
IPPL (CS 7400)
Lecture 0: Welcome!

Chris Martens
Northeastern University

Fall 2024

First things first

- Important links:
- Class website - hub with all of these links
- Piazza
- Gradescope
- (Canvas)

- Assignment 0 (Due Thursday, Sep 12)
- Introduce yourself on Piazza
- Complete the intake survey

https://www.khoury.northeastern.edu/~cmartens/Courses/7400-f24/index.html
https://piazza.com/northeastern/fall2024/cs740021942202510/info
https://www.gradescope.com/courses/833713
https://northeastern.instructure.com/courses/196783
https://forms.gle/v8VXbqRxhQChQMqA6

Course scope

“Principles of Programming Languages”

- Programming Languages (PL) as a field of research
- Theoretical foundations of that research (back to 1930s!)
- Informed by how those foundations are relevant today

Not a tour of “language paradigms”

Course scope

“Intensive”?

- PhD level (expects a BS in CS background)
- Might feel fast paced if you haven’t seen the intake-survey material before
- Will touch on present-day active areas of research
- Not an unusually heavy workload (at least, not my intent!)
- Let me know if you have any concerns!

What is PL as a field of study?

Study of the relationship between syntax and semantics

function main() {
 print “hello world”;
 let x = 41;
 x++;
 print (toString x);
}

$./main

hello world
42

Syntax (program) Semantics (program
behavior)

What is PL as a field of study?

Study of the relationship between syntax and semantics

Also describes linguistics…

“apple”

Syntax (utterance) Semantics
(real-world object)

What is PL as a field of study?

Study of the relationship between syntax and computational semantics

What is PL as a field of study?

Study of the relationship between syntax and computational semantics

In other words, what do programs mean?

What is PL as a field of study?

Study of the relationship between syntax and computational semantics

In other words, what do programs mean?

A1: What they mean is what they do (when you run them)

- Operational (or dynamic) semantics

A2: What they mean is how I can reason about them abstractly

- Static semantics

Defining a programming language

A PL, in the abstract, is:

- A syntax
- At least one semantic definition for that syntax

Defining a programming language

A PL, in the abstract, is:

- A syntax
- At least one implementation-independent semantic definition for that syntax

This course’s focus: type systems

A theoretical (and practical!) lens for understanding programming languages

Defining a programming language

A formula we’ll follow in this class:

Abstract syntax Type system

Operational
semantics

Defining a programming language

A formula we’ll follow in this class:

Abstract syntax Type system

Operational
semantics

Proofs about this
relationship

Defining a programming language

Just a tiny kernel of a PL in practice!

core calculus
Abstract
syntax

Type
system

Operational
semantics

Defining a programming language
Just a tiny kernel of a PL in practice!

core calculus
Abstract
syntax

Type
system

Operational
semantics

Concrete
syntax

Interpreter Compiler

Type
checking
/inference

Parser

REPL Compiled
binary

What is PL as a field of study?

- Theory: Discovering and organizing the fundamental nature and principles of
computation; proving properties of languages (like (non)termination)

- Design: exploring and understanding the possibility space of PLs;
establishing how their features interact

- Engineering: implementing languages to be fast on real hardware; ensuring
preservation of high-level semantics

This course will emphasize:

- Common structures that appear in many languages over specific PLs
- Core calculi: minimal formal structures that express an idea or feature
- Compositionality: how can the meaning of complex programs be expressed

in terms of the meaning of its parts? How do language features interact with
each other?

- Metatheory: What formal properties do PL designs admit? What properties
do we want, and how can we design PLs to have them?

- Expressivity: how can we capture rich computational ideas (e.g.
concurrency, interaction, resource usage) in ways that admit desirable these
properties?

Learning objectives

1. Foundations
- Formal language definitions

- Inference rules
- Derivation trees
- Type systems
- Operational semantics

- Functional programming
- Lambda calculus
- Higher-order functions
- Inductive definitions and pattern matching
- Type checking and inference

- Propositions-as-types, proofs-as-programs

Note! This is not a
chronological list of
topics that will be taught.

These objectives will be
repeated & interleaved
throughout the course
schedule of topics.

Learning objectives

2. Core calculi: the classics

- STLC: 1, +, x
- Propositions as types
- Lazy/eager evaluation

- Fixed point/recursive functions
- Recursive types
- Polymorphism
- Mutable state/effects

Note! This is not a
chronological list of
topics that will be taught.

These objectives will be
repeated & interleaved
throughout the course
schedule of topics.

Learning objectives

3. Metatheoretic techniques

- Proof by structural and rule induction
- Proofs of type soundness (e.g., progress and

preservation)
- Proofs of translation soundness / completeness
- Proofs of parametricity/representation

independence
- Understanding how to repair a language definition

when a proof fails, and how to revise a theorem
statements to describe stronger and weaker
properties

Note! This is not a
chronological list of
topics that will be taught.

These objectives will be
repeated & interleaved
throughout the course
schedule of topics.

Potential advanced topics

Depending on student interest/pace of learning:

- Bidirectional typing
- Substructural type systems (e.g. linear, affine)
- Imperative programming (and translations to/from functional)
- Monadic computation and effects
- Asynchronous/reactive/interactive computation
- Polarized type systems
- Dependent types and proof assistants
- Languages for concurrent and distributed computation
- Cost semantics
- Information flow type systems

Class format

Mostly whiteboard lectures + in-class exercises

Occasional code demos or slides

I’ll aim to post notes (pdf) within a day or two of lecture; taking your own notes is
strongly recommended

Alternative options:

- collaborative notes repo for the class
- assigned scribes

Video recordings available in exceptional circumstances if you miss class

Student work

No exams

5 written assignments (due biweekly)

- Typeset in LaTeX
- Occasional “programming” in mini-languages

Mini project: explore an idea from class more deeply. Examples:

- Mechanize a theorem in a proof assistant
- Write an elaborator/interpreter/compiler for one of our languages
- Extend a language definition and prove corresponding theorems

You may use your language of choice for the mini-project.

Tentative assignment topics

1. Extending a tiny language definition (Tracery)
2. Untyped and simply-typed lambda calculus
3. Recursive types and functions
4. Polymorphism and parametricity
5. Asynchronous control flow (e.g. continuations, effect handlers)

My goal for coursework difficulty

Low floor, high ceiling

- Some of you are brand new to this way of thinking about PL: you should
expect to productively struggle with your misunderstandings and need to
consult with peers/instructors to overcome them, but you should still be able
to complete assignments in a reasonable amount of time.

- Some of you know most of this material already: assignments might go faster
for you, but each one should include at least some material that stretches the
limits of your understanding/abilities

Let me know as we go if the assignments miss this target.

Course Policies

- No late hand-ins accepted (except in exceptional circumstances with written
permission)

- 1 free re-grade per assignment resubmitted within 1 week after it’s returned

Consequently:

- Turn in whatever you have by the deadline. Don’t leave questions blank, but a
sketch of how you’d approach the problem (sans solution) is ok, or even “I
have no idea how to start.”

- Write down as much as possible about your understanding of the
problem/solution so we can help identify and correct misconceptions

Course Policies

Collaboration:

- Goal: a mutually supportive classroom, not a competitive one
- Learn from your peers; be generous with your knowledge
- But give everyone (including yourself!) a chance to arrive at knowledge in

your own way
- “Whiteboard rule”: you can discuss problems together at the whiteboard, but

you may not write notes to take away. Written work is individual.
- Projects can be individual or in pairs. Pairs must clearly document and

co-sign the contributions of each member.

Course Policies

Student well-being:

- Never prioritize your coursework over your (mental or physical) well-being.
- Let me know if the work I’m asking you to do for this class becomes an obstacle to your

health.
- If you feel sick, stay at home. No need for doctor’s note. Ask me and I will

give you the lecture recording.
- Tips to protect yourself and others from contagious illness:

- Get updated flu/covid shots as soon as possible
- Keep a stock of tests and let contacts know if you test positive
- Limit large indoor gatherings without good ventilation
- Wear face coverings (KN95 or N95) when feasible

Course Policies

Accommodations:

If you need learning support that isn’t provided by default:

- Getting an official accommodation request through DAS is the best route
- But if you’re having trouble with that route, ask me anyway

https://disabilityaccessservices.sites.northeastern.edu/

Course Policies

Respecting and supporting your classmates:

- Use stated names and pronouns
- Be generous with your knowledge (but…)
- Check yourself before assuming someone knows less than you

- No “feigned surprise”
- No “um, actually…”s

- Help me create an environment where no one feels afraid to ask “stupid
questions” or like they don’t belong here

- There are wrong answers – hold each other to a high standard of rigor
- But everyone here can meet or exceed that standard.

First things last

- Important links:
- Class website - hub with all of these links
- Piazza
- Gradescope
- (Canvas)

- Assignment 0 (Due Thursday, Sep 12)
- Introduce yourself on Piazza
- Complete the intake survey

https://www.khoury.northeastern.edu/~cmartens/Courses/7400-f24/index.html
https://piazza.com/northeastern/fall2024/cs740021942202510/info
https://www.gradescope.com/courses/833713
https://northeastern.instructure.com/courses/196783
https://forms.gle/v8VXbqRxhQChQMqA6

