
Assignment 3
Logic and Recursion

CS 7400: Intensive Principles of Programming Languages
Chris Martens

Due Friday, November 8, 11:59pm
75 pts

This assignment is due on the above date and must be submitted electronically on Gradescope. Please
use the LaTeX template on the website to typeset your assignment and make sure to include your full name
and NU ID. For the written problems, you may (alternatively) submit handwritten answers that have been
scanned and are easily legible (if you’re not sure, check with a classmate).

You should submit one file, hw03.pdf, with your written solutions to the questions.

1 Constructive Logic

For these problems, use the proof rules in Appendix A.

Task 1 (10 points) Give a derivation of · ⊢ ((⊤ ∨⊥) ⊃ A) ⊃ A true.

Task 2 (20 points) Recall that we define ¬A to be A ⊃ ⊥. You may recall from prior logic classes DeMorgan’s
duals as theorems in propositional logic of the following form, relating conjunction, disjunction, and negation:

1. DM1 = ¬(A ∨B) ⊃ ¬A ∧ ¬B

2. DM2 = ¬(A ∧B) ⊃ ¬A ∨ ¬B

3. DM3 = (¬A ∧ ¬B) ⊃ ¬(A ∨B)

4. DM4 = (¬A ∨ ¬B) ⊃ ¬(A ∧B)

For which of these formulas DMi is it possible to construct a derivation of · ⊢ DMi true using the rules of
constructive propositional logic? Provide two things in your writeup:

1. A typeset derivation tree showing that one of the DeMorgan duals is true in the empty context. (There
may be more than one, but you only need to write up one of them.)

2. An explanation of which DeMorgan duals do not hold in constructive propositional logic and why
(intuitively; you do not need to give a formal proof).

2 Primitive Recursion

For these problems, see Appendix B for typing and evaluation rules.

Task 3 (10 points) The nth triangular number is the sum of the first n + 1 natural numbers: △0 = 0, △1 =
0+ 1 = 1, △2 = 0+ 1+ 2 = 3, △3 = 0+ 1+ 2+ 3 = 6, and so on. Write a function tri : nat → nat in System T
such that tri(n) computes the nth triangle number.

ASSIGNMENT 3 DUE FRIDAY, NOVEMBER 8, 11:59PM

75 PTS

Logic and Recursion HW3.2

Task 4 (10 points) Prove by natural number induction that your implementation is correct, i.e. that tri(n)
computes

∑
i=0...n i.

Task 5 (10 points) The Lucas function (https://en.wikipedia.org/wiki/Lucas_number) is defined
mathematically by

lucas 0 = 2
lucas 1 = 1
lucas n+ 2 = lucas (n+ 1) + lucas n

Define the lucas function in System T.

3 Fixed Point Recursion

For this problem, refer to Appendix C for typing rules and operational semantics.

Task 6 (15 points) Consider two functions, even and odd, defined by mutual recursion:

even 0 = true
even (n+ 1) = odd n

odd 0 = false
odd (n+ 1) = even n

Define these functions using the fixed point operator in PCF, enriched with lazy pairs (τ1 & τ2) and booleans.
Your result should provide two definitions, even : nat ⇀ bool and odd : nat ⇀ bool, potentially defined in
terms of one or more auxiliary definitions.

Hint #1: PFPL Chapter 10 contains an implementation of these functions in System T.

Hint #2: Instead of thinking of even and odd as a pair of mutually-recursive functions, think of them as a
recursively-defined pair of functions.

ASSIGNMENT 3 DUE FRIDAY, NOVEMBER 8, 11:59PM

75 PTS

https://en.wikipedia.org/wiki/Lucas_number

Logic and Recursion HW3.3

A Rule Sheet: Constructive Propositional Logic

Truth:

⊤ true
⊤/I

(no ⊤/E)

Conjunction:
A true B true

A ∧B true
∧/I

A ∧B true

A true
∧/E1

A ∧B true

B true
∧/E2

Disjunction:
A true

A ∨B true
∨/I1

B true

A ∨B true
∨/I2

A ∨B true

A true
...

C true

B true
...

C true

C true
∨/E

Implication:
A true

...
B true

A ⊃ B true
⊃ /I

A ⊃ B true A true

B true
⊃ /E

Falsehood:

(no ⊥/I)

⊥ true

C true
⊥/E

B Rule Sheet: System T

B.1 Type System

zero : nat
ty/zero

e : nat

succ(e) : nat
ty/succ

e : nat e0 : τ x:nat, y:τ ⊢ es : τ

rec(e, e0, x.y. es) : τ
ty/rec

x:τ ⊢ x : τ
ty/x

x : τ1 ⊢ e : τ2

λx. e : τ1 → τ2
ty/lam

f : τ1 → τ2 e : τ1

f e : τ2
ty/app

B.2 Operational Semantics

Values:

zero value
value/zero

e value

succ(e) value
value/succ

λx. e value
val/lam

Computation steps:

ASSIGNMENT 3 DUE FRIDAY, NOVEMBER 8, 11:59PM

75 PTS

Logic and Recursion HW3.4

rec(zero, e0, x.y.es) 7→ e0
step/rec/zero

e value

rec(succ(e), e0, x.y.es) 7→ [e/x][rec(e, e0, x.y.es)/y]es
step/rec/succ

e′ value

(λx. e) (e′) 7→ [e′/x′]e
step/app/lam

Congruence steps:

e 7→ e′

succ(e) 7→ succ(e′)
step/succ

e 7→ e′

rec(e, e0, x.y.es) 7→ rec(e′, e0, x.y.es)
step/rec/1

f 7→ f ′

f e 7→ f ′ e
step/app/fn

f value e 7→ e′

f e 7→ f e′
step/app/arg

C Rule Sheet: PCF with Lazy Pairs and Booleans

C.1 Type System

Natural numbers:

zero : nat
ty/zero

e : nat

succ(e) : nat
ty/succ

e : nat e0 : τ x:nat ⊢ es : τ

ifz(e, e0, x.es) : τ
ty/ifz

Booleans:

true : bool
ty/true

false : bool
ty/false

e : bool et : τ ef : τ

ite(e, et, ef) : τ
ty/ite

Fixed points:

x : τ ⊢ e : τ

fix{τ}(x.e) : τ
ty/fix

Partial functions:

x:τ1 ⊢ e : τ2

λx. e : τ1 ⇀ τ2
ty/parfun

f : τ1 ⇀ τ2 e : τ1

f e : τ2
ty/parapp

Lazy pairs (&):

e1 : τ1 e2 : τ2

⟨e1, e2⟩ : τ1 & τ2
ty/lpair

e : τ1 & τ2

e.1 : τ1
ty/proj1

e : τ1 & τ2

e.2 : τ2
ty/proj2

ASSIGNMENT 3 DUE FRIDAY, NOVEMBER 8, 11:59PM

75 PTS

Logic and Recursion HW3.5

C.2 Operational Semantics

Values:

⟨e1, e2⟩ value
val/lpair

λx. e value
val/lam

zero value
value/zero

e value

succ(e) value
value/succ

true value
value/true

false value
value/false

Computation rules:

fix{τ}(x.e) 7→ [fix{τ}(x.e)/x]e
step/fix

ifz(zero, e0, x.es) 7→ e0
step/ifz/z

succ(e) value

ifz(succ(e), e0, x.es) 7→ [e/x]es
step/ifz/s

ite(true, et, ef) 7→ et
step/if/true

ite(false, et, ef) 7→ ef
step/if/false

⟨e1, e2⟩.1 7→ e1
step/proj1

⟨e1, e2⟩.2 7→ e2
step/proj2

e′ value

(λx. e) (e′) 7→ [e′/x′]e
step/app/lam

Congruence Rules:

e 7→ e′

e.1 7→ e′.1
step/proj1/1

e 7→ e′

e.2 7→ e′.2
step/proj2/1

e 7→ e′

succ(e) 7→ succ(e′)
step/succ

f 7→ f ′

f e 7→ f ′ e
step/app/fn

f value e 7→ e′

f e 7→ f e′
step/app/arg

e 7→ e′

ite(e, et, ef) 7→ ite(e′, et, ef)
step/ite/1

ASSIGNMENT 3 DUE FRIDAY, NOVEMBER 8, 11:59PM

75 PTS

	Constructive Logic
	Primitive Recursion
	Fixed Point Recursion
	Rule Sheet: Constructive Propositional Logic
	Rule Sheet: System T
	Type System
	Operational Semantics

	Rule Sheet: PCF with Lazy Pairs and Booleans
	Type System
	Operational Semantics

