
10 Product Types

The binary product of two types consists of ordered pairs of values, one from each type in
the order specified. The associated elimination forms are projections, which select the first
and second component of a pair. The nullary product, or unit, type consists solely of the
unique “null tuple” of no values and has no associated elimination form. The product type
admits both a lazy and an eager dynamics. According to the lazy dynamics, a pair is a value
without regard to whether its components are values; they are not evaluated until (if ever)
they are accessed and used in another computation. According to the eager dynamics, a pair
is a value only if its components are values; they are evaluated when the pair is created.

More generally, we may consider the finite product, 〈τi〉i∈I , indexed by a finite set of
indices I . The elements of the finite product type are I -indexed tuples whose ith component
is an element of the type τi , for each i ∈ I . The components are accessed by I -indexed
projection operations, generalizing the binary case. Special cases of the finite product
include n-tuples, indexed by sets of the form I = { 0, . . . , n − 1 }, and labeled tuples, or
records, indexed by finite sets of symbols. Similarly to binary products, finite products
admit both an eager and a lazy interpretation.

10.1 Nullary and Binary Products

The abstract syntax of products is given by the following grammar:

Typ τ ::= unit unit nullary product
prod(τ1; τ2) τ1 × τ2 binary product

Exp e ::= triv 〈〉 null tuple
pair(e1; e2) 〈e1, e2〉 ordered pair
pr[l](e) e · l left projection
pr[r](e) e · r right projection

There is no elimination form for the unit type, there being nothing to extract from the null
tuple.

The statics of product types is given by the following rules.

� � 〈〉 : unit
(10.1a)

https://doi.org/10.1017/CBO9781316576892.012 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.012


80 Product Types

� � e1 : τ1 � � e2 : τ2

� � 〈e1, e2〉 : τ1 × τ2
(10.1b)

� � e : τ1 × τ2

� � e · l : τ1
(10.1c)

� � e : τ1 × τ2

� � e · r : τ2
(10.1d)

The dynamics of product types is defined by the following rules:

〈〉 val
(10.2a)

[e1 val] [e2 val]
〈e1, e2〉 val

(10.2b)

[
e1 �−→ e′1

〈e1, e2〉 �−→ 〈e′1, e2〉
]

(10.2c)

[
e1 val e2 �−→ e′2
〈e1, e2〉 �−→ 〈e1, e

′
2〉

]
(10.2d)

e �−→ e′

e · l �−→ e′ · l (10.2e)

e �−→ e′

e · r �−→ e′ · r (10.2f)

[e1 val] [e2 val]
〈e1, e2〉 · l �−→ e1

(10.2g)

[e1 val] [e2 val]
〈e1, e2〉 · r �−→ e2

(10.2h)

The bracketed rules and premises are omitted for a lazy dynamics and included for an eager
dynamics of pairing.

The safety theorem applies to both the eager and the lazy dynamics, with the proof
proceeding along similar lines in each case.

Theorem 10.1 (Safety). 1. If e : τ and e �−→ e′, then e′ : τ .

2. If e : τ then either e val or there exists e′ such that e �−→ e′.

Proof Preservation is proved by induction on transition defined by rules (10.2). Progress
is proved by induction on typing defined by rules (10.1).

https://doi.org/10.1017/CBO9781316576892.012 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.012


81 10.2 Finite Products

10.2 Finite Products

The syntax of finite product types is given by the following grammar:

Typ τ ::= prod({i ↪→ τi}i∈I ) 〈τi〉i∈I product
Exp e ::= tpl({i ↪→ ei}i∈I ) 〈ei〉i∈I tuple

pr[i](e) e · i projection

The variable I stands for a finite index set over which products are formed. The type
prod({i ↪→ τi}i∈I ), or

∏
i∈I τi for short, is the type of I -tuples of expressions ei of type τi ,

one for each i ∈ I . An I -tuple has the form tpl({i ↪→ ei}i∈I ), or 〈ei〉i∈I for short, and for
each i ∈ I the ith projection from an I -tuple e is written pr[i](e), or e · i for short.

When I = { i1, . . . , in }, the I -tuple type may be written in the form

〈i1 ↪→ τ1, . . . , in ↪→ τn〉
where we make explicit the association of a type to each index i ∈ I . Similarly, we may
write

〈i1 ↪→ e1, . . . , in ↪→ en〉
for the I -tuple whose ith component is ei .

Finite products generalize empty and binary products by choosing I to be empty or the
two-element set { l, r }, respectively. In practice, I is often chosen to be a finite set of
symbols that serve as labels for the components of the tuple to enhance readability.

The statics of finite products is given by the following rules:

� � e1 : τ1 . . . � � en : τn

� � 〈i1 ↪→ e1, . . . , in ↪→ en〉 : 〈i1 ↪→ τ1, . . . , in ↪→ τn〉 (10.3a)

� � e : 〈i1 ↪→ τ1, . . . , in ↪→ τn〉 (1 ≤ k ≤ n)
� � e · ik : τk

(10.3b)

In rule (10.3b), the index ik ∈ I is a particular element of the index set I , whereas in
rule (10.3a), the indices i1, . . . , in range over the entire index set I .

The dynamics of finite products is given by the following rules:

[e1 val . . . en val]
〈i1 ↪→ e1, . . . , in ↪→ en〉 val

(10.4a)

⎡⎢⎣
{

e1 val . . . ej−1 val e′1 = e1 . . . e′j−1 = ej−1

ej �−→ e′j e′j+1 = ej+1 . . . e′n = en

}
〈i1 ↪→ e1, . . . , in ↪→ en〉 �−→ 〈i1 ↪→ e′1, . . . , in ↪→ e′n〉

⎤⎥⎦ (10.4b)

e �−→ e′

e · i �−→ e′ · i (10.4c)

[〈i1 ↪→ e1, . . . , in ↪→ en〉 val]
〈i1 ↪→ e1, . . . , in ↪→ en〉 · ik �−→ ek

(10.4d)

https://doi.org/10.1017/CBO9781316576892.012 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.012


82 Product Types

As formulated, rule (10.4b) specifies that the components of a tuple are evaluated in some
sequential order, without specifying the order in which the components are considered. It
is not hard, but a bit technically complicated, to impose an evaluation order by imposing a
total ordering on the index set and evaluating components according to this ordering.

Theorem 10.2 (Safety). If e : τ , then either e val or there exists e′ such that e′ : τ and
e �−→ e′.

Proof The safety theorem is decomposed into progress and preservation lemmas, which
are proved as in Section 10.1.

10.3 Primitive Mutual Recursion

Using products we may simplify the primitive recursion construct of T so that only the
recursive result on the predecessor, and not the predecessor itself, is passed to the successor
branch. Writing this as iter{e0; x.e1}(e), we may define rec{e0; x.y.e1}(e) to be e′ · r,
where e’ is the expression

iter{〈z, e0〉; x ′.〈s(x ′ · l), [x ′ · r/x]e1〉}(e).

The idea is to compute inductively both the number n and the result of the recursive call on
n, from which we can compute both n+ 1 and the result of another recursion using e1. The
base case is computed directly as the pair of zero and e0. It is easy to check that the statics
and dynamics of the recursor are preserved by this definition.

We may also use product types to implement mutual primitive recursion, in which
we define two functions simultaneously by primitive recursion. For example, consider the
following recursion equations defining two mathematical functions on the natural numbers:

e(0) = 1

o(0) = 0

e(n+ 1) = o(n)

o(n+ 1) = e(n)

Intuitively, e(n) is non-zero if and only if n is even, and o(n) is non-zero if and only if n is
odd.

To define these functions in T enriched with products, we first define an auxiliary function
eeo of type

nat→ (nat× nat)

that computes both results simultaneously by swapping back and forth on recursive calls:

λ (n : nat× nat) iter n {z ↪→ 〈1, 0〉 | s(b) ↪→ 〈b · r, b · l〉}.

https://doi.org/10.1017/CBO9781316576892.012 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.012


83 Exercises

We may then define eev and eod as follows:

eev � λ (n : nat) eeo(n) · l
eod � λ (n : nat) eeo(n) · r.

10.4 Notes

Product types are the most basic form of structured data. All languages have some form of
product type but often in a form that is combined with other, separable, concepts. Common
manifestations of products include (1) functions with “multiple arguments” or “multiple
results”; (2) “objects” represented as tuples of mutually recursive functions; (3) “structures,”
which are tuples with mutable components. There are many papers on finite product types,
which include record types as a special case. Pierce (2002) provides a thorough account of
record types and their subtyping properties (for which, see Chapter 24). Allen et al. (2006)
analyze many of the key ideas in the framework of dependent type theory.

Exercises

10.1. A database schema may be thought of as a finite product type
∏

i∈I τ , in which the
columns, or attributes, are labeled by the indices I whose values are restricted to
atomic types, such as nat and str. A value of a schema type is called a tuple, or
instance, of that schema. A database may be thought of as a finite sequence of such
tuples, called the rows of the database. Give a representation of a database using
function, product, and natural numbers types, and define the project operation that
sends a database with columns I to a database with columns I ′ ⊆ I by restricting
each row to the specified columns.

10.2. Rather than choose between a lazy and an eager dynamics for products, we can
instead distinguish two forms of product type, called the positive and the negative.
The statics of the negative product is given by rules (10.1), and the dynamics is lazy.
The statics of the positive product, written τ1 ⊗ τ2, is given by the following rules:

� � e1 : τ1 � � e2 : τ2

� � fuse(e1; e2) : τ1 ⊗ τ2
(10.5a)

� � e0 : τ1 ⊗ τ2 � x1 : τ1 x2 : τ2 � e : τ

� � split(e0; x1, x2.e) : τ
(10.5b)

The dynamics of fuse, the introduction form for the positive pair, is eager, essentially
because the elimination form, split, extracts both components simultaneously.

Show that the negative product is definable in terms of the positive product using
the unit and function types to express the lazy semantics of negative pairing. Show
that the positive product is definable in terms of the negative product, provided that

https://doi.org/10.1017/CBO9781316576892.012 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.012


84 Product Types

we have at our disposal a let expression with a by-value dynamics so that we may
enforce eager evaluation of positive pairs.

10.3. Specializing Exercise 10.2 to nullary products, we obtain a positive and a negative
unit type. The negative unit type is given by rules (10.1), with no elimination forms
and one introduction form. Give the statics and dynamics for a positive unit type, and
show that the positive and negative unit types are inter-definable without any further
assumptions.

https://doi.org/10.1017/CBO9781316576892.012 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316576892.012



