing redundant code),
the concept of polymorphism is central to an impressive variety of seemingly disparate
concepts, including the concept of data abstraction (the subject of Chapter 17), and the
definability of product, sum, inductive, and coinductive types considered in the preceding
chapters. (Only general recursive types extend the expressive power of the language.)

16.1 Polymorphic Abstraction

The language F is a variant of T in which we eliminate the type of natural numbers, but
add, in compensation, polymorphic types:1

Typ τ ::= t t variable
arr(τ1; τ2) τ1 → τ2 function
all(t.τ ) ∀(t.τ ) polymorphic

Exp e ::= x x

lam{τ }(x.e) λ (x : τ ) e abstraction
ap(e1; e2) e1(e2) application
Lam(t.e) �(t) e type abstraction
App{τ }(e) e[τ ] type application

https://doi.org/10.1017/CBO9781316576892.018 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.018


138 System F of Polymorphic Types

A type abstraction Lam(t.e) defines a generic, or polymorphic, function with type variable
t standing for an unspecified type within e. A type application, or instantiation App{τ }(e),
applies a polymorphic function to a specified type, which is plugged in for the type variable
to obtain the result. The universal type, all(t.τ ), classifies polymorphic functions.

The statics of F consists of two judgment forms, the type formation judgment,

� � τ type,

and the typing judgment,

� � � e : τ.

The hypotheses � have the form t type, where t is a variable of sort Typ, and the hypotheses
� have the form x : τ , where x is a variable of sort Exp.

The rules defining the type formation judgment are as follows:

�, t type � t type (16.1a)

� � τ1 type � � τ2 type

� � arr(τ1; τ2) type
(16.1b)

�, t type � τ type

� � all(t.τ ) type
(16.1c)

The rules defining the typing judgment are as follows:

� �, x : τ � x : τ (16.2a)

� � τ1 type � �, x : τ1 � e : τ2

� � � lam{τ1}(x.e) : arr(τ1; τ2)
(16.2b)

� � � e1 : arr(τ2; τ ) � � � e2 : τ2

� � � ap(e1; e2) : τ
(16.2c)

�, t type � � e : τ

� � � Lam(t.e) : all(t.τ )
(16.2d)

� � � e : all(t.τ ′) � � τ type

� � � App{τ }(e) : [τ/t]τ ′
(16.2e)

Lemma 16.1 (Regularity). If � � � e : τ , and if � � τi type for each assumption xi : τi

in �, then � � τ type.

Proof By induction on rules (16.2).

The statics admits the structural rules for a general hypothetical judgment. In particular,
we have the following critical substitution property for type formation and expression
typing.

Lemma 16.2 (Substitution). 1. If �, t type � τ ′ type and � � τ type, then � �
[τ/t]τ ′ type.

https://doi.org/10.1017/CBO9781316576892.018 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.018


139 16.1 Polymorphic Abstraction

2. If �, t type � � e′ : τ ′ and � � τ type, then � [τ/t]� � [τ/t]e′ : [τ/t]τ ′.
3. If � �, x : τ � e′ : τ ′ and � � � e : τ , then � � � [e/x]e′ : τ ′.

The second part of the lemma requires substitution into the context � as well as into the
term and its type, because the type variable t may occur freely in any of these positions.

Returning to the motivating examples from the introduction, the polymorphic identity
function, I , is written

�(t) λ (x : t) x;

it has the polymorphic type

∀(t.t → t).

Instances of the polymorphic identity are written I [τ ], where τ is some type, and have the
type τ → τ .

Similarly, the polymorphic composition function, C, is written

�(t1) �(t2) �(t3) λ (f : t2 → t3) λ (g : t1 → t2) λ (x : t1) f (g(x)).

The function C has the polymorphic type

∀(t1.∀(t2.∀(t3.(t2 → t3) → (t1 → t2) → (t1 → t3)))).

Instances of C are obtained by applying it to a triple of types, written C[τ1][τ2][τ3]. Each
such instance has the type

(τ2 → τ3) → (τ1 → τ2) → (τ1 → τ3).

Dynamics

The dynamics of F is given as follows:

lam{τ }(x.e) val
(16.3a)

Lam(t.e) val
(16.3b)

[e2 val]
ap(lam{τ1}(x.e); e2) �−→ [e2/x]e

(16.3c)

e1 �−→ e′1
ap(e1; e2) �−→ ap(e′1; e2)

(16.3d)

[
e1 val e2 �−→ e′2

ap(e1; e2) �−→ ap(e1; e′2)

]
(16.3e)

https://doi.org/10.1017/CBO9781316576892.018 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.018


140 System F of Polymorphic Types

App{τ }(Lam(t.e)) �−→ [τ/t]e
(16.3f)

e �−→ e′

App{τ }(e) �−→ App{τ }(e′) (16.3g)

The bracketed premises and rule are included for a call-by-value interpretation and omitted
for a call-by-name interpretation of F.

It is a simple matter to prove safety for F, using familiar methods.

Lemma 16.3 (Canonical Forms). Suppose that e : τ and e val, then

1. If τ = arr(τ1; τ2), then e = lam{τ1}(x.e2) with x : τ1 � e2 : τ2.

2. If τ = all(t.τ ′), then e = Lam(t.e′) with t type � e′ : τ ′.

Proof By rule induction on the statics.

Theorem 16.4 (Preservation). If e : τ and e �−→ e′, then e′ : τ .

Proof By rule induction on the dynamics.

Theorem 16.5 (Progress). If e : τ , then either e val or there exists e′ such that e �−→ e′.

Proof By rule induction on the statics.

16.2 Polymorphic Definability

The language F is astonishingly expressive. Not only are all (lazy) finite products and
sums definable in the language, but so are all (lazy) inductive and coinductive types.
Their definability is most naturally expressed using definitional equality, which is the least
congruence containing the following two axioms:

� �, x : τ1 � e2 : τ2 � � � e1 : τ1

� � � (λ (x : τ ) e2)(e1) ≡ [e1/x]e2 : τ2
(16.4a)

�, t type � � e : τ � � ρ type

� � � �(t) e[ρ] ≡ [ρ/t]e : [ρ/t]τ
(16.4b)

In addition, there are rules omitted here specifying that definitional equality is a congruence
relation (that is, an equivalence relation respected by all expression-forming operations).

https://doi.org/10.1017/CBO9781316576892.018 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.018


141 16.2 Polymorphic Definability

16.2.1 Products and Sums

The nullary product, or unit, type is definable in F as follows:

unit � ∀(r.r → r)

〈〉 � �(r) λ (x : r) x

The identity function plays the role of the null tuple, because it is the only closed value of
this type.

Binary products are definable in F by using encoding tricks similar to those described in
Chapter 21 for the untyped λ-calculus:

τ1 × τ2 � ∀(r.(τ1 → τ2 → r) → r)

〈e1, e2〉 � �(r) λ (x : τ1 → τ2 → r) x(e1)(e2)

e · l � e[τ1](λ (x : τ1) λ (y : τ2) x)

e · r � e[τ2](λ (x : τ1) λ (y : τ2) y)

The statics given in Chapter 10 is derivable according to these definitions. Moreover, the
following definitional equalities are derivable in F from these definitions:

〈e1, e2〉 · l ≡ e1 : τ1

and

〈e1, e2〉 · r ≡ e2 : τ2.

The nullary sum, or void, type is definable in F:

void � ∀(r.r)

abort{ρ}(e) � e[ρ]

Binary sums are also definable in F:

τ1 + τ2 � ∀(r.(τ1 → r) → (τ2 → r) → r)

l · e � �(r) λ (x : τ1 → r) λ (y : τ2 → r) x(e)

r · e � �(r) λ (x : τ1 → r) λ (y : τ2 → r) y(e)

case e {l · x1 ↪→ e1 | r · x2 ↪→ e2} �
e[ρ](λ (x1 : τ1) e1)(λ (x2 : τ2) e2)

provided that the types make sense. It is easy to check that the following equivalences are
derivable in F:

case l · d1 {l · x1 ↪→ e1 | r · x2 ↪→ e2} ≡ [d1/x1]e1 : ρ

and

case r · d2 {l · x1 ↪→ e1 | r · x2 ↪→ e2} ≡ [d2/x2]e2 : ρ.

Thus, the dynamic behavior specified in Chapter 11 is correctly implemented by these
definitions.

https://doi.org/10.1017/CBO9781316576892.018 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.018


142 System F of Polymorphic Types

16.2.2 Natural Numbers

As we remarked above, the natural numbers (under a lazy interpretation) are also definable
in F. The key is the iterator, whose typing rule we recall here for reference:

e0 : nat e1 : τ x : τ � e2 : τ

iter{e1; x.e2}(e0) : τ
.

Because the result type τ is arbitrary, this means that if we have an iterator, then we can
use it to define a function of type

nat→ ∀(t.t → (t → t) → t).

This function, when applied to an argument n, yields a polymorphic function that, for any
result type, t , given the initial result for z and a transformation from the result for x into
the result for s(x), yields the result of iterating the transformation n times, starting with the
initial result.

Because the only operation we can perform on a natural number is to iterate up to it,
we may simply identify a natural number, n, with the polymorphic iterate-up-to-n function
just described. Thus, we may define the type of natural numbers in F by the following
equations:

nat � ∀(t.t → (t → t) → t)

z � �(t) λ (z : t) λ (s : t → t) z

s(e) � �(t) λ (z : t) λ (s : t → t) s(e[t](z)(s))

iter{e1; x.e2}(e0) � e0[τ ](e1)(λ (x : τ ) e2)

It is easy to check that the statics and dynamics of the natural numbers type given in
Chapter 9 are derivable in F under these definitions. The representations of the numerals in
F are called the polymorphic Church numerals.

The encodability of the natural numbers shows that F is at least as expressive as T.
But is it more expressive? Yes! It is possible to show that the evaluation function for T

is definable in F, even though it is not definable in T itself. However, the same diagonal
argument given in Chapter 9 applies here, showing that the evaluation function for F is not
definable in F. We may enrich F a bit more to define the evaluator for F, but as long as
all programs in the enriched language terminate, we will once again have an undefinable
function, the evaluation function for that extension.

16.3 Parametricity Overview

A remarkable property of F is that polymorphic types severely constrain the behavior
of their elements. We may prove useful theorems about an expression knowing only its
type—that is, without ever looking at the code. For example, if i is any expression of type
∀(t.t → t), then it is the identity function. Informally, when i is applied to a type, τ , and

https://doi.org/10.1017/CBO9781316576892.018 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.018


143 16.3 Parametricity Overview

an argument of type τ , it returns a value of type τ . But because τ is not specified until i

is called, the function has no choice but to return its argument, which is to say that it is
essentially the identity function. Similarly, if b is any expression of type ∀(t.t → t → t),
then b is equivalent to either �(t) λ (x : t) λ (y : t) x or �(t) λ (x : t) λ (y : t) y. Intuitively,
when b is applied to two arguments of a given type, the only value it can return is one of
the givens.

Properties of a program in F that can be proved knowing only its type are called para-
metricity properties. The facts about the functions i and b stated above are examples of
parametricity properties. Such properties are sometimes called “free theorems,” because
they come from typing “for free,” without any knowledge of the code itself. It bears repeat-
ing that in F we prove non-trivial behavioral properties of programs without ever examining
the program text. The key to this incredible fact is that we are able to prove a deep property,
called parametricity, about the language F, that then applies to every program written in F.
One may say that the type system “pre-verifies” programs with respect to a broad range of
useful properties, eliminating the need to prove those properties about every program sep-
arately. The parametricity theorem for F explains the remarkable experience that if a piece
of code type checks, then it “just works.” Parametricity narrows the space of well-typed
programs sufficiently that the opportunities for programmer error are reduced to almost
nothing.

So how does the parametricity theorem work? Without getting into too many technical
details (but see Chapter 48 for a full treatment), we can give a brief summary of the main
idea. Any function i : ∀(t.t → t) in F enjoys the following property:

For any type τ and any property P of the type τ , then if P holds of x : τ , then P holds of
i[τ ](x).

To show that for any type τ , and any x of type τ , the expression i[τ ](x) is equivalent to x,
it suffices to fix x0 : τ , and consider the property Px0 that holds of y : τ iff y is equivalent
to x0. Obviously, P holds of x0 itself, and hence by the above-displayed property of i, it
sends any argument satisfying Px0 to a result satisfying Px0 , which is to say that it sends x0

to x0. Because x0 is an arbitrary element of τ , it follows that i[τ ] is the identity function,
λ (x : τ ) x, on the type τ , and because τ is itself arbitrary, i is the polymorphic identity
function, �(t) λ (x : t) x.

A similar argument suffices to show that the function b, defined above, is either
�(t) λ (x : t) λ (y : t) x or �(t) λ (x : t) λ (y : t) y. By virtue of its type, the function b enjoys
the parametricity property

For any type τ and any property P of τ , if P holds of x : τ and of y : τ , then P holds of
b[τ ](x)(y).

Choose an arbitrary type τ and two arbitrary elements x0 and y0 of type τ . Define Qx0,y0

to hold of z : τ iff either z is equivalent to x0 or z is equivalent to y0. Clearly Qx0,y0 holds
of both x0 and y0 themselves, so by the quoted parametricity property of b, it follows that
Qx0,y0 holds of b[τ ](x0)(y0), which is to say that it is equivalent to either x0 or y0. Since
τ , x0, and y0 are arbitrary, it follows that b is equivalent to either �(t) λ (x : t) λ (y : t) x or
�(t) λ (x : t) λ (y : t) y.

https://doi.org/10.1017/CBO9781316576892.018 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.018


144 System F of Polymorphic Types

The parametricity theorem for F implies even stronger properties of functions such as i

and b considered above. For example, the function i of type ∀(t.t → t) also satisfies the
following condition:

If τ and τ ′ are any two types, and R is a binary relation between τ and τ ′, then for any
x : τ and x ′ : τ ′, if R relates x to x ′, then R relates i[τ ](x) to i[τ ′](x ′).

Using this property, we may again prove that i is equivalent to the polymorphic identity
function. Specifically, if τ is any type and g : τ → τ is any function on that type, then it
follows from the type of i alone that i[τ ](g(x)) is equivalent to g(i[τ ](x)) for any x : τ . To
prove this, simply choose R to the be graph of the function g, the relation Rg that holds of
x and x ′ iff x ′ is equivalent to g(x). The parametricity property of i, when specialized to
Rg , states that if x ′ is equivalent to g(x), then i[τ ](x ′) is equivalent to g(i[τ ](x)), which is
to say that i[τ ](g(x)) is equivalent to g(i[τ ](x)). To show that i is equivalent to the identity
function, choose x0 : τ arbitrarily, and consider the constant function g0 on τ that always
returns x0. Because x0 is equivalent to g0(x0), it follows that i[τ ](x0) is equivalent to x0,
which is to say that i behaves like the polymorphic identity function.

16.4 Notes

System F was introduced by Girard (1972) in the context of proof theory and by Reynolds
(1974) in the context of programming languages. The concept of parametricity was origi-
nally isolated by Strachey but was not fully developed until the work of Reynolds (1983).
The phrase “free theorems” for parametricity theorems was introduced by Wadler (1989).

Exercises

16.1. Give polymorphic definitions and types to the s and k combinators defined in Exer-
cise 3.1.

16.2. Define in F the type bool of Church booleans. Define the type bool, and define
true and false of this type, and the conditional if e then e0 else e1, where e is of
this type.

16.3. Define in F the inductive type of lists of natural numbers as defined in Chapter 15.
Hint: Define the representation in terms of the recursor (elimination form) for lists,
following the pattern for defining the type of natural numbers.

16.4. Define in F an arbitrary inductive type, μ(t.τ ). Hint: generalize your answer to
Exercise 16.3.

16.5. Define the type t list as in Exercise 16.3, with the element type, t , unspecified.
Define the finite set of elements of a list l to be those x given by the head of some
number of tails of l. Now suppose that f : ∀(t.t list→ t list) is an arbitrary

https://doi.org/10.1017/CBO9781316576892.018 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.018


145 Note

function of the stated type. Show that the elements of f [τ ](l) are a subset of those of
l. Thus, f may only permute, replicate, or drop elements from its input list to obtain
its output list.

Note

1 Girard’s original version of System F included the natural numbers as a basic type.

https://doi.org/10.1017/CBO9781316576892.018 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.018



