RobotReviewer
Mon 08.29.16
RobotReviewer
Mon 08.29.16
Mon 08.29.16
Mon 08.29.16
Mon 08.29.16
Mon 08.29.16
Evidence Based Medicine (EBM) aims to systematically use the best available evidence to inform medical decision making. This paradigm has revolutionized clinical practice over the past 30 years. The most important tool for EBM is the systematic review, which provides a rigorous, comprehensive and transparent synthesis of all current evidence concerning a specific clinical question. These syntheses enable decision makers to consider the entirety of the relevant published evidence.
Systematic reviews now inform everything from national health policy to bedside care. But producing these reviews requires researchers to identify the entirety of the relevant literature and then extract from this the information to be synthesized; a hugely laborious and expensive exercise. Moreover, the unprecedented growth of the biomedical literature has increased the burden on those trying to make sense of the published evidence base. Concurrently, more systematic reviews are being conducted every year to synthesize the expanding evidence base; tens of millions of dollars are spent annually conducting these reviews.
RobotReviewer aims to mitigate this issue by (semi-) automating evidence synthesis using machine learning and natural language processing. Visit the RobotReviewer project page to learn more.
Evidence Based Medicine (EBM) aims to systematically use the best available evidence to inform medical decision making. This paradigm has revolutionized clinical practice over the past 30 years. The most important tool for EBM is the systematic review, which provides a rigorous, comprehensive and transparent synthesis of all current evidence concerning a specific clinical question. These syntheses enable decision makers to consider the entirety of the relevant published evidence.
Systematic reviews now inform everything from national health policy to bedside care. But producing these reviews requires researchers to identify the entirety of the relevant literature and then extract from this the information to be synthesized; a hugely laborious and expensive exercise. Moreover, the unprecedented growth of the biomedical literature has increased the burden on those trying to make sense of the published evidence base. Concurrently, more systematic reviews are being conducted every year to synthesize the expanding evidence base; tens of millions of dollars are spent annually conducting these reviews.
RobotReviewer aims to mitigate this issue by (semi-) automating evidence synthesis using machine learning and natural language processing. Visit the RobotReviewer project page to learn more.