David Bau

(he/him/his)

Assistant Professor

David Bau

Research interests

  • Machine learning 
  • Computer vision 
  • Artificial intelligence 
  • Natural language processing 
  • Human–computer interaction 

Education

  • PhD in Computer Science, Massachusetts Institute of Technology 
  • MS in Computer Science, Cornell University 
  • AB in Mathematics, Harvard University 

Biography

David Bau is an assistant professor in the Khoury College of Computer Sciences at Northeastern University, based in Boston.

Bau's research focuses on human-computer interaction and machine learning. Before joining Northeastern, he worked as a software engineer at Google, BEA, and Crossgain. He has been published in journals such as CVPR, NeurIPS, ICCV, ECCV, and SIGGRAPH.  

 Outside of research, Bau enjoys astronomy and puzzle collecting.   

Projects

Recent publications

  • Function Vectors in Large Language Models

    Citation: Eric Todd, Millicent L. Li, Arnab Sen Sharma, Aaron Mueller, Byron C. Wallace, David Bau. (2024). Function Vectors in Large Language Models ICLR. https://openreview.net/forum?id=AwyxtyMwaG
  • Linearity of Relation Decoding in Transformer Language Models

    Citation: Evan Hernandez, Arnab Sen Sharma, Tal Haklay, Kevin Meng, Martin Wattenberg, Jacob Andreas, Yonatan Belinkov, David Bau. (2024). Linearity of Relation Decoding in Transformer Language Models ICLR. https://openreview.net/forum?id=w7LU2s14kE
  • Erasing Concepts from Diffusion Models

    Citation: Rohit Gandikota, Joanna Materzynska, Jaden Fiotto-Kaufman, David Bau. (2023). Erasing Concepts from Diffusion Models ICCV, 2426-2436. https://doi.org/10.1109/ICCV51070.2023.00230
  • FIND: A Function Description Benchmark for Evaluating Interpretability Methods

    Citation: Sarah Schwettmann, Tamar Rott Shaham, Joanna Materzynska, Neil Chowdhury, Shuang Li, Jacob Andreas, David Bau, Antonio Torralba . (2023). FIND: A Function Description Benchmark for Evaluating Interpretability Methods NeurIPS. http://papers.nips.cc/paper_files/paper/2023/hash/ef0164c1112f56246224af540857348f-Abstract-Datasets_and_Benchmarks.html
  • Mass-Editing Memory in a Transformer

    Citation: Kevin Meng, Arnab Sen Sharma, Alex J. Andonian, Yonatan Belinkov, David Bau. (2023). Mass-Editing Memory in a Transformer ICLR. https://openreview.net/pdf?id=MkbcAHIYgyS
  • Toward a Visual Concept Vocabulary for GAN Latent Space

    Citation: Sarah Schwettmann, Evan Hernandez, David Bau, Samuel Klein, Jacob Andreas, Antonio Torralba . (2021). Toward a Visual Concept Vocabulary for GAN Latent Space ICCV, 6784-6792. https://doi.org/10.1109/ICCV48922.2021.00673
  • Disentangling visual and written concepts in CLIP

    Citation: Joanna Materzynska, Antonio Torralba , David Bau. (2022). Disentangling visual and written concepts in CLIP CVPR, 16389-16398. https://doi.org/10.1109/CVPR52688.2022.01592
  • Sketch Your Own GAN

    Citation: Sheng-Yu Wang, David Bau, and Jun-Yan Zhu. Sketch Your Own GAN. Proceedings of the IEEE/CVF International Conference on Computer Vision. (ICCV 2021)
  • Diverse Image Generation via Self-Conditioned GANs

    Citation: Steven Liu, Tongzhou Wang , David Bau, Jun-Yan Zhu, Antonio Torralba . (2020). Diverse Image Generation via Self-Conditioned GANs CVPR, 14274-14283. https://openaccess.thecvf.com/content_CVPR_2020/html/Liu_Diverse_Image_Generation_via_Self-Conditioned_GANs_CVPR_2020_paper.html

Related News

Post Docs

Current PhD Students