

CS7470 Seminar in Programming Languages
Spring 2024
Organization .. 2

Time and Location ... 2

Prerequisites ... 2

Deadlines ... 2

Schedule ... 2

Recommended Work ... 6

Learn to Use Discovery ... 6

LLM Inference ... 6

Organization

The goal of the seminar is to guide you through completing a project that uses a large language model

trained on code (Code LLM) in a novel way. I strongly encourage you to work in a team and not try to

tackle any research project alone. (This is a general recommendation, and not about this seminar.) We will

conduct the seminar in three parts:

1. We will read papers to understand how Code LLMs are evaluated. Papers that evaluate benchmarks

sometimes make overly general claims, such as <we evaluate reasoning= or <we evaluate program-

ming=. So, we will dig deeper and read the evaluation problems when necessary. Our objective will be

to identify interesting gaps in evaluation.

2. We will build an evaluation set and benchmarking infrastructure for the new task that we identified in

Part 1. The goal is to come up with problems that span a range of difficulties: from problems that are

impossible for the most capable models, to those that are easy for small models. However, we have to

convincingly argue that the hard problems are not impossible.

3. We will work on fine-tuning Code LLMs to do better on your task. We will build a fine-tuning set4

either natural or synthetic4and use it to fine-tune and evaluate models of various sizes.

I hope that this three-part format will be a good fit for most projects. If you have something in mind that

doesn9t lend itself to this format, send me a written proposal and we can discuss it.

Time and Location

Tuesdays and Fridays, 1:35PM 3 3:15PM. Hayden Hall 321

Prerequisites

There are no formal prerequisites. However, you must have experience doing research in either program-

ming languages, software engineering, or machine learning. Undergraduate students require permission of

the instructor. Graduate students were supposed to be able to enroll themselves, but need to ask for an

override because Graduate Programming Languages was mistakenly added as a prerequisite.

Deadlines

See the schedule below for project writeup/presentation deadlines. There is reading assigned to most clas-

ses. Before each class you must:

1. Do the reading and be prepared for in-class discussion.

2. Submit a brief written reflection on each paper that you will share with the whole class. Being able

to write quickly and fearlessly is an important skill.

Schedule

Notes:

1. I9ve included OpenReview links for many papers, where you can read the discussion between au-

thors and reviewers. You do not have to read this discussion, but it can be helpful. However, I

strongly recommend you form your own opinion about the paper before reading the discussion on

OpenReview.

2. I9ve ordered the reading for each day in a sequence that I think makes the most sense for reading.

We9ll follow this order for our in-class discussion.

Tuesday, Jan 9 Introduction

Friday, Jan 12 Generating code from natural language

1. Evaluating Large Language Models Trained on Code [arXiv]

2. MultiPL-E: A Scalable and Polyglot Approach to Benchmarking Neural
Code Generation [IEEE]

3. Execution-based Evaluation for Open-Domain Code Generation [Open-

Review]

Tuesday, Jan 16 Generating tests from code (and natural language)

1. An Empirical Evaluation of Using Large Language Models for Automated

Unit Test Generation [IEEE]

2. Can Large Language Models Write Good Property-based Tests? [arXiv,

demo]

Friday, Jan 19 Finding and fixing bugs

1. Generating High-Precision Feedback for Programming Syntax Errors using

Large Language Models [arXiv]

2. Understanding the Effectiveness of Large Language Models in Detecting

Security Vulnerabilities [arXiv]

3. Large Language Models are Few-Shot Testers: Exploring LLM-Based

General Bug Reproduction [ACM]

Tuesday, Jan 23 Instruction tuning

1. Finetuned Language Models are Zero Shot Learners [OpenReview]

2. LIMA: Less Is More for Alignment [OpenReview]

3. OctoPack: Instruction Tuning Code Large Language Models [Open-
Review, GitHub]

Friday, Jan 26 In-class hacking

Tuesday, Jan 30 Editing code

1. CoditT5: Pretraining for Source Code and Natural Language Editing

[ACM]

2. InstructCoder: Empowering Language Models to Edit Code [OpenReview]

3. Can It Edit? Evaluating the Ability of Large Language Models to Follow

Code Editing Instructions [arXiv]

Friday, Feb 2 Training Code LLMs

1. CodeParrot [original blog post, Hugging Face NLP course]

2. InCoder [OpenReview]

3. SantaCoder [arXiv]1

4. StarCoder [OpenReview]

1 The OpenReview page for SantaCoder is private by mistake. However, the paper was lightly reviewed for a work-

shop and the reviews won9t help our discussion.

Tuesday, Feb 6 Project Proposals and Discussion

Your team should prepare a written proposal that discusses the following:
1. What is the task that you want to evaluate, and why does it matter?

2. What is the related work, and why is your project novel?

3. Is there a reasonable approach to automated evaluation?

4. Is there preliminary evidence that the task can be hard for state-of-the-art

LLMs?

5. Do you have any ideas on how to build a fine-tuning set for the task?

6. How many problems does your evaluation set need to be reasonable?

Friday, Feb 9 Self-instruction

1. Self-Instruct: Aligning Language Models with Self-Generated Instructions

[arXiv]

2. WizardCoder [OpenReview, arXiv]

3. Magicoder: Source Code Is All You Need [arXiv]

Tuesday, Feb 13 Snow Day?

Friday, Feb 16 Not exactly self-instruction

1. Self-alignment with instruction backtranslation [OpenReview]

2. Toolformer: Language Models Can Teach Themselves to Use Tools [Open-
Review]

3. Knowledge Transfer from High-Resource to Low-Resource Programming

Languages for Code LLMs [arXiv]

Tuesday, Feb 20 Beyond pretraining and instruction finetuning

1. Coarse-Tuning Models of Code with Reinforcement Learning Feed-

back [OpenReview, arXiv]

2. Code Translation with Compiler Representations [OpenReview]

Friday, Feb 23 Using Code LLMs for non-code tasks

1. PAL: Program-aided language models [PMLR]
2. Symbolic planning and code generation for grounded dialogue [Open-

Review]

Tuesday, Feb 27 Class Cancelled (Arjun away)

Friday, Mar 1 Miscellaneous

1. ADsafety: Type-based Verification of JavaScript Sandboxing [USE-

NIX]

2. LEVER: Learning to Verify Code Generation with Execution [PMLR]

Tuesday, Mar 5 Spring Break

Friday, Mar 8 Spring Break

Tuesday, Mar 12 Project Presentations: Benchmark Problems and Results

Your team should prepare a presentation on the following.
1. Example problems from your benchmark. Include both easy and hard prob-

lems.

2. How you9re automating the evaluation. Discuss all manual steps.

3. How long it takes your benchmark to run.

4. Evaluation results on three model sizes. I recommend 1B, 3B, and 7B. You

can use larger models if you9re able to wrangle the resources to do so.

Maybe fine-tuning tutorial

Friday, Mar 15 Class cancelled for PhD visit day.

Go meet your prospective colleagues.

Tuesday, Mar 19 Class Cancelled (Arjun away)

Friday, Mar 22 1. Two Late Presentations

2. Fine-tuning tutorial

Tuesday, Mar 26 Early Work

1. On the naturalness of software [IEEE]

2. Predicting Program Properties from <Big Code= [ACM]

Friday, Mar 29 Early Work

1. Code completion with statistical language models [ACM]

2. DeepBugs: a learning approach to name-based bug detection [ACM]

Tuesday, Apr 2 Grab Bag 0

1. (Old Paper) Automatic patch generation by learning correct code

[ACM]

2. (New Paper) CruxEval: A Benchmark for Code Reasoning, Under-

standing, and Execution [Twitter]

Friday, Apr 5 Grab Bag 1

1. A structural model for contextual code changes [ACM]

2. Seq2Parse: neurosymbolic parse error repair [ACM]

3. Code2vec: learning distributed representations of code [ACM]

Tuesday, Apr 9 Humans and Code LLMs

1. Grounded Copilot: How Programmers Interact with Code-Generating Mod-

els [ACM]

2. How Beginning Programmers and Code LLMs (Mis)read Each Other

[arXiv]

3. CodeCompose: A Large-Scale Industrial Deployment of AI-assisted Code

Authoring [arXiv]

Friday, Apr 12 Papers from Spring 2024

1. NoFunEval: Funny how Code LMs Falter on Requirements Beyond

Functional Correctness [Twitter]

2. OS-Copilot [Twitter]

3. Building LLMs for Code Repair [Blog Post]

Tuesday, Apr 16 Last Class. Project Presentations: Finetuning Approach and Results

Your team should prepare a written proposal that discusses the following:

1. How will you build a fine-tuning dataset for your task?

2. How much data do you think you will need? This should be supported by

evidence from the papers that you9ve read.

3. What is the minimum context length that you need for your task?

How much time will it take to train and evaluate the models that you have in

mind?

Friday, Apr 26 Project Reports Due

Recommended Work

What follows is not homework. But, if you don9t have any experience working with LLMs, you will find

them helpful to do.

Learn to Use Discovery

You should get an account on the Discovery Cluster if you haven9t already. Your advisor should be your

account sponsor, and I can sponsor if needed. You should get familiar with launching and monitoring jobs

on GPU nodes.

We expect most of the work for the seminar to be doable on the 32GB V100 GPUs, which are abundant on

Discovery, so you should get familiar with those. Discovery has A100s, but they are usually oversubscribed.

I often use the following workflow to use a node interactively. I create an sbatch script that runs sleep

infinity on a GPU node. For example, the following script reserves a V100 GPU for two hours:

I launch the script with sbatch and then use squeue until the node is allocated:

I run squeue repeatedly until the job is marked <RUNNING= on a particular node. Squeue gives you the

node name, and you can SSH into the node. Once I9m on the node, I use tmux. (Without tmux or screen,

any program that you9re running will be killed if you disconnect.)

It is also possible to use Visual Studio Code with Discovery. See the file /home/a.guha/TIPS on how to do

so.

LLM Inference

You should get used to running inference with an LLM. Hugging Face models have little example scripts

that you can use to get started. For example, SantaCoder has several example scripts that should work. On

a GPU, you may find that vLLM is significantly faster than Hugging Face Transformers and supports many

contemporary LLM architectures.

