
11 Sum Types

Most data structures involve alternatives such as the distinction between a leaf and an
interior node in a tree, or a choice in the outermost form of a piece of abstract syntax.
Importantly, the choice determines the structure of the value. For example, nodes have
children, but leaves do not, and so forth. These concepts are expressed by sum types,
specifically the binary sum, which offers a choice of two things, and the nullary sum, which
offers a choice of no things. Finite sums generalize nullary and binary sums to allow an
arbitrary number of cases indexed by a finite index set. As with products, sums come in
both eager and lazy variants, differing in how values of sum type are defined.

11.1 Nullary and Binary Sums

The abstract syntax of sums is given by the following grammar:

Typ τ ::= void void nullary sum
sum(τ1; τ2) τ1 + τ2 binary sum

Exp e ::= abort{τ }(e) abort(e) abort
in[l]{τ1; τ2}(e) l · e left injection
in[r]{τ1; τ2}(e) r · e right injection
case(e; x1.e1; x2.e2) case e {l · x1 ↪→ e1 | r · x2 ↪→ e2} case analysis

The nullary sum represents a choice of zero alternatives, and hence admits no introduction
form. The elimination form, abort(e), aborts the computation in the event that e evaluates
to a value, which it cannot do. The elements of the binary sum type are labeled to show
whether they are drawn from the left or the right summand, either l · e or r · e. A value of
the sum type is eliminated by case analysis.

The statics of sum types is given by the following rules.

� � e : void
� � abort(e) : τ

(11.1a)

� � e : τ1

� � l · e : τ1 + τ2
(11.1b)

� � e : τ2

� � r · e : τ1 + τ2
(11.1c)

� � e : τ1 + τ2 �, x1 : τ1 � e1 : τ �, x2 : τ2 � e2 : τ

� � case e {l · x1 ↪→ e1 | r · x2 ↪→ e2} : τ
(11.1d)

https://doi.org/10.1017/CBO9781316576892.013 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.013

86 Sum Types

For the sake of readability, in rules (11.1b) and (11.1c) we have written l ·e and r ·e in place
of the abstract syntax in[l]{τ1; τ2}(e) and in[r]{τ1; τ2}(e), which includes the types τ1 and
τ2 explicitly. In rule (11.1d), both branches of the case analysis must have the same type.
Because a type expresses a static “prediction” on the form of the value of an expression,
and because an expression of sum type could evaluate to either form at run-time, we must
insist that both branches yield the same type.

The dynamics of sums is given by the following rules:

e �−→ e′

abort(e) �−→ abort(e′)
(11.2a)

[e val]
l · e val

(11.2b)

[e val]
r · e val

(11.2c)

[
e �−→ e′

l · e �−→ l · e′
]

(11.2d)

[
e �−→ e′

r · e �−→ r · e′
]

(11.2e)

e �−→ e′

case e {l · x1 ↪→ e1 | r · x2 ↪→ e2} �−→ case e′ {l · x1 ↪→ e1 | r · x2 ↪→ e2} (11.2f)

[e val]
case l · e {l · x1 ↪→ e1 | r · x2 ↪→ e2} �−→ [e/x1]e1

(11.2g)

[e val]
case r · e {l · x1 ↪→ e1 | r · x2 ↪→ e2} �−→ [e/x2]e2

(11.2h)

The bracketed premises and rules are included for an eager dynamics and excluded for a
lazy dynamics.

The coherence of the statics and dynamics is stated and proved as usual.

Theorem 11.1 (Safety). 1. If e : τ and e �−→ e′, then e′ : τ .

2. If e : τ , then either e val or e �−→ e′ for some e′.

Proof The proof proceeds by induction on rules (11.2) for preservation, and by induction
on rules (11.1) for progress.

11.2 Finite Sums

Just as we may generalize nullary and binary products to finite products, so may we also
generalize nullary and binary sums to finite sums. The syntax for finite sums is given by

https://doi.org/10.1017/CBO9781316576892.013 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.013

87 11.2 Finite Sums

the following grammar:

Typ τ ::= sum({i ↪→ τi}i∈I) [τi]i∈I sum
Exp e ::= in[i]{�τ }(e) i · e injection

case(e; {i ↪→ xi.ei}i∈I) case e {i · xi ↪→ ei}i∈I case analysis

The variable I stands for a finite index set over which sums are formed. The notation �τ
stands for a finite function {i ↪→ τi}i∈I for some index set I . The type sum({i ↪→ τi}i∈I),
or

∑
i∈I τi for short, is the type of I -classified values of the form in[i]{I }(ei), or i · ei for

short, where i ∈ I and ei is an expression of type τi . An I -classified value is analyzed by
an I -way case analysis of the form case(e; {i ↪→ xi.ei}i∈I).

When I = { i1, . . . , in }, the type of I -classified values may be written

[i1 ↪→ τ1, . . . , in ↪→ τn]

specifying the type associated with each class li ∈ I . Correspondingly, the I -way case
analysis has the form

case e {i1 · x1 ↪→ e1 | . . . | in · xn ↪→ en}.
Finite sums generalize empty and binary sums by choosing I to be empty or the two-
element set { l, r }, respectively. In practice I is often chosen to be a finite set of symbols
that serve as names for the classes so as to enhance readability.

The statics of finite sums is defined by the following rules:

� � e : τk (1 ≤ k ≤ n)
� � ik · e : [i1 ↪→ τ1, . . . , in ↪→ τn]

(11.3a)

� � e : [i1 ↪→ τ1, . . . , in ↪→ τn] �, x1 : τ1 � e1 : τ . . . �, xn : τn � en : τ

� � case e {i1 · x1 ↪→ e1 | . . . | in · xn ↪→ en} : τ
(11.3b)

These rules generalize the statics for nullary and binary sums given in Section 11.1.
The dynamics of finite sums is defined by the following rules:

[e val]
i · e val

(11.4a)

[
e �−→ e′

i · e �−→ i · e′
]

(11.4b)

e �−→ e′

case e {i · xi ↪→ ei}i∈I �−→ case e′ {i · xi ↪→ ei}i∈I

(11.4c)

i · e val
case i · e {i · xi ↪→ ei}i∈I �−→ [e/xi]ei

(11.4d)

These again generalize the dynamics of binary sums given in Section 11.1.

Theorem 11.2 (Safety). If e : τ , then either e val or there exists e′ : τ such that e �−→ e′.

Proof The proof is like that for the binary case, as described in Section 11.1.

https://doi.org/10.1017/CBO9781316576892.013 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.013

88 Sum Types

11.3 Applications of Sum Types

Sum types have many uses, several of which we outline here. More interesting examples
arise once we also have induction and recursive types, which are introduced in Parts VI and
Part VIII.

11.3.1 Void and Unit

It is instructive to compare the types unit and void, which are often confused with one
another. The type unit has exactly one element, 〈〉, whereas the type void has no elements
at all. Consequently, if e : unit, then if e evaluates to a value, that value is 〈〉—in other
words, e has no interesting value. On the other hand, if e : void, then e must not yield a
value; if it were to have a value, it would have to be a value of type void, of which there
are none. Thus, what is called the void type in many languages is really the type unit

because it indicates that an expression has no interesting value, not that it has no value
at all!

11.3.2 Booleans

Perhaps the simplest example of a sum type is the familiar type of Booleans, whose syntax
is given by the following grammar:

Typ τ ::= bool bool booleans
Exp e ::= true true truth

false false falsity
if(e; e1; e2) if e then e1 else e2 conditional

The expression if(e; e1; e2) branches on the value of e : bool.
The statics of Booleans is given by the following typing rules:

� � true : bool
(11.5a)

� � false : bool
(11.5b)

� � e : bool � � e1 : τ � � e2 : τ

� � if e then e1 else e2 : τ
(11.5c)

The dynamics is given by the following value and transition rules:

true val
(11.6a)

false val
(11.6b)

https://doi.org/10.1017/CBO9781316576892.013 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.013

89 11.3 Applications of Sum Types

if true then e1 else e2 �−→ e1
(11.6c)

if false then e1 else e2 �−→ e2
(11.6d)

e �−→ e′

if e then e1 else e2 �−→ if e′ then e1 else e2
(11.6e)

The type bool is definable in terms of binary sums and nullary products:

bool = unit+ unit (11.7a)

true = l · 〈〉 (11.7b)

false = r · 〈〉 (11.7c)

if e then e1 else e2 = case e {l · x1 ↪→ e1 | r · x2 ↪→ e2} (11.7d)

In Equation (11.7d), the variables x1 and x2 are chosen arbitrarily such that x1 /∈ e1 and
x2 /∈ e2. It is a simple matter to check that the readily-defined statics and dynamics of the
type bool are engendered by these definitions.

11.3.3 Enumerations

More generally, sum types can be used to define finite enumeration types, those whose
values are one of an explicitly given finite set, and whose elimination form is a case
analysis on the elements of that set. For example, the type suit, whose elements are ♣, ♦,
♥, and ♠, has as elimination form the case analysis

case e {♣ ↪→ e0 | ♦ ↪→ e1 | ♥ ↪→ e2 | ♠ ↪→ e3},

which distinguishes among the four suits. Such finite enumerations are easily representable
as sums. For example, we may define suit = [unit] ∈I , where I = {♣,♦,♥,♠} and
the type family is constant over this set. The case analysis form for a labeled sum is almost
literally the desired case analysis for the given enumeration, the only difference being the
binding for the uninteresting value associated with each summand, which we may ignore.

Other examples of enumeration types abound. For example, most languages have a type
char of characters, which is a large enumeration type containing all possible Unicode (or
other such standard classification) characters. Each character is assigned a code (such as
UTF-8) used for interchange among programs. The type char is equipped with operations
such as chcode(n) that yield the char associated to the code n, and codech(c) that yield
the code of character c. Using the linear ordering on codes we may define a total ordering
of characters, called the collating sequence determined by that code.

https://doi.org/10.1017/CBO9781316576892.013 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.013

90 Sum Types

11.3.4 Options

Another use of sums is to define the option types, which have the following syntax:

Typ τ ::= opt(τ) τ opt option
Exp e ::= null null nothing

just(e) just(e) something
ifnull{τ }{e1; x.e2}(e) which e {null ↪→ e1 | just(x) ↪→ e2}

null test

The type opt(τ) represents the type of “optional” values of type τ . The introduction forms
are null, corresponding to “no value,” and just(e), corresponding to a specified value of
type τ . The elimination form discriminates between the two possibilities.

The option type is definable from sums and nullary products according to the following
equations:1

τ opt = unit+ τ (11.8a)

null = l · 〈〉 (11.8b)

just(e) = r · e (11.8c)

which e {null ↪→ e1 | just(x2) ↪→ e2} = case e {l · ↪→ e1 | r · x2 ↪→ e2} (11.8d)

We leave it to the reader to check the statics and dynamics implied by these definitions.
The option type is the key to understanding a common misconception, the null pointer

fallacy. This fallacy arises from two related errors. The first error is to deem values of certain
types to be mysterious entities called pointers. This terminology arises from suppositions
about how these values might be represented at run-time, rather than on their semantic role
in the language. The second error compounds the first. A particular value of a pointer type
is distinguished as the null pointer, which, unlike the other elements of that type, does not
stand for a value of that type at all, but rather rejects all attempts to use it.

To help avoid such failures, such languages usually include a function, say null :
τ → bool, that yields true if its argument is null, and false otherwise. Such a test allows
the programmer to take steps to avoid using null as a value of the type it purports to inhabit.
Consequently, programs are riddled with conditionals of the form

if null(e) then . . . error . . . else . . . proceed (11.9)

Despite this, “null pointer” exceptions at run-time are rampant, in part because it is quite
easy to overlook the need for such a test, and in part because detection of a null pointer
leaves little recourse other than abortion of the program.

The underlying problem is the failure to distinguish the type τ from the type τ opt.
Rather than think of the elements of type τ as pointers, and thereby have to worry about
the null pointer, we instead distinguish between a genuine value of type τ and an optional
value of type τ . An optional value of type τ may or may not be present, but, if it is, the
underlying value is truly a value of type τ (and cannot be null). The elimination form for
the option type,

which e {null ↪→ eerror | just(x) ↪→ eok}, (11.10)

https://doi.org/10.1017/CBO9781316576892.013 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.013

91 Exercises

propagates the information that e is present into the non-null branch by binding a genuine
value of type τ to the variable x. The case analysis effects a change of type from “optional
value of type τ” to “genuine value of type τ ,” so that within the non-null branch no
further null checks, explicit or implicit, are necessary. Note that such a change of type
is not achieved by the simple Boolean-valued test exemplified by expression (11.9); the
advantage of option types is precisely that they do so.

11.4 Notes

Heterogeneous data structures are ubiquitous. Sums codify heterogeneity, yet few languages
support them in the form given here. The best approximation in commercial languages is
the concept of a class in object-oriented programming. A class is an injection into a sum
type, and dispatch is case analysis on the class of the data object. (See Chapter 26 for
more on this correspondence.) The absence of sums is the origin of C.A.R. Hoare’s self-
described “billion dollar mistake,” the null pointer (Hoare, 2009). Bad language designs put
the burden of managing “null” values entirely at run-time, instead of making the possibility
or the impossibility of “null” apparent at compile time.

Exercises

11.1. Complete the definition of a finite enumeration type sketched in Section 11.3.3.
Derive enumeration types from finite sum types.

11.2. The essence of Hoare’s mistake is the misidentification of the type τ opt with the
type bool× τ . Values of the latter type are pairs consisting of a boolean “flag” and
a value of type τ . The idea is that the flag indicates whether the associated value is
“present.” When the flag is true, the second component is present, and, when the
flag is false, the second component is absent.

Analyze Hoare’s mistake by attempting to define τ opt to be the type bool × τ

by filling in the following chart:

null � ?

just(e) � ?

which e {null ↪→ e1 | just(x) ↪→ e2} � ?

Argue that even if we adopt Hoare’s convention of admitting a “null” value of every
type, the chart cannot be properly filled.

11.3. Databases have a version of the “null pointer” problem that arises when not every
tuple provides a value for every attribute (such as a person’s middle name). More
generally, many commercial databases are limited to a single atomic type for each
attribute, presenting problems when the value of that attribute may have several

https://doi.org/10.1017/CBO9781316576892.013 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.013

92 Sum Types

types (for example, one may have different sorts of postal codes depending on the
country). Consider how to address these problems using the methods discussed in
Exercise 10.1. Suggest how to handle null values and heterogeneous values that
avoids some of the complications that arise in traditional formulations of databases.

11.4. A combinational circuit is an open expression of type

x1 : bool, . . . , xn : bool � e : bool,

which computes a boolean value from n boolean inputs. Define a nor and a nand
gate as boolean circuits with two inputs and one output. There is no reason to restrict
to a single output. For example, define an half-adder that takes two boolean inputs,
but produces two boolean outputs, the sum and the carry outputs of the half-adder.
Then define a full-adder that takes three inputs, the addends and an incoming
carry, and produces two outputs, the sum and the outgoing carry. Define the type
nybble to be the product bool × bool× bool× bool. Define the combinational
circuit nybble-adder that takes two nybbles as input and produces a nybble and a
carry-out bit as output.

11.5. A signal is a time-varying sequence of booleans, representing the status of the signal
at each time instant. An RS latch is a fundamental digital circuit with two input
signals and two output signals. Define the type signal of signals to be the function
type nat→ bool of infinite sequences of booleans. Define an RS latch as a function
of type

(signal× signal) → (signal× signal).

Note

1 We often write an underscore in place of a bound variable that is not used within its scope.

https://doi.org/10.1017/CBO9781316576892.013 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.013

