IPPL (CS 7400)
Lecture 0: Welcome!

Chris Martens
Northeastern University
Fall 2024

First things first

- Important links:
- Class website - hub with all of these links
- Piazza
- Gradescope
- (Canvas)

- Assignment O (Due Thursday, Sep 12)
- Introduce yourself on Piazza
- Complete the intake survey

https://www.khoury.northeastern.edu/~cmartens/Courses/7400-f24/index.html
https://piazza.com/northeastern/fall2024/cs740021942202510/info
https://www.gradescope.com/courses/833713
https://northeastern.instructure.com/courses/196783
https://forms.gle/v8VXbqRxhQChQMqA6

Course scope

“Principles of Programming Languages”

- Programming Languages (PL) as a field of research
- Theoretical foundations of that research (back to 1930s!)
- Informed by how those foundations are relevant today

Not a tour of “language paradigms”

Course scope

“Intensive”?

- PhD level (expects a BS in CS background)

- Might feel fast paced if you haven’t seen the intake-survey material before
- Will touch on present-day active areas of research

- Not an unusually heavy workload (at least, not my intent!)

- Let me know if you have any concerns!

What is PL as a field of study?

Study of the relationship between syntax and semantics

function main() {
$./main

print “hello world”;

let x = 41;

X4+ “ hello world
42

print (toString x);
3

Syntax (program) Semantics (program
behavior)

What is PL as a field of study?

Study of the relationship between syntax and semantics

Also describes linguistics...

“apple” | In—)p

Syntax (utterance) Semantics
(real-world object)

What is PL as a field of study?

Study of the relationship between syntax and computational semantics

What is PL as a field of study?

Study of the relationship between syntax and computational semantics

In other words, what do programs mean?

What is PL as a field of study?

Study of the relationship between syntax and computational semantics
In other words, what do programs mean?
A1: What they mean is what they do (when you run them)
- Operational (or dynamic) semantics
A2: What they mean is how | can reason about them abstractly

- Static semantics

Defining a programming language

A PL, in the abstract, is:

- Asyntax
- At least one semantic definition for that syntax

Defining a programming language

A PL, in the abstract, is:

- Asyntax
- At least one implementation-independent semantic definition for that syntax

This course’s focus: type systems

A theoretical (and practical!) lens for understanding programming languages

Defining a programming language

A formula we’ll follow in this class:

| !

Abstract syntax J L Type system

Operational
semantics

Defining a programming language

A formula we’ll follow in this class:

| !

Abstract syntax J L Type system

/
/ Proofs about this
relationship

Operational
semantics

Defining a programming language

Just a tiny kernel of a PL in practice!

Abstract Type
syntax system
Operational
semantics

Defining a programming language

Just a tiny kernel of a PL in practice!

Concrete
syntax

core calculus

Type

Abstract
syntax

checking
/inference

Operational
semantics

Interpreter Compiler

{ REPL } { Compiled }
binary

What is PL as a field of study?

- Theory: Discovering and organizing the fundamental nature and principles of
computation; proving properties of languages (like (non)termination)

- Design: exploring and understanding the possibility space of PLs;
establishing how their features interact

- Engineering: implementing languages to be fast on real hardware; ensuring
preservation of high-level semantics

This course will emphasize:

- Common structures that appear in many languages over specific PLs

- Core calculi: minimal formal structures that express an idea or feature

- Compositionality: how can the meaning of complex programs be expressed
in terms of the meaning of its parts? How do language features interact with
each other?

- Metatheory: What formal properties do PL designs admit? What properties
do we want, and how can we design PLs to have them?

- Expressivity: how can we capture rich computational ideas (e.g.
concurrency, interaction, resource usage) in ways that admit desirable these
properties?

Learning objectives

1.

Foundations

Formal language definitions
Inference rules

Derivation trees

Type systems

Operational semantics

Functional programming
- Lambda calculus
Higher-order functions
Inductive definitions and pattern matching
Type checking and inference

Propositions-as-types, proofs-as-programs

Note! This is not a
chronological list of
topics that will be taught.

These objectives will be
repeated & interleaved
throughout the course
schedule of topics.

Learning objectives

2. Core calculi: the classics

STLC: 1, +, x
- Propositions as types
- Lazy/eager evaluation

Fixed point/recursive functions
Recursive types
Polymorphism

Mutable state/effects

Note! This is not a
chronological list of
topics that will be taught.

These objectives will be
repeated & interleaved
throughout the course
schedule of topics.

Learning objectives

3. Metatheoretic techniques

Proof by structural and rule induction

Proofs of type soundness (e.g., progress and
preservation)

Proofs of translation soundness / completeness
Proofs of parametricity/representation
independence

Understanding how to repair a language definition
when a proof fails, and how to revise a theorem
statements to describe stronger and weaker
properties

Note! This is not a
chronological list of
topics that will be taught.

These objectives will be
repeated & interleaved
throughout the course
schedule of topics.

Potential advanced topics

Depending on student interest/pace of learning:

- Bidirectional typing

- Substructural type systems (e.g. linear, affine)

- Imperative programming (and translations to/from functional)
- Monadic computation and effects

- Asynchronous/reactive/interactive computation

- Polarized type systems

- Dependent types and proof assistants

- Languages for concurrent and distributed computation

- Cost semantics

- Information flow type systems

Class format

Mostly whiteboard lectures + in-class exercises
Occasional code demos or slides

I'll aim to post notes (pdf) within a day or two of lecture; taking your own notes is
strongly recommended

Alternative options:

- collaborative notes repo for the class
- assigned scribes

Video recordings available in exceptional circumstances if you miss class

Student work

No exams
5 written assignments (due biweekly)

- Typeset in LaTeX
- Occasional “programming” in mini-languages

Mini project: explore an idea from class more deeply. Examples:

- Mechanize a theorem in a proof assistant
- Write an elaborator/interpreter/compiler for one of our languages
- Extend a language definition and prove corresponding theorems

You may use your language of choice for the mini-project.

Tentative assignment topics

Extending a tiny language definition (Tracery)

Untyped and simply-typed lambda calculus

Recursive types and functions

Polymorphism and parametricity

Asynchronous control flow (e.g. continuations, effect handlers)

abkrowbh-~

My goal for coursework difficulty

Low floor, high ceiling

- Some of you are brand new to this way of thinking about PL: you should
expect to productively struggle with your misunderstandings and need to
consult with peers/instructors to overcome them, but you should still be able
to complete assignments in a reasonable amount of time.

- Some of you know most of this material already: assignments might go faster
for you, but each one should include at least some material that stretches the
limits of your understanding/abilities

Let me know as we go if the assignments miss this target.

Course Policies

- No late hand-ins accepted (except in exceptional circumstances with written
permission)

- 1 free re-grade per assignment resubmitted within 1 week after it's returned

Consequently:

- Turn in whatever you have by the deadline. Don’t leave questions blank, but a
sketch of how you’d approach the problem (sans solution) is ok, or even ‘I
have no idea how to start.”

- Write down as much as possible about your understanding of the
problem/solution so we can help identify and correct misconceptions

Course Policies

Collaboration:

- Goal: a mutually supportive classroom, not a competitive one

- Learn from your peers; be generous with your knowledge

- But give everyone (including yourself!) a chance to arrive at knowledge in
your own way

- “Whiteboard rule”: you can discuss problems together at the whiteboard, but
you may not write notes to take away. Written work is individual.

- Projects can be individual or in pairs. Pairs must clearly document and
co-sign the contributions of each member.

Course Policies

Student well-being:

- Never prioritize your coursework over your (mental or physical) well-being.

- Let me know if the work I’'m asking you to do for this class becomes an obstacle to your
health.

- If you feel sick, stay at home. No need for doctor’s note. Ask me and | will
give you the lecture recording.
- Tips to protect yourself and others from contagious illness:
- Get updated flu/covid shots as soon as possible
- Keep a stock of tests and let contacts know if you test positive

- Limit large indoor gatherings without good ventilation
- Wear face coverings (KN95 or N95) when feasible

Course Policies

Accommodations:
If you need learning support that isn’t provided by default:

- Getting an official accommodation request through DAS is the best route
- But if you're having trouble with that route, ask me anyway

https://disabilityaccessservices.sites.northeastern.edu/

Course Policies

Respecting and supporting your classmates:

- Use stated names and pronouns
- Be generous with your knowledge (but...)

- Check yourself before assuming someone knows less than you

No “feigned surprise”
No “um, actually...”s

- Help me create an environment where no one feels afraid to ask “stupid
questions” or like they don’t belong here

- There are wrong answers — hold each other to a high standard of rigor

- But everyone here can meet or exceed that standard.

First things last

- Important links:
- Class website - hub with all of these links
- Piazza
- Gradescope
- (Canvas)

- Assignment O (Due Thursday, Sep 12)
- Introduce yourself on Piazza
- Complete the intake survey

https://www.khoury.northeastern.edu/~cmartens/Courses/7400-f24/index.html
https://piazza.com/northeastern/fall2024/cs740021942202510/info
https://www.gradescope.com/courses/833713
https://northeastern.instructure.com/courses/196783
https://forms.gle/v8VXbqRxhQChQMqA6

