
12 Constructive Logic

Constructive logic codifies the principles of mathematical reasoning as it is actually prac-
ticed. In mathematics a proposition is judged true exactly when it has a proof, and is judged
false exactly when it has a refutation. Because there are, and always will be, unsolved
problems, we cannot expect in general that a proposition is either true or false, for in most
cases, we have neither a proof nor a refutation of it. Constructive logic can be described
as logic as if people matter, as distinct from classical logic, which can be described as the
logic of the mind of god.

From a constructive viewpoint, a proposition is true when it has a proof. What is a proof
is a social construct, an agreement among people as to what is a valid argument. The rules
of logic codify a set of principles of reasoning that may be used in a valid proof. The valid
forms of proof are determined by the outermost structure of the proposition whose truth is
asserted. For example, a proof of a conjunction consists of a proof of each conjunct, and
a proof of an implication transforms a proof of its antecedent to a proof of its consequent.
When spelled out in full, the forms of proof are seen to correspond exactly to the forms
of expression of a programming language. To each proposition is associated the type of
its proofs; a proof is then an expression of the associated type. This association between
programs and proofs induces a dynamics on proofs. In this way, proofs in constructive logic
have computational content, which is to say that they are interpreted as executable programs
of the associated type. Conversely, programs have mathematical content as proofs of the
proposition associated to their type.

The unification of logic and programming is called the propositions as types principle. It
is a central organizing principle of the theory of programming languages. Propositions are
identified with types, and proofs are identified with programs. A programming technique
corresponds to a method of proof; a proof technique corresponds to a method of program-
ming. Viewing types as behavioral specifications of programs, propositions are problem
statements whose proofs are solutions that implement the specification.

12.1 Constructive Semantics

Constructive logic is concerned with two judgments, namely φ prop, stating that φ expresses
a proposition, and φ true, stating that φ is a true proposition. What distinguishes constructive
from non-constructive logic is that a proposition is not conceived of as merely a truth value,
but instead as a problem statement whose solution, if it has one, is given by a proof. A
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96 Constructive Logic

proposition is true exactly when it has a proof, in keeping with ordinary mathematical
practice. In practice, there is no other criterion of truth than the existence of a proof.

Identifying truth with proof has important, and possibly surprising, consequences. The
most important consequence is that we cannot say, in general, that a proposition is either
true or false. If for a proposition to be true means to have a proof of it, what does it mean for
a proposition to be false? It means that we have a refutation of it, showing that it cannot be
proved. That is, a proposition is false if we can show that the assumption that it is true (has
a proof) contradicts known facts. In this sense, constructive logic is a logic of positive, or
affirmative, information—we must have explicit evidence in the form of a proof to affirm
the truth or falsity of a proposition.

In light of this, it is clear that not every proposition is either true or false. For if φ expresses
an unsolved problem, such as the famous P

?= NP problem, then we have neither a proof
nor a refutation of it (the mere absence of a proof not being a refutation). Such a problem is
undecided, precisely because it has not been solved. Because there will always be unsolved
problems (there being infinitely many propositions, but only finitely many proofs at a given
point in time), we cannot say that every proposition is decidable, that is, either true or
false.

Of course, some propositions are decidable, and hence are either true or false. For
example, if φ expresses an inequality between natural numbers, then φ is decidable, because
we can always work out, for given natural numbers m and n, whether m ≤ n or m �≤ n—we
can either prove or refute the given inequality. This argument does not extend to the real
numbers. To get an idea of why not, consider the representation of a real number by its
decimal expansion. At any finite time, we will have explored only a finite initial segment
of the expansion, which is not enough to decide if it is, say, less than 1. For if we have
calculated the expansion to be 0.99 . . . 9, we cannot decide at any time, short of infinity,
whether or not the number is 1.

The constructive attitude is simply to accept the situation as inevitable, and make our
peace with that. When faced with a problem, we have no choice but to roll up our sleeves
and try to prove it or refute it. There is no guarantee of success! Life is hard, but we muddle
through somehow.

12.2 Constructive Logic

The judgments φ prop and φ true of constructive logic are rarely of interest by themselves,
but rather in the context of a hypothetical judgment of the form

φ1 true, . . . , φn true � φ true.

This judgment says that the proposition φ is true (has a proof), under the assumptions that
each of φ1, . . . , φn are also true (have proofs). Of course, when n = 0 this is just the same
as the judgment φ true.
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97 12.2 Constructive Logic

The structural properties of the hypothetical judgment, when specialized to constructive
logic, define what we mean by reasoning under hypotheses:

�, φ true � φ true (12.1a)

� � φ1 true �, φ1 true � φ2 true

� � φ2 true
(12.1b)

� � φ2 true

�, φ1 true � φ2 true
(12.1c)

�, φ1 true, φ1 true � φ2 true

�, φ1 true � φ2 true
(12.1d)

�1, φ2 true, φ1 true, �2 � φ true

�1, φ1 true, φ2 true, �2 � φ true
(12.1e)

The last two rules are implicit in that we regard � as a set of hypotheses, so that two
“copies” are as good as one, and the order of hypotheses does not matter.

12.2.1 Provability

The syntax of propositional logic is given by the following grammar:

Prop φ ::= � � truth
⊥ ⊥ falsity
∧(φ1; φ2) φ1 ∧ φ2 conjunction
∨(φ1; φ2) φ1 ∨ φ2 disjunction
⊃(φ1; φ2) φ1 ⊃ φ2 implication

The connectives of propositional logic are given meaning by rules that define (a) what
constitutes a “direct” proof of a proposition formed from that connective, and (b) how
to exploit the existence of such a proof in an “indirect” proof of another proposition.
These are called the introduction and elimination rules for the connective. The principle
of conservation of proof states that these rules are inverse to one another—the elimination
rule cannot extract more information (in the form of a proof) than was put into it by the
introduction rule, and the introduction rules can reconstruct a proof from the information
extracted by the elimination rules.

Truth Our first proposition is trivially true. No information goes into proving it, and so
no information can be obtained from it.

� � � true (12.2a)

(no elimination rule)
(12.2b)
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98 Constructive Logic

Conjunction Conjunction expresses the truth of both of its conjuncts.

� � φ1 true � � φ2 true

� � φ1 ∧ φ2 true
(12.3a)

� � φ1 ∧ φ2 true

� � φ1 true
(12.3b)

� � φ1 ∧ φ2 true

� � φ2 true
(12.3c)

Implication Implication expresses the truth of a proposition under an assumption.

�, φ1 true � φ2 true

� � φ1 ⊃ φ2 true
(12.4a)

� � φ1 ⊃ φ2 true � � φ1 true

� � φ2 true
(12.4b)

Falsehood Falsehood expresses the trivially false (refutable) proposition.

(no introduction rule)
(12.5a)

� � ⊥ true
� � φ true

(12.5b)

Disjunction Disjunction expresses the truth of either (or both) of two propositions.

� � φ1 true

� � φ1 ∨ φ2 true
(12.6a)

� � φ2 true

� � φ1 ∨ φ2 true
(12.6b)

� � φ1 ∨ φ2 true �, φ1 true � φ true �, φ2 true � φ true

� � φ true
(12.6c)

Negation The negation, ¬φ, of a proposition φ is defined as the implication φ ⊃⊥. As
a result, ¬φ true if φ true � ⊥ true, which is to say that the truth of φ is refutable in that
we may derive a proof of falsehood from any purported proof of φ. Because constructive
truth is defined to be the existence of a proof, the implied semantics of negation is rather
strong. In particular, a problem φ is open exactly when we can neither affirm nor refute it.
In contrast, the classical conception of truth assigns a fixed truth value to each proposition
so that every proposition is either true or false.

https://doi.org/10.1017/CBO9781316576892.014 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.014


99 12.2 Constructive Logic

12.2.2 Proof Terms

The key to the propositions-as-types principle is to make explicit the forms of proof. The
basic judgment φ true, which states that φ has a proof, is replaced by the judgment p : φ,
stating that p is a proof of φ. (Sometimes p is called a “proof term,” but we will simply
call p a “proof.”) The hypothetical judgment is modified correspondingly, with variables
standing for the presumed, but unknown, proofs:

x1 : φ1, . . . , xn : φn � p : φ.

We again let � range over such hypothesis lists, subject to the restriction that no variable
occurs more than once.

The syntax of proof terms is given by the following grammar:

Prf p ::= true-I 〈〉 truth intro
and-I(p1; p2) 〈p1, p2〉 conj. intro
and-E[l](p) p · l conj. elim
and-E[r](p) p · r conj. elim
imp-I(x.p) λ (x) p impl. intro
imp-E(p1; p2) p1(p2) impl. elim
false-E(p) abort(p) false elim
or-I[l](p) l · p disj. intro
or-I[r](p) r · p disj. intro
or-E(p; x1.p1; x2.p2) casep {l · x1 ↪→ p1 | r · x2 ↪→ p2} disj. elim

The concrete syntax of proof terms is chosen to stress the correspondence between propo-
sitions and types discussed in Section 12.4 below.

The rules of constructive propositional logic can be restated using proof terms as
follows.

� � 〈〉 : � (12.7a)

� � p1 : φ1 � � p2 : φ2

� � 〈p1, p2〉 : φ1 ∧ φ2
(12.7b)

� � p1 : φ1 ∧ φ2

� � p1 · l : φ1
(12.7c)

� � p1 : φ1 ∧ φ2

� � p1 · r : φ2
(12.7d)

�, x : φ1 � p2 : φ2

� � λ (x) p2 : φ1 ⊃ φ2
(12.7e)

� � p : φ1 ⊃ φ2 � � p1 : φ1

� � p(p1) : φ2
(12.7f)
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100 Constructive Logic

� � p : ⊥
� � abort(p) : φ

(12.7g)

� � p1 : φ1

� � l · p1 : φ1 ∨ φ2
(12.7h)

� � p2 : φ2

� � r · p2 : φ1 ∨ φ2
(12.7i)

� � p : φ1 ∨ φ2 �, x1 : φ1 � p1 : φ �, x2 : φ2 � p2 : φ

� � casep {l · x1 ↪→ p1 | r · x2 ↪→ p2} : φ
(12.7j)

12.3 Proof Dynamics

Proof terms in constructive logic are given a dynamics by Gentzen’s Principle. It states that
the elimination forms are inverse to the introduction forms. One aspect of Gentzen’s Prin-
ciple is the principle of conservation of proof, which states that the information introduced
into a proof of a proposition can be extracted without loss by elimination. For example, we
may state that conjunction elimination is post-inverse to conjunction introduction by the
definitional equations:

� � p1 : φ1 � � p2 : φ2

� � 〈p1, p2〉 · l ≡ p1 : φ1
(12.8a)

� � p1 : φ1 � � p2 : φ2

� � 〈p1, p2〉 · r ≡ p2 : φ2
(12.8b)

Another aspect of Gentzen’s Principle is that principle of reversibility of proof, which states
that every proof can be reconstructed from the information that can be extracted from it by
elimination. In the case of conjunction this can be stated by the definitional equation

� � p1 : φ1 � � p2 : φ2

� � 〈p · l, p · r〉 ≡ p : φ1 ∧ φ2
(12.9)

Similar equivalences can be stated for the other connectives. For example, the conserva-
tion and reversibility principles for implication are given by these rules:

�, x : φ1 � p2 : φ2 � � p2 : φ2

� � (λ (x) p2)(p1) ≡ [p1/x]p2 : φ2
(12.10a)

� � p : φ1 ⊃ φ2

� � λ (x) (p(x)) ≡ p : φ1 ⊃ φ2
(12.10b)

The corresponding rules for disjunction and falsehood are given as follows:

� � p : φ1 ∨ φ2 �, x1 : φ1 � p1 : ψ �, x2 : φ2 � p2 : ψ

� � case l · p {l · x1 ↪→ p1 | r · x2 ↪→ p2} ≡ [p/x1]p1 : ψ
(12.11a)

� � p : φ1 ∨ φ2 �, x1 : φ1 � p1 : ψ �, x2 : φ2 � p2 : ψ

� � case r · p {l · x1 ↪→ p1 | r · x2 ↪→ p2} ≡ [p/x2]p2 : ψ
(12.11b)
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101 12.5 Notes

� � p : φ1 ∨ φ2 �, x : φ1 ∨ φ2 � q : ψ

� � [p/x]q ≡ casep {l · x1 ↪→ [l · x1/x]q | r · x2 ↪→ [r · x2/x]q} : ψ
(12.11c)

� � p : ⊥ �, x : ⊥ � q : ψ

� � [p/x]q ≡ abort(p) : ψ
(12.11d)

12.4 Propositions as Types

Reviewing the statics and dynamics of proofs in constructive logic reveals a striking similar-
ity to the statics and dynamics of expressions of various types. For example, the introduction
rule for conjunction specifies that a proof of a conjunction consists of a pair of proofs, one
for each conjunct, and the elimination rule inverts this, allowing us to extract a proof of
each conjunct from any proof of a conjunction. There is an obvious analogy with the static
semantics of product types, whose introduction form is a pair and whose elimination forms
are projections. Gentzen’s Principle extends the analogy to the dynamics as well, so that
the elimination forms for conjunction amount to projections that extract the appropriate
components from an ordered pair.

The following chart summarizes the correspondence between propositions and types and
between proofs and programs:

Prop Type
� unit

⊥ void

φ1 ∧ φ2 τ1 × τ2

φ1 ⊃ φ2 τ1 → τ2

φ1 ∨ φ2 τ1 + τ2

The correspondence between propositions and types is a cornerstone of the theory of
programming languages. It exposes a deep connection between computation and deduction,
and serves as a framework for the analysis of language constructs and reasoning principles
by relating them to one another.

12.5 Notes

The propositions as types principle has its origins in the semantics of intuitionistic logic
developed by Brouwer, according to which the truth of a proposition is witnessed by a
construction providing computable evidence for it. The forms of evidence are determined
by the form of the proposition, so that evidence for an implication is a computable function
transforming evidence for the hypothesis into evidence for the conclusion. An explicit
formulation of this semantics was introduced by Heyting, and further developed by several
people, including de Bruijn, Curry, Gentzen, Girard, Howard, Kolmogorov, Martin-Löf,
and Tait. The propositions-as-types correspondence is sometimes called the Curry-Howard
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Isomorphism, but this terminology neglects the crucial contributions of the others just
mentioned. Moreover, the correspondence is not, in general, an isomorphism; rather, it
expresses Brouwer’s Dictum that the concept of proof is best explained by the more general
concept of construction (program).

Exercises

12.1. The law of the excluded middle (LEM) is the statement that every proposition φ is
decidable in the sense that φ ∨ ¬φ true. Constructively, the law of the excluded
middle states that, for every proposition φ, we either have a proof of φ or a refutation
of φ (proof of its negation). Because this is manifestly not the case in general, one
may suspect that the law of the excluded middle is not constructively valid. This is so,
but not in the sense that the law is refuted, but rather in the sense that it is not affirmed.
First, any proposition φ for which we have a proof or a refutation is already decided,
and so is decidable. Second, there are broad classes of propositions for which we can,
on demand, produce a proof or a refutation. For example, it is decidable whether or
not two integers are equal. Third, and most important, there are, and always will be,
propositions φ whose status is unresolved: it may turn out that φ is true, or it may
turn out that φ is false. For all these reasons, constructive logic does not refute the
decidability propositions: ¬¬(φ ∨ ¬φ) true for any proposition φ. Prove it using the
rules given in this chapter.

12.2. The proposition¬¬φ is no stronger than φ: prove φ ⊃ ¬¬φ true. The law of double-
negation elimination (DNE) states that (¬¬φ) ⊃ φ true for every proposition φ. It
follows immediately from Exercise 12.1 that DNE entails LEM; prove the converse.

12.3. Define the relation φ ≤ ψ to mean that φ true � ψ true according to the rules
of constructive logic given above. With respect to this relation, show the following
facts:
(a) It is a pre-order, which is say that it is reflexive and transitive.
(b) φ ∧ ψ is the meet, or greatest lower bound, of φ and ψ , and � is the top, or

greatest, element.
(c) Show that φ ∨ ψ is the join, or least upper bound, of φ and ψ , and that ⊥ is the

bottom, or least, element.
(d) Show that φ ⊃ ψ is an exponential, or pseudo-complement, in the sense that it is

the largest ρ such that φ∧ρ ≤ ψ . (The exponential φ ⊃ ψ is sometimes written
ψφ .)

Altogether these facts state that entailment in constructive propositional logic forms
a Heyting algebra. Show that a general Heyting algebra (that is, an ordering with the
above structure) is distributive in the sense that

φ ∧ (ψ1 ∨ ψ2) ≡ (φ ∧ ψ1) ∨ (φ ∧ ψ2)

φ ∨ (ψ1 ∧ ψ2) ≡ (φ ∨ ψ1) ∧ (φ ∨ ψ2),

where φ ≡ ψ means φ ≤ ψ and ψ ≤ φ.
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12.4. In any Heyting algebra, we have φ ∧ ¬φ ≤⊥, which is to say that the negation is
inconsistent with the negated. But ¬φ is not necessarily the complement of φ in the
sense that φ ∨ ¬φ ≤ �. A Boolean algebra is a Heyting algebra in which negation
is always the complement of the negated: � ≤ φ ∨ ¬φ for every φ. Check that the
two-element Boolean algebra for which meets, joins, and exponentials are given by
the classical truth tables (defining φ ⊃ ψ as (¬φ)∨ψ is Boolean algebra. Conclude
that it is consistent to adjoin LEM to constructive logic, which is to say that classical
logic is a special case of constructive logic in which we assume that every proposition
is decidable. Being a Heyting algebra, every Boolean algebra is clearly distributive.
Show that every Boolean algebra also satisfies the de Morgan duality laws:

¬(φ ∨ ψ) ≡ ¬φ ∧ ¬ψ

¬(φ ∧ ψ) ≡ ¬φ ∨ ¬ψ.

The first of these is valid in any Heyting algebra; the second only in a Boolean
algebra.
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