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ABSTRACT
Users today access a multitude of online services—among
the most popular of which are online social networks
(OSNs)—via both web sites and dedicated mobile appli-
cations (apps), using a range of devices (traditional PCs,
tablets, and smartphones) that are connected via a vari-
ety of networks. The resulting infrastructure makes these
services conveniently available anytime and anywhere, en-
abling them to become an integral part of daily life. As a
consequence, users explicitly and implicitly provide a wealth
of Personal Information (PI) that reflects several aspects of
their life. Service providers monetize this information by
selling to third parties (e.g., advertisers). Unfortunately, to-
day, it remains difficult for end users to fully understand the
amount and nature of the collected data.

Our goal in this paper is to bring visibility into PI col-
lected when accessing online services such as online social
networks. This is a major challenge because PI is transferred
in a proprietary way by each service. We develop a novel
method that can automatically discover various types of PI
carried within protocol fields of network traffic; the method
includes techniques to filter out potential “containers” that
do not actually carry PI and extend the set of containers
initially found with additional ones. We evaluate the false
positive/negative rates of our proposed method and show
examples of interesting findings, including what kind of web
sites or apps are more likely to transmit PI and which types
of PI are most commonly collected.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: Security
and protection; K.4.1 [Computers and Society]: Privacy
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1. INTRODUCTION
People heavily and constantly rely on services accessible

through the Internet for professional, personal, and enter-
tainment needs. For example, online social networks (OSNs)
are a popular way for individuals to keep in touch, communi-
cate, and share content. These services are accessed not only
via web sites, but also via dedicated applications (apps) on
mobile devices, thus being accessible through a range of de-
vices (PCs, tablets, and smartphones) and a variety of wired,
wireless, and mobile networks. Given that such services are
an integral part of users’ lives, service providers have a priv-
ileged observation point into the habits and interests of their
users. Hence, many operate using a similar business model:
services are made available for free in exchange for users
(allegedly with an informed decision) accepting that service
providers monetize on such personal data by selling it to
third parties (e.g., advertisers).

Even though users are often provided with privacy con-
trols, these generally only affect flow of information to other
users or third-party applications; users today have no option
of making their data private from the service provider. Even
worse, the limited visibility into app behavior coupled with
the significant amount of data stored on smartphones makes
it even harder for users to understand the extent to which
these services are automatically collecting personal data.

In this paper, we address this situation by developing tech-
niques that automatically detect personal information (PI)
traveling through the network as it is collected by services
accessed via web browsers or mobile apps. This phenomenon
is hereafter referred to as PI leaks. In contrast with related
approaches that rely on “rooting” a user’s device [4, 6] or
instrumenting applications or browsers [1, 17], we instead
aim at a solution requiring access only to the network itself,
because such an approach significantly lowers barriers to de-
ployment. Moreover, it has the potential to achieve higher
coverage since the system can leverage visibility on traffic
from multiple users in learning how PI is transmitted (i.e.,
how it is encapsulated in proprietary ways). Although the
approach is general, we choose to focus on HTTP, as this is
the protocol on which both traditional web services and a
large fraction of mobile apps base their communications.

In designing and evaluating our approach, we make three
high-level contributions. First, we underscore the difficulty
of the problem of locating PI in network traffic by demon-
strating that only a very small fraction of protocol fields
actually convey PI, making our endeavor akin to “finding a
needle in the haystack” (in § 4.1). We also show that an
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approach based on simple statistical analysis (e.g., selecting
fields that are unique to a user, or common across different
services) is not practical as it results in unacceptably high
levels of false positives/negatives (in § 4.2).

Second, we develop a novel method based on (i) grouping
data according to the domain name of the servers it is sent
to and the key associated to it for the transmission, called a
domain-key, and (ii) concluding that all of the domain-key
combinations in a group are PI “containers” if a threshold
subset of them are found to contain PI (§ 5.1). This subset
of PI containers are identified through a list of seed rules
manually crafted to locate PI of different types, including,
but not limited to, users’ names, genders, email addresses,
ages, geo-locations, cities, postal codes, and phone numbers
(§ 5.2 and § 5.3). Then the coverage is extended by infer-
ring additional containers by analogy with the seeded ones
(§ 5.4).

Third, we evaluate our approach on a network dataset col-
lected from a point-of-presence of a European ISP, covering
13,000 real users. As we do not know the ground truth PI
for these users, we establish ground truth by relying on mul-
tiple human raters to label domain-keys that contain PI. In
§ 6.1, we find that our approach is able to identify these rare
domain-keys automatically, with a low false negative rate
(2.7%) and an acceptable false positive rate (13.6%). We
then apply our approach to the entire dataset in § 6.2, ex-
ploring the frequency with which web sites and applications
transmit PI in practice. There, we discover that different
types of Internet service focus on different PI (e.g., CDNs
tend to leak physical locations of users while adult services
leak age and gender information). We also find that an in-
vasive user-tracking service leaks higher amount of PI than
others.

2. BACKGROUND
In this section, we provide a more formal definition of

personal information (PI) and describe our assumptions and
intended operating environment.

2.1 Personal Information (PI)
There are many different kinds of PI, including a user’s

name and social security number, their current location
when performing a purchase over the Internet, or even rich
media information in the form of photos and videos. For sim-
plicity, we focus on a text-based personal information (e.g.,
names, user identifiers, and locations) collected by web sites
and smartphone applications. Further, to discern different
high-level characteristics of PI, we classify them along the
following three dimensions.

Static vs. Dynamic Static PI does not typically change
over time (at least, over short- to medium-length time in-
tervals). Examples include the user’s name, gender, phone
number, and email address. In contrast, dynamic PI may
change over such intervals; examples include the user’s geo-
location, a user’s session ID, or the user’s set of personal
interests.

Unique vs. Non-unique Unique PI distinctly identifies a
single (human) user from others. For example, a user’s email
address or phone number uniquely distinguishes a user from
the rest. On the other hand, non-unique PI may be shared

Personal information Static? Unique? Shared?
Name 2� 2 2�
Email address 2� 2� 2�
Date of Birth 2� 2 2�
Geo-location 2 2 2
Username 2� 2� 2�
Tracking cookie 2 2� 2

Table 1: Examples of different types of textual PI, and the
breakdown of PI along different dimensions.

by multiple users; examples include a user’s name, gender,
or date of birth.

Shared vs. Distinct The third dimension we consider is PI
that, for a given user, is likely to be shared across services
or distinct. An example of shared PI is mailing address of a
user (presuming that the user provides factual information
to each site). In contrast, distinct PI is potentially different
for each website (or domain name); examples include time
the user last logged in or the session identifier in a tracking
cookie.

We provide breakdowns of how different examples of PI
are classified along these dimensions in Table 1.

2.2 Assumptions, environment, threat model
In contrast to approaches that assume access to user de-

vices (e.g., via browser plugins, “rooting”, or operating sys-
tem modifications), we instead assume that network admin-
istrators wish to understand when their users’ personal in-
formation is being transmitted over the network. Thus, we
assume that we have access to traces of network activity
from a large group of users, as would be the case at a large
corporation or university.

While web sites are constrained by the browser to only
using HTTP to communicate with remote servers, smart-
phone applications are free to use any UDP/TCP protocol.
However, as much as 40% of application traffic actually is
HTTP [5,21], presumably to re-use many of the same APIs
as web-based services and to avoid certain firewalls. Hence,
we only consider PI leaks that occur over HTTP, but our ap-
proach could easily be extended to other protocols if given
appropriate parsers.

We therefore develop techniques to look for instances of
textual PI in certain HTTP fields of the observed network
traffic. We assume that applications and web sites are not
actively obfuscating transmitted information by hiding PI
or obscuring data by using steganography-like techniques.
Handling PI transmitted by actively adversarial applications
(e.g., malware) introduces significant additional challenges,
and we leave it to future work.

Finally, because we do not assume any privileged access to
devices, we are unable to gain visibility into HTTPS traffic.1

While HTTPS and, more generally, any TLS/SSL encrypted
traffic, represent an ever increasing fraction of Internet data,
we find that a significant fraction of traffic remains in plain

1
We assume that mechanisms to access encrypted content can be

put in place independently of our techniques for PI identification.
For organizations that provision devices with additional trusted root
certificates (e.g., certificates owned by the local administrators), one
could leverage techniques for interposing on HTTPS transactions to
gain such visibility [14,20], thereby extending our approach to HTTPS
traffic as well. However, such an approach would have significant
implications on privacy and security, so we do not consider it to be
the common deployment scenario.



Observed HTTP transaction

GET /foo.html? user_firstname=Alice & id=17 HTTP/1.1

Host: imagevenue.com

Cookie: a=293 & g=00s9229daa & age=39 & id=27

ETag: 2039-2dc90ea2-12

Referer: http://www.facebook.com/? user_id=89
Accept-Encoding: deflate,gzip

HTTP/1.1 200 OK
Date: Mon, 23 May 2013 22:38:34 GMT
...

Derived domain-keys and values

Domain Key Field Value
imagevenue.com user firstname GET Alice
imagevenue.com id GET 17
imagevenue.com a Cookie 293
imagevenue.com g Cookie 00s9229daa
imagevenue.com age Cookie 39
imagevenue.com id Cookie 27
imagevenue.com user id Referer 89

Figure 1: Example query from one HTTP connection, and the
derived domain-keys with the associated values.

HTTP. For example, in our Lab traffic dataset described in
Section 3.2, we find that 62% of the flows are HTTP, and
that 44% of the ground-truth user PI is located in these
HTTP flows. As a result, even without access to HTTPS
traffic, we still can observe a large fraction (44%) of PI trans-
mitted in the traffic.

3. DATASET DESCRIPTION
In this section, we introduce the datasets used for charac-

terization of PI transmission over the network and for evalu-
ating extraction of PI from traffic. While it is ideal to collect
traffic traces with ground truth PI on every user, it is unre-
alistic to be able to collect such data at large scale. Instead,
we use two complementary datasets: (i) small scale traffic
traces with reliable ground truth collected in a controlled lab
environment (Lab traffic) and (ii) large-scale traces collected
from an ADSL point-of-presence (ISP traffic). The Lab traf-
fic dataset helps us to obtain preliminary understanding on
the mechanisms of PI transmission on the Internet; the ISP
traffic dataset is then used to build models for PI extraction
and test them at scale.

We begin this section by overviewing how we parse out PI
from raw traffic, followed by detailed explanation of the Lab
traffic and ISP traffic datasets, respectively.

3.1 HTTP parsing
From Layer-7 flows of user traffic, we extract PI of users

from HTTP requests assuming that it is transferred in the
form of key-value pairs. In order to properly handle these
keys, we use the concept of domain-key in which we combine
a key name with the name of the domain associated to the
request. The intuition behind this is that key names will
likely be used coherently (i.e., for carrying the same type
of information) within the same domain (e.g., google.com
may use the keyword “ggender” to collect user’s gender re-
gardless the specific Google service). On the other hand, a
same key might be used in the context of different domains
with a different meanings (e.g., the key id may be used dif-

Dataset HTTP flows Tuples Domain-keys
Lab traffic 9,227 20,810 8,372
ISP traffic 40,775,119 51,368,712 3,113,696

Table 2: High-level statistics of our two datasets.

ferent by Google and Facebook). Specifically, we extract
the domain from Host HTTP header, and derive keys (and
values) from three locations: (a) the query string of HTTP
GET requests, (b) the query string in the Referer HTTP
header, and (c) the Cookie HTTP header. For each loca-
tion of potential keys, we divide the contents into key/value
pairs using standard formatting rules (e.g., for GET query
string parameters, we use the & character; for cookies, we
use commas, semicolons, and ampersands). Figure 1 shows
an example of a query and domain-keys and values extracted
from it.

The use of domain-keys (as opposed to just keys alone)
allows us to capture how different domains use keys with
the same name. Consider two HTTP GET messages
http://loginradius.com/login?name=alice and http://

ymail.com/getservice?name=send_mail. While the query
string name is the same for both domains, the former domain
uses it as a login ID, while the latter uses it the name of the
service that the user is requesting. Thus, keeping these sep-
arate allows us to identify the former as potentially carrying
PI, while the latter is unlikely to.

3.2 Controlled lab environment dataset
In the Lab traffic dataset, we collect traffic of a single user

who intentionally transmitted a variety of known PI (i.e.,
ground truth) to a number of popular online services. For
this dataset, we wanted to be able to examine the TLS/SSL
encrypted traffic as well. Thus, we collect data by tapping
in to the connections with a middlebox that passes traf-
fic through VPN/Man-In-The-Middle (MITM) transparent
setup [15].

Using an Apple iPhone 4 with iOS 7, we ran the top 35 free
iTunes apps for 15 minutes each, conducting a variety of ac-
tivities including service registration, login/logout, message
posting, chat message transmission, browsing, etc. Detailed
information about the size of this dataset is provided in Ta-
ble 2. Given that this dataset is highly biased toward one
specific user and one device, we use this dataset as an ex-
ploratory sandbox, in which we manually inspect how the
known PI is transmitted in HTTP/S traffic.

3.3 Real ISP dataset
In order to generalize our PI extraction models with larger

scale data, we conducted a large-scale traffic collection from
a point-of-presence of an ISP providing ADSL service in a
European city. We use a Layer-7 traffic trace, ISP traffic, of
13,000 users for 24-hour in August 2011.2

We identify over 3 million unique domain-keys and 51 mil-
lion unique domain-key/value tuples (see Table 2 for more
details). While this real-user dataset lacks ground truth in-
formation on the user PI, we evaluate correctness of our pro-
posed method by having humans manually inspect sampled
domain-keys in Section 6.1.3.

2
Per the privacy policy of the ISP, we anonymized true identities of

the users prior to our study.

http://loginradius.com/login?name=alice
http://ymail.com/getservice?name=send_mail
http://ymail.com/getservice?name=send_mail
name
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Figure 2: The cumulative distribution of the uniqueness ratio
of all static domain-keys in ISP traffic dataset.

4. STATISTICAL APPROACH
We begin by measuring the overall level of PI present

in traffic, and then explore whether simple statistical tech-
niques (inspired by Section 2.1) might be able to identify PI
leaked in large ISP traffic.

4.1 Small scale study on controlled lab traffic
Using the Lab traffic dataset, we locate all of the domain-

keys present in the traffic; this results in 8,372 domain-keys
in total. Because we know the ground truth entered by the
user, we search through the values of the domain-keys, look-
ing for information that was provided by the user includ-
ing the email address, name, city, postal code, gender, age,
and geo-coordinates. We find that the fraction of domain-
keys with different PI varies between 0.01% (for phone num-
ber) to 0.31% (for postal code), but overall, only 1.25% of
all domain-keys ever contained any PI. Thus, we observe
that locating PI in raw traffic is akin to finding needle in a
haystack.

4.2 Statistical metrics in discovering PI
Next, using ISP traffic dataset, we explore whether we

may be able to identify PI in traffic by looking for sim-
ple statistical properties of the domain-keys. For example,
perhaps values that users upload to different domains may
be more likely to be PI than other values. Below, we ex-
plore each of the three properties of the domain-keys in the
ISP traffic dataset based on the taxonomy presented in Sec-
tion 2.1. Then, we analyze the effectiveness of combining
the statistical metrics in discovering the PI leakage.

Static vs. Dynamic Overall, we find that there are 341,179
(11.0%) static domain-keys (i.e., every user has only one
value for the domain-key) and 111,664 (3.6%) dynamic
domain-keys (i.e., every user has two or more values); the
remaining are mixture of both (i.e., some users have sin-
gle value, some have multiples). This is unsurprising as the
vast majority of domain-keys have very few values. Manu-
ally inspecting the static and dynamic domain-keys reveals
a few candidates for PI, but the majority of domain-keys
have no obvious semantic meaning for PI. Thus, while this
approach does identify domain-keys that are static or dy-
namic for users, it is still not precise enough to be useful for
pinpointing PI.

Unique vs. Non-unique The second feature we explore is
whether each user is mapped to a unique value. We focus
on the static domain-keys discovered above in order to use
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Figure 3: The cumulative distribution of number of domains
that each user-value has been sent to in ISP traffic dataset.

domain-keys that are likely to map a single value to each
user (i.e., examining uniqueness of dynamic values requires
careful consideration of the number of online users, etc).
We define a new metric uniqueness ratio for a domain-key,
which is simply the number of unique values in the domain-
key divided by the number of users for the domain-key. We
show the cumulative distribution of the uniqueness ratio in
Figure 2. Among all the static domain-keys, 96,375 (28.24%)
of them have a uniqueness ratio of 1, meaning every user has
a unique value.

While the static domain-keys with uniqueness ratio of 1
are more likely to contain the static type of PI, such as
user’s username, and email address, the majority of them
are comprised of session identifiers, GUIDs, and the like.
Thus, relying on uniqueness alone is also likely to produce
too many false positives to be useful.

Shared vs. Distinct Data a user is sharing across domains
suggests that the value may correspond to the user’s PI (e.g.,
the same email address used as login account for different
websites). Out of 26,453,858 unique user-values, we find
5,923,084 (22.4%) of them have been sent to multiple do-
mains; we show the cumulative distribution of the number
of domains for each user-value in Figure 3. There, we find
over 7% of user-values have been sent to at least 10 domains.

Among the values sent to multiple domains (i.e., distinct
data), we find some meaningful PI (e.g., we find tracking
user identifiers that are used across domains). However, the
majority of them are common values with no implications
on PI such as 0, 1, true, false, etc (e.g., a user sent the value
of 1 to more than 100 different domains). Thus, as before,
looking only at the values that are shared across domains is
simply not precise enough to effectively locate PI.

Combining features We have observed so far that looking
for individual features of domain-keys is not precise enough
to locate PI. We now briefly explore combining statistical
features together, looking for domain-keys that are static,
unique to a user, and shared across domains. Our selection
of these features is to capture PI such as email addresses,
which may be used as login information for multiple web
sites. This combined criteria leaves with a small set of 262
pairs of domain-keys that are unique, static, and have at
least 20 users that share the same value in both domain-
keys.



Pre-processing (§5.1)

d.com/e
a3f, 8d4, 881, 
9fd, 2ac, 76a, 
76c, c29, aa1

fb.com/g
m, f, m, o, f, 
m, f, m, o, m, 
o, m, f, m, f, f

b.com/age
18, -64, 1, 34, 
22, 19, 75, 29, 
0, 192, 20, -4

ny.com/e
test@foo.com

Seed rules (§5.2)

d.com/e
a3f, 8d4, 881, 
9fd, 2ac, 76a, 
76c, c29, aa1

fb.com/g
m, f, m, o, f, 
m, f, m, o, m, 
o, m, f, m, f, f

b.com/age
18, -64, 1, 34, 
22, 19, 75, 29, 
0, 192, 20, -4

Filtering (§5.3)

fb.com/g
m, f, m, o, f, 
m, f, m, -, m, -, 
m, -, f, m, f, -, f

b.com/age
18, 64, 1, 34, 
22, 19, ad, 29, 
3a, 13, 20, -

Expansion (§5.4)

fb.com/g

Filtering (§5.3)

fb.com/g
m, f, m, o, f, 
m, f, m, o, m, 
o, m, f, m, f, f

b.com/age
18, -64, 1, 34, 
22, 19, 75, 29, 
0, 192, 20, -4

m, f, m, o, f, 
m, f, m, o, m, 
o, m, f, m, f, f

Figure 4: Overview of our proposed approach, exemplifying the four steps in identifying domain-keys that may contain PI. In the
Pre-processing step, domain-keys with too few values are filtered. In the Seed rules step, different rules are applied to the values in each
domain-key; domain-keys with too few matching values are filtered out in the Filtering stage. Finally, in the Expansion step, the newly
discovered values are shown in bold, and these may be used to help refine the seed rules.

To evaluate whether these domain-keys contain real user
PI, several human raters3 manually inspected each of the
domain-keys. Overall, we find that only 33 (12.6%) of the
domain-keys were labeled by humans as PI; examples in-
clude email addresses, ids, user interest, locations, etc. Tak-
ing a closer look at the false positives, we find that they
contain values that are related to the users’ activities, how-
ever, not users’ sensitive PI, including dates, timestamps,
click tags, referrers, etc.

Summary Applying individual statistical tests in the real
ISP traffic results in too many false positives; applying a
combination of the tests results in too few true positives. In
the following section, we propose a more sophisticated tech-
nique based on the properties of values of different domain-
keys we learned so far.

5. SEEDED APPROACH
This section describes the method we propose to iden-

tify PI in network traffic traces, parsing traffic data and
distinguishing user PI in an automated fashion. We begin
by extracting fields from the various HTTP headers in the
manner described in Section 3.1.

As observed in the previous section, in the vast major-
ity of cases, reliance on the statistics of domain-keys fails
to reveal values with PI. Hence we shift our focus to the
domain-key values and propose a novel semantically-based
method which we refer to as the seeded method. We briefly
describe our high-level approach here, and provide more de-
tails on each step. First, we have an initial pre-processing
step, where we examine all domain-keys of a dataset and
filter out those that do not have enough values to produce
statistically meaningful results. Second, we apply a num-
ber of seed rules crafted to find clues of PI directly from
the values contained in each domain-key. Using these rules,
we select candidate domain-keys to be those that have a
sufficient level of matches. Fourth, we extend the set of pos-
sible values to include those in the candidate domain-keys
by adding the missing values into our value pool. A diagram
of these four steps is presented in Figure 4.

These four steps are described in more detail in the follow-
ing subsections. Many of the steps require choices of con-

3
To further protect privacy of users from de-anonimization, the only

human participants allowed to review the data was limited to the six
authors of this paper.

stants and parameters; when describing each of the steps,
we describe our process for selecting the parameters based
on observations from the Lab traffic and ISP traffic datasets.

5.1 Pre-processing
Our approach relies on the format of the values of different

domain-keys to select domain-keys that are likely to be car-
rying PI. Thus, we need a large enough sample of values to
be able to produce statistically significant results. To do so,
we simply select a threshold n, and only consider domain-
keys for which we have observed n tuples (user/value pairs).
For example, n = 5 can either mean one unique value from
each of 5 different users, or 5 different values from a single
user.

When applying this pre-processing step, we naturally face
a tradeoff between the potential false positives and the cov-
erage of domain-keys where we have few data points. Thus,
we briefly explore the coverage of domain-keys that different
choices of n provide. Using the ISP traffic dataset, we plot
the cumulative distribution of the number of distinct values
each domain-key has (we also plot the number of users and
total number of tuples for comparison) in Figure 5. We ob-
serve that out of the 3.1M total domain-keys, only the top
270,756 (8.7%) “heavy hitter” domain-keys have at least 10
distinct tuples. However, these heavy hitter domain-keys
in aggregate cover 90.8% of all observed tuples; thus, when
applying pre-processing, we filter out a significant fraction
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in ISP traffic dataset.



PI type Regular expression
Age Range /^[0-9]{1,3}-[0-9]{1,3}$/ (where the second number is larger than the first)
Email /^(\w|\-|\_|\.)+\@((\w|\-|\_)+\.)+[a-zA-Z]{2,}$/
Geo /^[\+\-]{0,1}\d+\.\d{4}\d+$/ (where the value is within the range of the country)
Gender /^[mf]$/ or /^(fe)?male$/ (or the corresponding words for male/female in local language)
Phone /^([+]code)?((38[{8,9}|0])|(34[{7-9}|0])|(36[6|8|0])|(33[{3-9}|0])|(32[{8,9}]))([\d]{7})$/
Postal code /^\d{5}$/

Table 3: Examples of regular expressions used for a subset of the seed rules. Some of the regular expressions require minor post-
processing, such as a the “age range” PI category, where the second element of the range must be greater than the first.

of the domain-keys, but still retain the vast majority of the
observed tuples in the trace.

5.2 Seed rules
We develop a list of constraints, or seed rules, based on

the format of expected PI. For many of the different types of
PI, seed rules can be expressed as simple regular expressions,
and are sufficient to express the possible data formats. For
example, in Table 3, regular expressions are sufficient to cap-
ture email addresses, genders, age ranges, geo-coordinates,
postal codes, and phone numbers.4 For some of these, some
simple post-filtering is required (e.g., to express that an age
range is from a lower number to a higher one).

However, other types of PI may not be as easily expressible
as a regular expression. Examples of such PI include user’s
names, cities, and regions. To capture these, we also allow
seed rules to be expressed as dictionaries containing lists
of possible values. For example, for first names of users,
we create a comprehensive list of names5 by downloading
a set of corresponding web pages with boys or girls’ names
from the given country. Similarly, we create a dictionary of
different cities and regions in the country of interest in order
to create a seed rule for the user’s location.

Our dictionary-based rules do not need to be exhaustive
to be effective. As we show in the next section, as long as our
seed rules are sufficient to cover a significant fraction of the
actual vales (in practice, we have found good performance
with as low as 20% coverage), our Expansion step is able to
discover the additional values as potential PI.

Lastly, we note that we limit our seed rules to the above
eight PI instances simply for brevity, not because the ex-
pressiveness of the rules is limited to just these types of PI.
We believe these exemplary rules are sufficient for demon-
strating both the utility of our proposed method and the
applicability to various other types of PI.

Of course, the seed rules that we have selected are unlikely
to cover all the cases, formats, and languages; they can easily
be improved and expanded, based on the input and results.
Though the seed rule solution is not universally applicable,
for example in the Table 3 “where the value is within the
range of the country”, we need to apply different things in
the seed rules based on the input of dataset. However, once
the seed rules are generated, they can help us in discovering
domain-keys with different types of user PI in an efficient
and automatic way.

5.3 Filtering domain-keys
Not all the domain-keys matching seed rules represent PI.

To confirm that the domain-keys are indeed likely used as a
container for transmitting PI, for each domain-key, we look

4
We note that our examples of phone numbers and postal codes use

the local formats of the country where our dataset is from.
5
http://www.babynamespedia.com/search/m/countryname

at all its values, and we compute a metric ratio matched
values in relation to each seed rule. This metric is simply
number of values that match the seed rule, divided by the
total number of values. When the ratio matched values is
above a given threshold as described below, we consider that
this domain-key is likely to carry the type of PI with a con-
fidence represented by the matching value ratio.

Again, choosing an appropriate ratio matched values is
a tradeoff, where a small threshold ratio matched values
increases the coverage, but results in higher false positive
rates. To illustrate how we choose the threshold in practice,
Figure 6 plots the distribution of ratio matched values across
domain-keys in the ISP traffic dataset for each of the eight
seed rules. For each rule, only those domain-keys that have
at least one matching value are considered.

We make a number of interesting observations. First, we
observe that while the distribution is different for each of
the seed rules, all of the rules show a “knee” at some point
in the curve. In the case of email addresses, for example,
21% of domain-keys have all their values matching the rule
(i.e., the ratio is 1) and over half (58%) of the domain-keys
have at least 20% of their values matching the seed rule. In
contrast, the name domain-key shows that the vast majority
(over 90%) of domain-keys that have at least one matching
value have less than 10% of all their values match. This
difference in performance is due to the nature of the seed
rules; for email, the regular expression is unlikely to select
values that are not actually email addresses, whereas the
name seed rule is only a subset of the possible user names.

To choose a good tradeoff between false positives and cov-
erage, for each rule, we choose a ratio matched values thresh-
old to the knee points of the corresponding distribution. For
example, we select a threshold to be 1 for postal codes, 0.9
for geo locations, and 0.2 for the rest.
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Figure 6: The cumulative distribution of ratio matched values
for domain-keys in ISP traffic dataset for each of the eight differ-
ent seed rules. For each rule, only those domain-keys that have
at least one matching value are considered. Different rules show
different properties, but most show a “knee” in the curve at some
threshold.
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Domain Key Value
google-analytics.com email johnDoe@gmail.com
google-analytics.com email janeDoe@hotmail.com
google-analytics.com email johnDoe
google-analytics.com email janeDoe
facebook.com gender female
facebook.com gender m
facebook.com gender f
facebook.com gender 1
facebook.com gender f-f
facebook.com gender f-m

Table 4: Examples of values that both match and do not match
the seed rules. We observe that values that do not match the seed
rules may still identify potential leaks, and may help to refine the
seed rules.

5.4 Expanding candidate domain-keys
We understand our seed rules are not exhaustive, and it is

challenging to develop perfect seed rules that can match all
the possible formats of PI. To address this limitation, we ex-
pand the candidate values associated with selected domain-
keys into our value pool, to compliment our findings. For
example, if we pick 0.2 for the email case shown in Figure 5,
we get a list of domain-keys with email, and each of them
have at least 20% of their values matching the seed rule.
When we consider the set of PI, we add the values that do
not match the rule into our value pool as well. Though they
do not match the exact regular expression, they may also
contain user PI (e.g., the username without a domain, an
email address with extra whitespace, etc).

A few examples of matching and non-matching values are
presented in Table 4. The first four rows show values as-
sociated with domain-key (google-analytics.com, email).
While the first two examples match the regular expression,
next two rows with values“johnDoe”and“janeDoe”are trun-
cated form of the first two email addresses used as user-
names. The last six rows show values associated with the
domain-key (facebook.com, gender). We observe that the
first three match the seed rule, but the final three do not
(although they likely contain some form of PI being con-
veyed by Facebook or a third-party application). In both
cases, considering the values that do not match the seed
rules can help to refine the seed rules, as well as present
additional potential leaks to the administrator.

We note that there are a few reasons why a service would
use different formats for the same key. First, the service
may have different formats of values within different parts
of HTTP header, such as url, referrer, and cookie. Second,
some services provide APIs for the external developers, who
may use formats that differ from the main service. For ex-
ample, we notice that Facebook advertising API allows us to
specify the key “gender” with value of 0 to target male users
and value of 1 for female users. Instead, the main Facebook
service uses a list of other values, such as male, female, m,
and f to specify gender. Third, the values may be based on
end user input, which is not always well-formatted.

6. EVALUATION
In this section, we apply our proposed approach to ISP

traffic and evaluate its performance in comparison to a base-
line approach. We then present interesting findings on user
PI through an in-depth analysis on the discovered domain-
keys.

Dom.-keys Ground
PI Type selected truth Coverage Accuracy

Age Range 0 0 — —
City 19 19 100% 100%

Email 22 22 100% 100%
Geo 34 7 0% 0%

Gender 38 14 100% 36.8%
Name 16 16 100% 100%
Phone 1 1 100% 100%

Post code 144 26 100% 18.1%
Total 274 105 100% 38.3%

Table 6: Comparison of domain-keys selected by the seeded
method and ground truth in Lab traffic dataset.

6.1 Evaluation of seeded method
Having applied the seeded method to our datasets, we

now analyze the performance of the method in terms of cov-
erage and accuracy. To evaluate our proposed method in
controlled environment with ground truth, in Section 6.1.1,
we begin by analyzing results from small-scale Lab traffic
dataset (§ 3.2). Then in § 6.1.2 through § 6.1.4, we evaluate
the method on full-scale ISP traffic dataset (§ 3.3). Here, we
first quantify coverage of our seeded method by comparing
it to a baseline näıve method. We then further analyze the
accuracy of our results by manually inspecting correctness
on a sample of the discovered values.

6.1.1 Verification on Lab traffic dataset
Using the ground truth on PI we have in Lab traffic

dataset, we measure the validity of domain-keys and their
values obtained using the seeded method. Out of 20,810 tu-
ples from 8,372 domain-keys available in the HTTP/S data,
seeded rules extract 274 domain-keys as containing PI. A
breakdown of domain-keys discovered by the rules, and those
containing the ground truth PI leaks, is detailed in Table 6.

We make a number of interesting observations from our
inspection of the results: overall, only 3.27% of all domain-
keys are discovered as containing PI. Given the “needle in a
haystack” observation we made in Section 4.1, it is reason-
able that the selected domain-keys are only a small fraction
of all domain-keys.

In a few particular cases, we find a single rule matching
multiple instances (different values) of PI. For example, a
domain-key (cm.g.doubleclick.net, ct) matching the City
rule has a list of different values: Boston, Beijing, Seoul,
Shanghai. While we consider Boston as the most “correct”
answer (as it is the current residential city of the user), the
rule found other cities that she visited in the past. At the
same time, the existence of multiple PI instances supports
the utility of the candidate value expansion in Section 5.4 as
it accommodates broader range of the candidate values into
user PI pool.

Occasionally, we found the expansion stage of the ap-
proach to introduce a few false negative values. For exam-
ple, we find an extracted domain-key (graph.facebook.com,
name) containing two application names, “Pinterest” and
“iHeartRadio”, along with the target user name“Yabing Liu”
(one of the authors). The application names were found in
the domain-key because the user was logging on to the ap-
plications through her Facebook account.

Overall, our evaluation on the Lab traffic dataset suggests
that our approach is able to identify domain-keys that carry
PI with high coverage. Moreover, we observed a significant



Type Key semantics True positive ex. False positive ex.
Age Range substring of age age, age range, message, language, pagesize

City substr. of city, citta, area, state, provincia, loc, region, where city, location client state, locale
Email substr. of email, user, account, login, logon, or equal to “e” email, login email user segment, login password

Gender substr. of gen, gnd, gdr, ycg, sex, or equal to “g” gender, user sex pagename, useragent
Geo(Lat/Lon) substr. of lat, lon, lng, geo latitude, logitute platform, relation

Name substr. of name, nome, pers, author name, person app name, slotname, listname
Phone substr. of phone, pid, or equal to “p” phone, pid appid, sdkapid

Postal Code substr. of zip, geo zipcode, geo gzip, gzipbyteencoding

Table 5: Examples of both true and false positives when using the key semantic method.

fraction of these (44%) were observed in unencrypted HTTP
traffic, including the user’s name, gender, city, and postal
code. We now explore running our approach on the much
larger ISP traffic dataset.

6.1.2 Improvement over a baseline approach
From this section on, we evaluate our method on a larger,

realistic dataset of ISP traffic. To understand the improve-
ment of our seeded method over baseline results, we begin
this section by running a comparative study of our seeded
method against a näıve, key-semantic based approach that
analyzes key names (as opposed to values as in our seeded
approach). Then we provide our reasoning on why seeded
method constantly outperforms the baseline method with-
out even considering the semantics of the keys.

Baseline key-semantics approach We create a straw-
man approach based on key semantics in which we leverage
common intuition that keys that are suggestive of PI (e.g.,
keys named “email”, etc) would carry the PI as their values.
In other words, if the majority of keys containing PI have
dictionary words such as “email”, “gender”, or “name”, the
baseline approach should be able to collect all such domain-
keys with PI. We later compare the results of our seeded
approach against that of the simple baseline approach, and
quantify their gap in terms of coverage.

To create the baseline approach, we select a list of lexicons
of each PI category. Table 5 presents the selected key terms
for each of the eight PI categories we consider, along with
some examples of true and false positives. Overall, we find
20,565 of our domain-keys match at least one of the rules (a
breakdown is shown in Table 7, column six).

Performance comparison Table 7 presents a detailed
comparison of the coverage of our seeded method to the
coverage of the baseline method. In particular, comparing
columns four and six shows the total number of domain-
keys selected by the two methods in each category, respec-
tively. We immediately observe that the baseline method
finds many more potential domain-keys containing PI (in
some cases, up to three orders-of-magnitude more). How-
ever, this result may be somewhat misleading, as these are
only potential domain-keys that may or may not carry PI
(e.g., the domain-key (facebook.com, function-name) would
be selected by the baseline method, as it has name in the key
name). Thus, to fairly compare the two methods, we need
to estimate their false positive rate.

6.1.3 Accuracy analysis on samples of results
As we do not have the ground truth PI of the ISP traffic

dataset users (i.e., customers of the ISP), we instead rely on
multiple human raters to identify potential PI. Due to the
size of the dataset, we use sampling to make the evaluation
tractable.

We first describe how we evaluate the accuracy of our
seeded method. To evaluate the false positives, we began
by choosing up to 170 random domain-keys from each of
the eight PI category from the final output of the seeded
method, hence choosing 873 flagged domain-keys in total
(31.3% sampling rate out of the final 2,789 domain-keys).
Similarly, to measure false negatives, we randomly sampled
1,000 domain-keys that the seeded method did not chose
(0.032% sampling rate out of 3,110,907 non-flagged domain-
keys). To measure the accuracy of the baseline key-semantic
method, we take a similar approach. We select up to 25
random domain-keys from the domain-keys identified by the
baseline method in each category of PI.

For each of the domain-keys tested, the six human raters
either labeled positive (i.e., the type of the PI), negative,
and neutral (i.e., don’t know) for the question of whether
the domain-keys contain PI or not. In all tests, for each
domain-key, we then chose 10 values randomly to present to
the human rater, alongside the domain and key name. Each
domain-key was reviewed by three raters, allowing us to run
majority voting when labels disagreed.

Seeded method Overall, we find that 221 out of the 873
domain-keys flagged by the seeded method to be false pos-
itives (i.e., the human raters indicated not containing PI),
resulting in a false positive rate of 25.3% (with the corre-
sponding confidence interval from 22.4% to 28.2%). How-
ever, we notice that the false positive rate for the Postal
Code rule is as high as 91.6%, which means our seeded
rule does not work well in identifying only domain-keys that
contain postal codes (instead, it captures many additional
domain-keys as well). As detailed in Section 5.2, a seed rule
generalizes particular patterns embedded in PI. In the case
of postal codes, the seed rule of /^\d{5}$/ is not specific
enough to separate the PI from random five digit numbers.
For this reason, we filter out postal code from our ruleset,
and obtain a resulting false positive rate of 13.6% (with the
corresponding confidence interval from 11.3% to 15.9%).

We also find that 27 out of the 1,000 non-flagged domain-
keys to be identified by the human raters as containing PI,
thereby representing a false negative rate of 2.7% (with the
corresponding confidence interval from 1.7% to 3.7%).

Baseline method For the baseline key-semantic method,
we observe that the human raters found 179 of the 200
domain-keys flagged by the baseline to be false positives,
resulting in an extremely high false positive rate of 89.5%.

Overall, the survey finds the false positive rate to be high
for the seeded method, and unacceptably high for the base-
line method. However, we believe that the 13.6% false pos-
itive rate of our seeded method is acceptable due to three
reasons: First, PI is rare, and it is difficult to find the cor-



Seeded Baseline Comparison
# DKs above False False Common Unique to Unique to

PI Type # DKs Threshold threshold positives # DKs positives DKs Seeded Baseline

Age Range 199 0.2 17 0.0% 3,729 88.0% 0 17 3,729
City 1,402 0.2 465 8.8% 3,191 76.0% 241 224 2,948
Email 382 0.2 154 3.9% 3,253 76.0% 82 72 3,171
Gender 2,041 0.2 147 0.0% 1,358 100.0% 140 7 1,218
Geo (lat/lon) 341 0.9 214 10.0% 1,986 88.0% 110 104 1,876
Name 1,549 0.2 100 52.5% 2,142 92.0% 22 78 2,120
Phone 993 0.2 11 90.9% 3,864 100.0% 0 11 3,864
Postal Code 13,449 1 1,681 91.6% 1,044 92.3% 22 1,659 1,022
Total 20,356 — 2,789 13.6% (25.3%) 20,565 89.5% 617 2,172 19,948

Table 7: Comparison between our proposed seeded method and baseline key-semantic method. The seeded method has a dramatically
lower false positive rate (13.6%, when disregarding postal code) than the baseline method.

rect PI from a huge dataset without any ground truth. Sec-
ond, the false positive rate is tunable by selecting a different
threshold; we opted for increased coverage in these exper-
iments, and could easily lower our false positive rate at a
cost of increased false negatives (currently 2.7%). Third, we
observe that it is difficult even for humans to agree what is
PI and what is not. For example, among the 873 labeled
domain-keys from seeded method, only on 81% of them did
the human raters agree: on 18% one rater disagreed, and
1%, all disagreed. The upshot is that our method is able
to focus quickly on the small subset of domain-keys that
potentially leak PI.

6.1.4 Exploring higher accuracy of seeded method
While the seeded method only focuses on the syntax of

values (via regular expressions and dictionaries), it captures
many more DKs with PI than the baseline approach focusing
on the semantics of keys. To better understand the reason
for the large difference, we take an in-depth look at the key
semantics of the domain-keys found by the seeded method.

We first analyze domain-keys the baseline method selected
but our seeded method did not. Column 8 of the Table 7
shows the number of domain-keys overlapping between the
two methods. Compared to column 10 (i.e., total number of
domain-keys selected by the baseline method), we observe
that only a small fraction (3.1%) of the domain-keys selected
by the baseline method are indeed included in the final re-
sults of the seeded method, suggesting that the vast majority
of services do not name their keys semantically accurately.
For instance, a key term “name” does not always draw terms
relevant to user names we target. Instead, as exemplified in
Table 5, it erroneously includes mobile app names, names
of data slot, and a binary representation of existence of a
name.

We then analyze domain-keys the seeded method selected
but the baseline method did not. As the small difference
between column 4 and column 8 of Table 7 suggests, the
majority of DKs seeded method selects are included in the
selection of baseline method as well.

From the total of 20,356 domain-keys that match seed
rules, the “ratio” thresholds we impose in Section 5.3 selects
only 2,789 of them (13%) as the rest do not contain enough
number of valid values. Figure 7 further explains this us-
ing the email category as an example. The curve shows
the cumulative distribution of email domain-keys ordered by
the fraction (ratio) of values matching our seed rule. Out
of the total of 382 domain-keys that match seed rules, the
seeded method selects 154 of them after imposing the pre-

set threshold ratio of 0.2. Upon our manual inspection on
the 228 domain-keys that were left out, many of them con-
tained values irrelevant to emails. For example, in domain-
key (static.ak.connect.facebok.com, email), binary tags
of 0 and 1 are used for its value, possibly encoding the exis-
tence of emails. In domain-key (adserver.adtech.de, city),
indexes of cities are used, which we are unable to decipher
without knowing its indexing mechanism.

In summary, we observed important shortcomings of the
baseline key-semantic method to be applicable for automatic
discovery of PI: sensitivity to selection of input domain-key
categories and key terms, inability to discern domain-keys
containing irrelevant values, and overly high false positives
due to limited expressiveness of key terms. Our proposed
seeded method, on the other hand, is deemed to be much
more robust to the above issues.

6.2 Analysis on services leaking PI
Using the results of our seeded method, we now analyze

the 2,789 domain-keys that contain user PI. In particular we
aim to answer the following questions: (i) are there any spe-
cific types of user PI collected by particular kind of services
and (ii) verify the existence of abusive domains that collect
a broad range of user PI.

To this end, we focus on six types of PI: age range, city,
email, gender, geo location, and name. For each root do-
main labeled as positive by our seeded method, we assign
one of the following eleven service categories by manual in-
spection: Advertisement (e.g., ads.bluelithium.com), Ad-
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ware6 (citibank.0009.ws), Content Distribution Network
(CDN) (img-cdn.mediaplex.com), User-tracking (pixel.
quantserve.com), along with more familiar service cate-
gories of Game, OSN, Search-engines, Web-portals, and
Adult. As an example of a domain with multiple services,
we add Google in the category.

Figure 8 shows a heat map based on the probability den-
sity distribution of PI types by category. Comparing popu-
larity of PI used across services, we notice that residential
city turns out to be the most prevalently leaked PI (30.7%)
followed by fine-grained geo-coordinates (15.2%) and gender
information (10%).

PI leakage per service category With respect to ques-
tion (i), we analyze the service categories that leak PI. CDNs
highly benefit from spatial locality of cached data to users.
Therefore, knowing user location is one of their primary in-
terests. As shown in Figure 8, there is a high correlation
between CDN and city. Similarly, for search engines, por-
tals, and ad services, to which providing local information to
users is also important, we observe high correlation to city
and geo-location.

In contrary to the majority of the Internet service cate-
gories that exhibit high correlation to location information,
OSNs show very low correlation to city and geo-location;
they have comparatively high correlation with emails, gen-
der, and age range. We speculate that this is due to the
online-nature of the OSNs which weighs more on the knowl-
edge of age and gender groups rather than physical locations.

In the case of adult services, knowledge on the age range
and gender of users is deemed to be important as they may
provide age-restricted, gender focused contents. From track-
ing category, we notice that some user-tracking web bugs,
which are supposedly used for aggregated web analytics, can
track and identify users by their email addresses.

PI leakage per service domain With respect to ques-
tion (ii), we analyze the types of user PI leaked by different
domains and identify domains more prone to leak user PI.
Out of 588 different domains, we find 489 (83.1%) of them
only have one type of PI leaked. 79 (13.4%) of them have
two types of PI leaked, and overall, 20 (3.4%) of the do-
mains have more than two types of PI. Interestingly, one
domain in user-tracking category collects five types of PI. A
cursory investigation reveals that this domain is identified
by users as an invasive service and sometimes associated to
spyware. From our traffic trace, we confirm similar suspi-
cious behavior, as we observe the domain collecting email,
name, gender, city, and location-related information, such
as geographical coordinates. Among other examples of do-
mains collecting above average amount of PI, we find large
Internet service companies with ad services such as Google
and Yahoo: google.com contains an average of 5 PI types
per user, google-analytics.com with 4, doubleclick.net
6, and yahoo.com 5.

7. RELATED WORK
We now discuss the existing client-side privacy preserving

tools, as well as related studies on measuring the personal
information and privacy leakage.

6
Different from advertisement services, we categorize adware as do-

mains known to distribute undesired ads by means of phishing or
malware.
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Figure 8: Heat map of PI leaked by categories of domains.

Measuring information leakage A number of
projects [8–12] have examined privacy leaks by web
sites, typically focusing on OSNs. By creating fake accounts
on OSNs [8, 9, 11, 12] and on mobile services [10] and
tracing all requests the browser makes, researchers were
able to further examine how different information flows
to third parties. In brief, these papers find that all OSNs
exhibit some leakage of private information to third parties,
typically via Request URIs and HTTP headers (e.g., Host,
User-Agent, Referrer, and Cookie). These approaches are
largely complimentary to the work presented in this paper,
as we aim to develop a system that is able to detect leaks
of (unknown) user data in a live network.

Client-side tools Researchers have developed client-side
techniques such as browser extensions or add-ons, such as
Adblock Plus [1, 2], RequestPolicy [19], NoScript [16], and
NoTrace [17]. They have been widely used by many users,
and also provide a way for researchers to measure the PI
transmitted in the traffic. All the analyzed tools rely on
standard blacklist/whitelist mechanisms of privacy protec-
tion. For example, AdBlock Plus is structured as a black-
list, blocking requests to a pre-defined list of advertisements
and malware domains. Compared to our approach, these
client-side tools offer users greater control over the process
of blocking PI leaks, but face additional challenges obtaining
large-scale deployment.

Recently, Ren et al. [18] have developed Recon, a client-
side tool designed to capture mobile device traffic using a
VPN and middlebox. Their system shares many of the same
goals as ours, and the approach is largely complementary
(the domain-keys that we identify as carrying PI can be
leveraged by Recon as ones to flag, and their approach may
offer visibility into HTTPS traffic if the user so chooses).

Static data flow analysis Static analysis aims to measure
privacy leaks via the network between user applications and
different web sites or mobile services. For example, PiOS [3]
uses program slicing to detect privacy leaks in iOS apps.
The use of static analysis enables exploring broad execution
paths including infeasible ones. Similarly, Unsafe [7] focused
on the advertising libraries the mobile apps contain. While
static analysis has the potential to detect leaks before they

citibank.0009.ws
img-cdn.mediaplex.com
pixel.quantserve.com
pixel.quantserve.com
google.com
google-analytics.com
doubleclick.net
yahoo.com


occur, it often requires access to the application source code
and can only feasibly be run on a small set of applications
or web sites. In contrast, our approach only requires access
to the network traffic, which can often be accomplished via
a router tap.

Dynamic data flow analysis Different from the static
analysis, dynamic analysis runs in real-time as a user exe-
cutes applications. The major advantage of dynamic anal-
ysis is that, as users can provide relevance feedbacks to its
false alerts, it can reduce false positives at runtime. For ex-
ample, TaintDroid [4] used lightweight dynamic taint anal-
ysis built into modified Android middleware; the system
alerts the user to the presence and nature of the leak in
the whole apps. Similarly, Vision [6] directly instrumented
the smartphone platform and tracked information flow at
runtime. Leveraging unique Android execution model to re-
duce the search space, AppIntent [22] automatically presents
a human analyst the UI manipulations that leads to the sen-
sitive data transmission.

While these dynamic analyses can precisely pinpoint leaks
from the devices they are installed, the intrinsic cost of
their deployment (e.g., having to install browser add-ons
or custom Android builds) makes them difficult to deploy
to a large userbase. Instead, integrating these data flow
monitoring techniques to our approach which unobtrusively
considers the network traffic at large, could lead to a more
comprehensive solution to PI leakage detection (i.e., using
static/dynamic analysis to identify additional potential keys
of interest).

8. IMPACT AND LIMITATIONS
The method presented in this paper automatically locates

personal information (PI) embedded in network traffic to In-
ternet services. By detecting a limited number of instances
of eight types of seed personal information the approach ini-
tially identifies a limited number of “containers” of personal
information in terms of keys used by a specific service (or
domain), hence domain-keys. Then, coverage is extended by
inferring additional containers by analogy with the seeded
ones. Our evaluation on a large-scale traffic trace collected
on the network of a residential service provider shows that
our proposed approach is able to locate the rare domain-
keys that serve as containers for PI with low false negatives
(2.7%) and acceptable false positives (13.6%).

Selecting thresholds The intervention of an analyst per-
forming manual inspection on the PI identified by the
methodology might be required in order to optimally set
the thresholds at the basis of the operations of the proposed
method. One of our future work directions will focus on
automating threshold setting. For example, a “state space
exploration” of the potential settings could be conducted to
then pick the ones that perform best on a number of tests.
This is not trivial as it might require a large amount of com-
putation resources and carries the risk of overfitting. In the
meantime, the need for having a human in the loop does not
undermine the high value of the approach since it brings to
the analyst attention only a small fraction of the large quan-
tity of information flowing through the Internet. Without
the support of this method, manually inspecting the full
traffic has widely proven unfeasible.

Encrypted traffic Since the methodology here presented
relies on inspection of data exchanged by Internet services

its applicability can be limited when such data is encrypted
or obfuscated. While the latter is a complexity that most
service providers currently do not want to incur, in the last
years the fraction of web traffic being encrypted (i.e., using
HTTPS) has increased significantly. This does not under-
mine the relevance of the solution as it has several applica-
tion areas of significant impact where the effectiveness of the
methodology is not affected by the deployment of HTTPS.

PI leakage protection A service provider (being it an In-
ternet, cloud, or cellular service provider) could offer
to its customers a service to audit their traffic for PI
that is potentially collected by third parties because it
is being sent through the network in clear text form.
This application does not require visibility into PI sent
over encrypted connections as it does not represent a
leakage in this context.

Enterprise protection against information leakage The pro-
posed approach can be deployed by a company want-
ing to detect intentional and unintentional leakage of
information critical to their business, which includes
employees’ PI. In this scenario the company will en-
force all HTTP(S) traffic to go through a corporate
(man-in-the-middle) proxy that terminates SSL ses-
sions, thus acquiring visibility into encrypted traffic
(in fact, there exist companies that use such proxies
today). Such an approach requires applications (e.g.,
web browsers) to accept as legitimate the certificates
that the proxy generates, signs with its own certificate,
and presents in the initial SSL negotiation phase. This
can be achieved by pre-loading the proxy certificate
into corporate PCs as the certificate of a trusted cer-
tification authority. Employees that want to use their
own devices to access the Internet through the corpo-
rate network are required to install the proxy certifi-
cate or manually accept the certificates offered when
SSL sessions to new servers are negotiated.

PI disclosure assessment and control A provider could of-
fer a service that identifies PI being embedded in the
traffic of a user, both protected (i.e., through HTTPS)
and unprotected. As it is common in many other
contexts, such as online social networks, free e-mail
services, etc., customers interested in the service are
willing to grant the provider with visibility into their
encrypted traffic. This can be achieved by the user
either loading the certificate of a man-in-the-middle
proxy operated by the service provider in the trusted
certification authority repository, or installing a mod-
ule (e.g., a browser plugin) that analyses the traffic
before being encrypted [13]. Our technique can then
be applied within the proxy or the plugin.

Future work As part of our future work we plan to extend
the methodology to differentiate between PI the user has
intentionally shared and other that was not, which is partic-
ularly valuable in the last application scenario listed above.
One possible way to do this is by occasionally surveying users
about observed leaks, learn of a few (in)voluntary ones, and
extend the knowledge across users and web services. Even-
tually, we aim to build a system capable of informing users
when personal information is being leaked without an ex-
plicit act on their side, so that they can decide whether the



leak should be allowed or blocked (e.g., by substituting in-
formation with placeholders [18]).
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