
15 Inductive and Coinductive Types

The inductive and the coinductive types are two important forms of recursive type.
Inductive types correspond to least, or initial, solutions of certain type equations, and coin-
ductive types correspond to their greatest, or final, solutions. Intuitively, the elements of
an inductive type are those that are given by a finite composition of its introduction forms.
Consequently, if we specify the behavior of a function on each of the introduction forms of
an inductive type, then its behavior is defined for all values of that type. Such a function is a
recursor, or catamorphism. Dually, the elements of a coinductive type are those that behave
properly in response to a finite composition of its elimination forms. Consequently, if we
specify the behavior of an element on each elimination form, then we have fully specified
a value of that type. Such an element is a generator, or anamorphism.

15.1 Motivating Examples

The most important example of an inductive type is the type of natural numbers as
formalized in Chapter 9. The type nat is the least type containing z and closed
under s(−). The minimality condition is expressed by the existence of the iterator,
iter e {z ↪→ e0 | s(x) ↪→ e1}, which transforms a natural number into a value of type
τ , given its value for zero, and a transformation from its value on a number to its value on
the successor of that number. This operation is well-defined precisely because there are no
other natural numbers.

With a view towards deriving the type nat as a special case of an inductive type, it is
useful to combine zero and successor into a single introduction form, and to correspondingly
combine the basis and inductive step of the iterator. The following rules specify the statics
of this reformulation:

� � e : unit+ nat
� � foldnat(e) : nat (15.1a)

�, x : unit+ τ � e1 : τ � � e2 : nat
� � recnat(x.e1; e2) : τ

(15.1b)

The expression foldnat(e) is the unique introduction form of the type nat. Using this, the
expression z is foldnat(l · 〈〉), and s(e) is foldnat(r · e). The recursor, recnat(x.e1; e2),
takes as argument the abstractor x.e1 that combines the basis and inductive step into a single
computation that, given a value of type unit + τ , yields a value of type τ . Intuitively, if

https://doi.org/10.1017/CBO9781316576892.017 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.017


126 Inductive and Coinductive Types

x is replaced by the value l · 〈〉, then e1 computes the base case of the recursion, and if x

is replaced by the value r · e, then e1 computes the inductive step from the result e of the
recursive call.

The dynamics of the combined representation of natural numbers is given by the following
rules:

foldnat(e) val
(15.2a)

e2 �−→ e′2
recnat(x.e1; e2) �−→ recnat(x.e1; e′2)

(15.2b)

recnat(x.e1; foldnat(e2))

�−→
[map{t.unit+ t}(y.recnat(x.e1; y))(e2)/x]e1

(15.2c)

Rule (15.2c) uses (polynomial) generic extension (see Chapter 14) to apply the recursor
to the predecessor, if any, of a natural number. If we expand the definition of the generic
extension in place, we obtain this rule:

recnat(x.e1; foldnat(e2))

�−→
[case e2 {l · ↪→ l · 〈〉 | r · y ↪→ r · recnat(x.e1; y)}/x]e1

Exercise 15.2 asks for a derivation of the iterator, as defined in Chapter 9, from the recursor
just given.

An illustrative example of a coinductive type is the type of streams of natural numbers.
A stream is an infinite sequence of natural numbers such that an element of the stream
can be computed only after computing all preceding elements in that stream. That is, the
computations of successive elements of the stream are sequentially dependent in that the
computation of one element influences the computation of the next. In this sense, the
introduction form for streams is dual to the elimination form for natural numbers.

A stream is given by its behavior under the elimination forms for the stream type: hd(e)
returns the next, or head, element of the stream, and tl(e) returns the tail of the stream, the
stream resulting when the head element is removed. A stream is introduced by a generator,
the dual of a recursor, that defines the head and the tail of the stream in terms of the current
state of the stream, which is represented by a value of some type. The statics of streams is
given by the following rules:

� � e : stream
� � hd(e) : nat (15.3a)

� � e : stream
� � tl(e) : stream (15.3b)

https://doi.org/10.1017/CBO9781316576892.017 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.017


127 15.1 Motivating Examples

� � e : τ �, x : τ � e1 : nat �, x : τ � e2 : τ

� � strgen x is e in<hd ↪→ e1,tl ↪→ e2> : stream (15.3c)

In rule (15.3c), the current state of the stream is given by the expression e of some type τ ,
and the head and tail of the stream are determined by the expressions e1 and e2, respectively,
as a function of the current state. (The notation for the generator is chosen to emphasize
that every stream has both a head and a tail.)

The dynamics of streams is given by the following rules:

strgen x is e in<hd ↪→ e1,tl ↪→ e2> val
(15.4a)

e �−→ e′

hd(e) �−→ hd(e′)
(15.4b)

hd(strgen x is e in<hd ↪→ e1,tl ↪→ e2>) �−→ [e/x]e1
(15.4c)

e �−→ e′

tl(e) �−→ tl(e′)
(15.4d)

tl(strgen x is e in<hd ↪→ e1,tl ↪→ e2>)

�−→
strgen x is [e/x]e2 in<hd ↪→ e1,tl ↪→ e2>

(15.4e)

Rules (15.4c) and (15.4e) express the dependency of the head and tail of the stream on its
current state. Observe that the tail is obtained by applying the generator to the new state
determined by e2 from the current state.

To derive streams as a special case of a coinductive type, we combine the head and the
tail into a single elimination form, and reorganize the generator correspondingly. Thus, we
consider the following statics:

� � e : stream
� � unfoldstream(e) : nat× stream

(15.5a)

�, x : τ � e1 : nat× τ � � e2 : τ

� � genstream(x.e1; e2) : stream (15.5b)

Rule (15.5a) states that a stream may be unfolded into a pair consisting of its head, a natural
number, and its tail, another stream. The head hd(e) and tail tl(e) of a stream e are the
projections unfoldstream(e) · l and unfoldstream(e) · r, respectively. Rule (15.5b) states
that a stream is generated from the state element e2 by an expression e1 that yields the head
element and the next state as a function of the current state.

The dynamics of streams is given by the following rules:

genstream(x.e1; e2) val
(15.6a)

https://doi.org/10.1017/CBO9781316576892.017 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.017


128 Inductive and Coinductive Types

e �−→ e′

unfoldstream(e) �−→ unfoldstream(e′)
(15.6b)

unfoldstream(genstream(x.e1; e2))

�−→
map{t.nat× t}(y.genstream(x.e1; y))([e2/x]e1)

(15.6c)

Rule (15.6c) uses generic extension to generate a new stream whose state is the second com-
ponent of [e2/x]e1. Expanding the generic extension we obtain the following reformulation
of this rule:

unfoldstream(genstream(x.e1; e2))

�−→
〈([e2/x]e1) · l, genstream(x.e1; ([e2/x]e1) · r)〉

Exercise 15.3 asks for a derivation of strgen x is e in<hd ↪→ e1,tl ↪→ e2> from the
coinductive generation form.

15.2 Statics

We may now give a general account of inductive and coinductive types, which are defined
in terms of positive type operators. We will consider a variant of T, which we will call M,
with natural numbers replaced by functions, products, sums, and a rich class of inductive
and coinductive types.

15.2.1 Types

The syntax of inductive and coinductive types involves type variables, which are, of course,
variables ranging over types. The abstract syntax of inductive and coinductive types is given
by the following grammar:

Typ τ ::= t t self-reference
ind(t.τ ) μ(t.τ ) inductive
coi(t.τ ) ν(t.τ ) coinductive

Type formation judgments have the form

t1 type, . . . , tn type � τ type,

where t1, . . . , tn are type names. We let � range over finite sets of hypotheses of the form
t type, where t is a type name. The type formation judgment is inductively defined by the

https://doi.org/10.1017/CBO9781316576892.017 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.017


129 15.2 Statics

following rules:

�, t type � t type (15.7a)

� � unit type (15.7b)

� � τ1 type � � τ2 type

� � prod(τ1; τ2) type
(15.7c)

� � void type (15.7d)

� � τ1 type � � τ2 type

� � sum(τ1; τ2) type
(15.7e)

� � τ1 type � � τ2 type

� � arr(τ1; τ2) type
(15.7f)

�, t type � τ type � � t.τ pos

� � ind(t.τ ) type
(15.7g)

�, t type � τ type � � t.τ pos

� � coi(t.τ ) type
(15.7h)

15.2.2 Expressions

The abstract syntax of M is given by the following grammar:

Exp e ::= fold{t.τ }(e) foldt.τ (e) constructor
rec{t.τ }(x.e1; e2) rec(x.e1; e2) recursor
unfold{t.τ }(e) unfoldt.τ (e) destructor
gen{t.τ }(x.e1; e2) gen(x.e1; e2) generator

The subscripts on the concrete syntax forms are often omitted when they are clear from
context.

The statics for M is given by the following typing rules:

� � e : [ind(t.τ )/t]τ
� � fold{t.τ }(e) : ind(t.τ )

(15.8a)

�, x : [τ ′/t]τ � e1 : τ ′ � � e2 : ind(t.τ )
� � rec{t.τ }(x.e1; e2) : τ ′

(15.8b)

� � e : coi(t.τ )
� � unfold{t.τ }(e) : [coi(t.τ )/t]τ

(15.8c)

� � e2 : τ2 �, x : τ2 � e1 : [τ2/t]τ
� � gen{t.τ }(x.e1; e2) : coi(t.τ )

(15.8d)

https://doi.org/10.1017/CBO9781316576892.017 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.017


130 Inductive and Coinductive Types

15.3 Dynamics

The dynamics of M is given in terms of the positive generic extension operation described
in Chapter 14. The following rules specify a lazy dynamics for M:

fold{t.τ }(e) val
(15.9a)

e2 �−→ e′2
rec{t.τ }(x.e1; e2) �−→ rec{t.τ }(x.e1; e′2)

(15.9b)

rec{t.τ }(x.e1; fold{t.τ }(e2))

�−→
[map+{t.τ }(y.rec{t.τ }(x.e1; y))(e2)/x]e1

(15.9c)

gen{t.τ }(x.e1; e2) val
(15.9d)

e �−→ e′

unfold{t.τ }(e) �−→ unfold{t.τ }(e′) (15.9e)

unfold{t.τ }(gen{t.τ }(x.e1; e2))

�−→
map+{t.τ }(y.gen{t.τ }(x.e1; y))([e2/x]e1)

(15.9f)

Rule (15.9c) states that to evaluate the recursor on a value of recursive type, we inductively
apply the recursor as guided by the type operator to the value, and then apply the inductive
step to the result. Rule (15.9f) is simply the dual of this rule for coinductive types.

Lemma 15.1. If e : τ and e �−→ e′, then e′ : τ .

Proof By rule induction on rules (15.9).

Lemma 15.2. If e : τ , then either e val or there exists e′ such that e �−→ e′.

Proof By rule induction on rules (15.8).

Although a proof of this fact lies beyond our current reach, all programs in M terminate.

Theorem 15.3 (Termination for M). If e : τ , then there exists e′ val such that e �−→∗ e′.

https://doi.org/10.1017/CBO9781316576892.017 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.017


131 15.4 Solving Type Equations

It may, at first, seem surprising that a language with infinite data structures, such as
streams, can enjoy such a termination property. But bear in mind that infinite data structures,
such as streams, are represented as in a continuing state of creation, and not as a completed
whole.

15.4 Solving Type Equations

For a positive type operator t.τ , we may say that the inductive type μ(t.τ ) and the coinduc-
tive type ν(t.τ ) are both solutions (up to isomorphism) of the type equation t ∼= τ :

μ(t.τ ) ∼= [μ(t.τ )/t]τ

ν(t.τ ) ∼= [ν(t.τ )/t]τ.

Intuitively speaking, this means that every value of an inductive type is the folding of a
value of the unfolding of the inductive type, and that, similarly, every value of the unfolding
of a coinductive type is the unfolding of a value of the coinductive type itself. It is a good
exercise to define functions back and forth between the isomorphic types and to convince
yourself informally that they are mutually inverse to one another.

Whereas both are solutions to the same type equation, they are not isomorphic to each
other. To see why, consider the inductive type nat � μ(t.unit+ t) and the coinductive type
conat � ν(t.unit+ t). Informally, nat is the smallest (most restrictive) type containing
zero, given by fold(l · 〈〉), and closed under formation of the successor of any other e

of type nat, given by fold(r · e). Dually, conat is the largest (most permissive) type of
expressions e for which the unfolding, unfold.(e), is either zero, given by l · 〈〉, or to the
successor of some other e′ of type conat, given by r · e′.

Because nat is defined by the composition of its introduction forms and sum injections,
it is clear that only finite natural numbers can be constructed in finite time. Because conat
is defined by the composition of its elimination forms (unfoldings plus case analyses), it is
clear that a co-natural number can only be explored to finite depth in finite time—essentially
we can only examine some finite number of predecessors of a given co-natural number in
a terminating program. Consequently,

1. there is a function i : nat → conat embedding every finite natural number into the
type of possibly infinite natural numbers; and

2. there is an “actually infinite” co-natural number ω that is essentially an infinite compo-
sition of successors.

Defining the embedding of nat into conat is the subject of Exercise 15.1. The infinite
co-natural number ω is defined as follows:

ω � gen(x.r · x; 〈〉).

https://doi.org/10.1017/CBO9781316576892.017 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.017


132 Inductive and Coinductive Types

One may check that unfold.(ω) �−→∗ r · ω, which means that ω is its own predecessor.
The co-natural number ω is larger than any finite natural number in that any finite number
of predecessors of ω is non-zero.

Summing up, the mere fact of being a solution to a type equation does not uniquely
characterize a type: there can be many different solutions to the same type equation, the
natural and the co-natural numbers being good examples of the discrepancy. However, we
will show in Part VIII that type equations have unique solutions (up to isomorphism) and
that the restriction to polynomial type operators is no longer required. The price we pay for
the additional expressive power is that programs are no longer guaranteed to terminate.

15.5 Notes

The language M is named after Mendler, on whose work the present treatment is based
(Mendler, 1987). Mendler’s work is grounded in category theory, specifically the concept
of an algebra for a functor (MacLane, 1998; Taylor, 1999). The functorial action of a
type constructor (described in Chapter 14) plays a central role. Inductive types are initial
algebras and coinductive types are final coalgebras for the functor given by a (polynomial
or positive) type operator.

Exercises

15.1. Define a function i : nat→ conat that sends every natural number to “itself” in the
sense that every finite natural number is sent to its correlate as a co-natural number.
(a) unfold.(i(z)) �−→∗ l · 〈〉.
(b) unfold.(i(s(n))) �−→∗ r · i(n).

15.2. Derive the iterator, iter e {z ↪→ e0 | s(x) ↪→ e1}, described in Chapter 9 from the
recursor for the inductive type of natural numbers given in Section 15.1.

15.3. Derive the stream generator, strgen x is e in<hd ↪→ e1,tl ↪→ e2> from the gen-
erator for the coinductive stream type given in Section 15.1.

15.4. Consider the type seq � nat→ nat of infinite sequences of natural numbers. Every
stream can be turned into a sequence by the following function:

λ (stream : s) λ (n : nat) hd(iter n {z ↪→ s | s(x) ↪→ tl(x)}).
Show that every sequence can be turned into a stream whose nth element is the nth
element of the given sequence.

15.5. The type of lists of natural numbers is defined by the following introduction and
elimination forms:

� � nil : natlist
(15.10a)

https://doi.org/10.1017/CBO9781316576892.017 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.017


133 Note

� � e1 : nat � � e2 : natlist
� � cons(e1; e2) : natlist

(15.10b)

� � e : natlist � � e0 : τ � x : nat y : τ � e1 : τ

� � rec e {nil ↪→ e0 | cons(x; y) ↪→ e1} : τ
(15.10c)

The associated dynamics, whether eager or lazy, can be derived from that of the
recursor for the type nat given in Chapter 9. Give a definition of natlist as an
inductive type, including the definitions of its associated introduction and elimination
forms. Check that they validate the expected dynamics.

15.6. Consider the type itree of possibly infinite binary trees with the following intro-
duction and elimination forms:

� � e : itree
� � view(e) : (itree× itree) opt (15.11a)

� � e : τ � x : τ � e′ : (τ × τ ) opt
� � itgen x is e in e′ : itree

(15.11b)

Because a possibly infinite tree must be in a state of continual generation, viewing a
tree exposes only its top-level structure, an optional pair of possibly infinite trees.1 If
the view is null, the tree is empty, and if it is just(e1)e2, then it is non-empty, with
children given by e1 and e2. To generate an infinite tree, choose a type τ of its state
of generation, and provide its current state e and a state transformation e′ that, when
applied to the current state, announces whether or not generation is complete, and, if
not, provides the state for each of the children.
(a) Give a precise dynamics for the itree operations as just described informally.

Hint: use generic programming!
(b) Reformulate the type itree as a coinductive type, and derive the statics and

dynamics of its introduction and elimination forms.
15.7. Exercise 11.5 asked you to define an RS latch as a signal transducer, in which

signals are expressed explicitly as functions of time. Here you are asked again to
define an RS latch as a signal transducer, but this time with signals expressed as
streams of booleans. Under such a representation, time is implicitly represented by
the successive elements of the stream. Define an RS latch as a transducer of signals
consisting of pairs of booleans.

Note

1 See Chapter 11 for the definition of option types.

https://doi.org/10.1017/CBO9781316576892.017 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.017


https://doi.org/10.1017/CBO9781316576892.017 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.017



