
Assignment 2
Finite Types

CS 7400: Intensive Principles of Programming Languages
Chris Martens

Due Monday, October 21, 11:59pm
70 pts

This assignment is due on the above date and must be submitted electronically on Gradescope. Please
use the LaTeX template on the website to typeset your assignment and make sure to include your full name
and NU ID. For the written problems, you may (alternatively) submit handwritten answers that have been
scanned and are easily legible (if you’re not sure, check with a classmate).

You should submit one file, hw02.pdf, with your written solutions to the questions.

1 Simply-Typed Lambda Calculus

For the problems in this assignment, please use the syntax, judgments, and rules given in Appendix A.

Task 1 (10 points) Fill in the blanks in the following typing judgments so the resulting judgment holds, or
indicate there is no way to do so. You do not need to justify your answer or supply a typing derivation,
and the types do not need to be “most general” in any sense. Remember that the function type constructor
associates to the right, so that τ → σ → ρ = τ → (σ → ρ).

(i) ⊢ y x : A

(ii) ⊢ xx :

(iii) · ⊢ : (A → A) → A

(iv) · ⊢ : (B → C) → A×B → A× C

(v) · ⊢ λf. λg. λx. (f x) (g x) : (A →) → (A →) → (A →)

Task 2 (5 points) Show how the following term evaluates according to the small-step evaluation semantics
in Appendix A:

(λp. split(p, f.x. λz. f x)) ((λx.λy.x), ())

Write the evaluation as a series of rewrites, one per line, until the final line is a value, counting small-step
evaluations and substitutions. That is, each rewrite by a small step of computation should be written on a
line preceded by 7→. You may optionally explicitly write substitutions on their own line as well. Be careful to
avoid variable capture in substitutions.

Task 3 (5 points) Rewrite the expression split(p, f.x. λz. f x) with the lazy-pair destructors (.1, .2) instead
of split(). That is, assuming the original expression is well-typed under p : A × B, write an equivalent
well-typed expression under p : A & B.

ASSIGNMENT 2 DUE MONDAY, OCTOBER 21, 11:59PM

70 PTS

Finite Types HW2.2

Task 4 (6 points) It is often stated that lazy pairs are not necessary in an eager language, because we can
already define τ1 & τ2 and the corresponding constructors and destructors. Fill in this table.

τ1 & τ2 ≜ (1 → τ1)× (1 → τ2)

⟨e1, e2⟩ ≜

e.1 ≜

e.2 ≜

Task 5 (4 points) How would you formalize the idea that your translation in the preceding task is correct?
Give a prose description of your approach, then give one or more formal theorem statements. You do not
need to prove the theorems.

2 Type Isomorphisms

Task 6 (20 points) Prove the following type isomorphisms or explain why they are not isomorphic.

1. A+ 1 ≃ A

2. A+ 0 ≃ A

3 Programming Languages in the Wild

Task 7 (20 points) Find a programming language with an implementation (perhaps one you already use
and are familiar with) with a type system that includes types similar to at least two of the type connectives
from STLC (1, 0, +, ×, & , →). Explain which constructors in your chosen language map most closely to
which STLC connectives, and provide a small example program (or several) whose type includes those
connectives. If applicable, include a machine-checked type annotation, or show the output of the language’s
compiler or interpreter’s inferred type for each program. Finally, explain where the types in your chosen
language differ from the idealized presentation in STLC.

ASSIGNMENT 2 DUE MONDAY, OCTOBER 21, 11:59PM

70 PTS

Finite Types HW2.3

A Rule Sheet: STLC/λ×+1

A.1 Statics

() : 1
ty/unit

x:τ ⊢ x : τ
ty/x

e : τ1

in1 e : τ1 + τ2
ty/in1

e : τ1

in2 e : τ1 + τ2
ty/in2

e : τ1 + τ2 x:τ1 ⊢ e1 : τ x:τ2 ⊢ e2 : τ

case(e, x. e1, x. e2) : τ
ty/case

e1 : τ1 e2 : τ2

(e1, e2) : τ1 × τ2
ty/pair

e : τ1 × τ2 x:τ1, y:τ2 ⊢ e′ : τ

split(e, x.y. e′) : τ
ty/split

x : τ1 ⊢ e : τ2

λx. e : τ1 → τ2
ty/lam

f : τ1 → τ2 e : τ1

f e : τ2
ty/app

Lazy pairs (&):

e1 : τ1 e2 : τ2

⟨e1, e2⟩ : τ1 & τ2
ty/lpair

e : τ1 & τ2

e.1 : τ1
ty/proj1

e : τ1 & τ2

e.2 : τ2
ty/proj2

Empty type (0):

Γ ⊢ e : 0

Γ ⊢ case(e) : τ
ty/casez

A.2 Values

() value
val/unit

e value

in1 e value
val/in1

e value

in2 e value
val/in2

e1 value e2 value

(e1, e2) value
val/pair

λx. e value
val/lam

⟨e1, e2⟩ value
val/lpair

A.3 Small-Step Operational Semantics

Computation rules:

e′ value

(λx. e) (e′) 7→ [e′/x′]e
step/app/lam

e1 value e2 value

split((e1, e2), x.y. e) 7→ [e1/x][e2/y]e
step/split/pair

ASSIGNMENT 2 DUE MONDAY, OCTOBER 21, 11:59PM

70 PTS

Finite Types HW2.4

e value

case(in1 e, x.e1, y.e2) 7→ [e/x]e1
step/case/in1

e value

case(in2 e, x.e1, y.e2) 7→ [e/y]e2
step/case/in2

⟨e1, e2⟩.1 7→ e1
step/proj1/pair

⟨e1, e2⟩.2 7→ e2
step/proj2/pair

Congruence rules:

f 7→ f ′

f e 7→ f ′ e
step/lam/fn

f value e 7→ e′

f e 7→ f e′
step/lam/arg

e1 7→ e′1

(e1, e2) 7→ (e′1, e2)
step/pair/1

e1 value e2 7→ e′2

(e1, e2) 7→ (e1, e
′
2)

step/pair/2

e 7→ e′

split(e, x.y. e2) 7→ split(e′, x.y.e2)
step/split/1

e 7→ e′

case(e, x. e1, y. e2) 7→ case(e′, x. e1, y. e2)
step/case/1

e 7→ e′

e.1 7→ e′.1
step/proj1/1

e 7→ e′

e.2 7→ e′.2
step/proj2/1

e 7→ e′

case(e) 7→ case(e′)
step/casez

ASSIGNMENT 2 DUE MONDAY, OCTOBER 21, 11:59PM

70 PTS

	Simply-Typed Lambda Calculus
	Type Isomorphisms
	Programming Languages in the Wild
	Rule Sheet: STLC/+1
	Statics
	Values
	Small-Step Operational Semantics

