Designing Programs --- Understanding Data
Viera K. Proulx

College of Computer and Information Science

Northeastern University

vkp@ccs.neu.edu

» Introduction
Student Expectations: The Four Problems
Understanding Data
Designing Computations
Designing Abstractions

Conclusion and Acknowledgements

Student Expectations

Students want to know what computers can do

© How do the programs work

° How to design their own programs
| have this neat idea to make computer do ...

o Where do | start?

© How do | proceed?

TeachScheme! --- ReachJava

An Introduction to Programming and Computing
The team:
o Matthias Felleisen, Robert Bruce Findler, Matthew Flatt

o Kathryn E. Gray, Shriram Krishnamurthi, Viera K. Proulx

Part 1: TeachScheme! curriculum
© programming environment: DrScheme/HtDP

° textbook: How to Design Programs, MIT Press 2001

Part 2: ReachJava! curriculum
© programming environment: DrScheme/ProfessorJ

°© textbook: How to Design Classes, MIT Press 2007 ??7?

Sample Problems

A Rat Race

© Arat in a cage looks for food, dies if not fed in time, or if food is
poisoned.

Geometric Shapes

o Circles, squares, combinations of them: within bounds?,
contains a point?, distance to the top, closer to the top?, ...

A College Registrar System

o Students, Instructors, Courses, Transcripts, Rosters, Schedules:
e.g. Have all students in a course completed a prerequisite?

The Boston Marathon

© Runners, Timing: produce results in various forms

Goals

Teach students to think through the problems:

© Analyze the information available
o Learn to represent the information as data

° Analyze the problem statement that requires a programmatic
solution

© Design the programming solution systematically

Introduction
» Understanding Data
Information vs. Data
Designing Computations
Designing Abstractions

Conclusion and Acknowledgements

Understanding Data

Information:

© A hungry rat in the middle of a cage 20 wide and 40 tall with 5
days to live

° Ared circle of radius 10 with center at (30, 50) on top of blue
square of size 20 with NW corner at (40, 20)

o Student John Dunne, id 2345, math major ... + the current
schedule and a transcript

° Bill Rogers, 52 years old, male, bib number 7733 ... + the timing
info: start and end times

Understanding Data

Data:

°© rat-location, rat-lifespan, cage-width, cage-height

o circle-location, circle-radius, circle-color

° location-x, location-y

© square-location, square-size, square-color

© student-name, student-id, student-major, student-schedule...

© runner-name, runner-age, runner-gender, runner-bib, ...

Design Recipe for Data Definition

Does the information consists of several parts?

© Design a class of data, one field per part

° |dentify the type of data needed to represent each field
If the field itself has parts, design a new class of data

... containment

© Rat: location, lifespan

© Location: x-coordinate, y-coordinate

o Student: name, id, major, schedule, transcript

o Schedule: list of current-courses

10

Design Recipe for Data Definition

Data Definition in Scheme:
;; 1o represent a rat ...
;; A Rat is given by Posn Number

(define-struct rat (location lifespan))

(define a-rat make-rat (make-posn 10 20) 5))
(rat? a-rat) » true

(rat-location a-rat) » (make-posn 10 20)

(

rat-lifespan a-rat) » 5

11

Design Recipe for Data Definition

Data Definition in Java:
// to represent a rat ...
class Rat {

Point location;

int lifespan;

... constructor, methods ...}

Rat aRat = new Rat(new Point(10 20), 5);
aRat.location » new Point(10 20)

aRat.lifespan» 5

12

Design Recipe for Data Definition

Does the information consists of several variants?

© Design a union class of data, one subclass per variant
o Shape: Circle, Square, Combo
Does one of the fields represent data in another class?

© containment (reference)

© ... possibly a self-reference (recursive definition)

13

Design Recipe for Data Definition

;; to represent a shape

;; A Shape is one of:

;; -- Circle: given by a center Point and the radius

;; -- Square: given by the NW Point the size

,; - Combo: given by the top Shape and the bottom Shape

Data Definition - in (key)words:

14

Design Recipe for Data Definition

;; to represent a shape

;; A Shape is one of:

;; -- Circle: given by a center Point and the radius

;; -- Square: given by the NW Point the size

,; - Combo: given by the top Shape and the bottom Shape

Data Definition - in (key)words:
°© is given by » class,
o reference to other class » containment,
© is one of » union

o reference to itself » self-reference

15

Design Recipe for Data Definition

;; to represent a shape

;; A Shape is one of:

;; == Circle

;; -- Square

;; -- Combo
;; to represent a circle
;; A Circle is given by Posn Number
(define-struct circle (center radius))
;; to represent a combinaton of two shapes
;; A Combo is given by Shape Shape
(define-struct combo (top bottom))

... and include examples of data as well ...

16

Design Recipe for Data Definition

Class diagram for the IShape class hierarchy:

S —+

| IShapa |€---———=——————eme——eene——- +

S —+ |

S —+ |

AR I

-== I

I I

______________________________________ |

I I I I

B et + N e et + B B et + |

| Circle | | Sgquare | | Combo | |

B et + N e et + B B et + |

| Peint center | | Peint nw | | IShape top | ==——=+

| int radius | | int size | | IShape bottem |--—-+
fommmmmmmmemeee + e et + o +

Corresponds exactly to the narrative data definition

Students use the diagrams to represent the data definition

17

Design Recipe for Data Definition

// to represent geometric shapes
interface IShape {

}

// to represent a circle

class Circle implements [Shape {
Point center;
int radius;

Circle(Point center, int radius){
this.center = center;
this.radius = radius;

}
}

Code can be generated automatically

18

Design Recipe for Data Definition

Examples of IShape objects

// Examples of geometric shapes - in the Client class

Point center = new Point(100, 100);
Point nw = new Point(120, 100);

IShape ¢ = new Circle(this.center, 50);
IShape s = new Square(this.nw, 150);

IShape sc = new Combo(this.s, this.c);

Translation of data into information:

© s IS a square with the nw corner at coordinates (120, 100),
size 150

19

Understanding Data

Information vs. Data:

© A hungry rat in the middle of a cage 20 wide and 40 tall with 5
days to live

° (make-rat (make-posn 10 20) 5)
o Ared circle of radius 10 with center at (30, 50) on top of a blue
square of size 20 with NW corner at (40, 20)

© new Shape(new Circle(new Point(30, 50), 10, Color.red),
new Square(new Point(40, 20), 20, Color.blue))

20

Understanding Data

Information vs. Data:

o Student John Dunne, id 2345, math major ... + the current
schedule and a transcript

° (make-student "John Dunne" 2345 "math" ...)

© Bill Rogers, 52 years old, male, bib number 7733 ... + the timing
info: start and end times

° new Runner("Bill Rogers", 52, true, 7733, ...)

21

Understanding Data

Program design depends on the data we use
Increase the complexity of both gradually
Design systematically --- student in the driver seat

Understanding data is essential regardless of the language

22

Introduction
Understanding Data
» Designing Computations
The Design Recipe
Designing Abstractions

Conclusion and Acknowledgements

23

Designing Computations

Functions vs. Procedures:

Start by focusing on programs (functions/methods) that consume
data and produce a new value

© no accessors, mutators, change of state is needed

© no input, no output, just test cases

o user interaction through DrScheme and interactive graphics

Design Recipe: the steps in the design process

o Clear set of questions to answer for each step

o Qutcomes that can be checked for correctness and
completeness

24

Designing Computations

Design recipe for methods: method contains-- Part 1

Step 1: Problem analysis and data definition
a shape is the object that invokes the method

the user supplies the desired point

Step 2: Purpose statement and the header
°© //'is the given point within this shape
boolean contains(Point p);
Step 3: Examples

° this.c.contains(new Point(90, 110)) ---> true
this.s.contains(new Point(90, 110)) ---> false
this.sc.contains(new Point(130, 110)) ---> true

25

Designing Computations

Design recipe for methods: method contains-- Part 2

Step 4: Template -- an inventory of available data

o // in the class Circle

... this.center ... -- Point

... this.center.distTo(p)... -- int

.. this.radius ... -- int

.. P .. -- Point

.. p.distTo(Point ...) ... --int

° //in the class Combo
... this.top ... -- IShape
... this.bottom ... -- IShape
... this.top.contains(p) ... -- boolean
... this.bottom.contains(p) ... -- boolean
-- Point

P ..

Designing Computations

Design recipe for methods: method contains-- Part 3

Step 5: Body

o /[in the class Circle
boolean contains(Point p) {
return this.center.distTo(p) <= this.radius;

}

o //in the class Combo
boolean contains(Point p) {
return this.top.contains(p)
|l this.bottom.contains(p);
}

Step 6: Tests

© turn the examples into tests in the Client class and evaluate
them

27

Designing Computations
Design Recipe: the steps in the design process:

* Problem Analysis and Data Definition -- understand

« Purpose & Header -- interface and documentation

- Examples -- show the use in context: design tests

- Template -- make the inventory of all available data
- Body -- only design the code after tests/examples

- Test -- convert the examples from before into tests

Clear set of questions to answer for each step

Outcomes that can be checked for correctness and completeness

Opportunity for pedagogical intervention

28

Designing Computations
Design Recipe: the steps in the design process:

* Problem Analysis and Data Definition -- understand

« Purpose & Header -- interface and documentation

- Examples -- show the use in context: design tests

- Template -- make the inventory of all available data
- Body -- only design the code after tests/examples
- Test -- convert the examples from before into tests
Design foundation:

- Required documentation from the beginning

- Test-driven design from the beginning

 Focus on the structure of data and the structure of programs

29

Introduction
Understanding Data
Designing Computations
» Designing Abstractions
Reusable Software Components

Conclusion and Acknowledgements

30

Designing and Understanding Abstractions

Abstractions --- both in Scheme and in Java

© motivated by observing repeated code patterns

© students are taught to design abstractions

31

Designing and Understanding Abstractions

Abstractions --- both in Scheme and in Java

© motivated by observing repeated code patterns

© students are taught to design abstractions

Design Recipe for Abstractions:
° |dentify the differences between similar solutions
° Replace the differences with parameters and rewrite the solution

© Rewrite the original examples and test them again

32

Designing and Understanding Abstractions

Abstracting over similarities:

o Classes with similar data » super classes

Person: name, id
Student: name, id, major, transcript, schedule

Instructor: name, id, title, schedule

o (define-struct person (name id))
o (define-struct student (p-data major transcript schedule))

© (define-struct instructor (p-data title schedule))

33

Designing and Understanding Abstractions

Abstracting over similarities:

o Classes with similar data » super classes

Person: name, id
Student: name, id, major, transcript, schedule

Instructor: name, id, title, schedule

o class Person{ String name; int id; ...}
© class Student extends Person{ String major; ...}

© class Instructor extends Person{ String dept; ...}

34

Designing and Understanding Abstractions

Abstracting over similarities: abstract - if methods are all diffe

abstract int distToTop();
In the class Circle:
int distToTop() {return this.location.y - this.radius;}
In the class Square:
int distToTop() {return this.location.y;}
In the class Combo:
int distToTop() {
return min(this.top.distToTop(),
this.bottom.distToTop());}

35

Designing and Understanding Abstractions

Abstracting over similarities: concrete - if methods are the sa

In the class Circle:
boolean closerToTop(IShape that){

return this.distToTop() < that.distToTop();}
In the class Square:
boolean closerToTop(IShape that){

return this.distToTop() < that.distToTop();}
In the class Combo:
boolean closerToTop(IShape that){

return this.distToTop() < that.distToTop();}

36

Designing and Understanding Abstractions
Abstracting over similarities:
© Classes with the same methods » methods in abstract classes

boolean closerToTop(IShape that) {
return this.distToTop() < that.distToTop();}

Same method in all subclasses of IShape

» lift as concrete method in the abstract class

37

Designing and Understanding Abstractions

Abstracting over similarities:

o Lists of different data =» list of <T> # generics

o ————— + fmmm——————— +
| ALoBook |<-===-====-= + | ALoMame |[<--========= +
o ————— + fmmm——————— +
o ————— + fmmm——————— +

| |

£\ f\

o ————— + e ————— + o ———— + e ————— +
| MTLoBook | | CosnLoBook | | MTLoName | | CoanLoName |
o ————— + e ————— + o ———— + e ————— +
Frommmm - + +-| Book first | Frmm - + +=| NHame first |
| | ALoBook rest |- | | ALoBook rest |-
| #=———m—————————— + | == ————— +
v v
e ——— + - ————— +
| Book | | Hame |
e ——— + - ————— +
| String title | | String last |
I I I I
e ——— + - ————— +

38

Designing and Understanding Abstractions

Abstracting over similarities:

o Lists of different data » list of <T> = generics

- + - —+
| Al p=Books> le—————-——- + | Al g=Name> log————————-
+—— + | +-——————— —+
+—— + | +-——————— —+

| | |
Y | Y
—— I N
| | |
___________________ I P
| | | | |

- —+ - -+ ! +~——-—- + - +

| Nllo=Books | | Cosnlo=Books Il 1 | AJlo=Nome= | | Cosnlo«Nmmex |

- —+ - -+ ! +~——-—- + - +

+————————— —+ +-1 Book first /I - + +-1 Nome first |

| | Al o=Book= rest |-+ | | Al p=Books= rest |
N+ —+ N+ +
b ¥ .

- + - +

| Book | | Name |

- + - + 39

Il Strina htle | Il Strina lazst |

Designing and Understanding Abstractions

Abstracting over similarities:

© Classes with similar structure and methods » ADTs
Methods for a sorted list SList:
- SList insert (Data data), Data getFirst (),

- SList removekFirst (), boolean isEmpty ()

Methods for a binary search tree BST:
- BST insert (Data data), Data getFirst (),
- BST removeFirst (), boolean isEmpty ()

40

Designing and Understanding Abstractions

Abstracting over similarities:

o Classes with similar structure and methods » ADTs
Interface for a sorted list SortedData:

interface SortedData {
SortedData insert(Data data);
Data getFirst();
SortedData removeFirst()

boolean isEmpty()

abstract class SList implements SortedData{...

abstract class BST implements SortedData{...

41

Designing and Understanding Abstractions

Abstracting over similarities:

© Functions used as parameters » function objects in Java

In the Boston Marathon Problem:

make a list of all male runners under 50 years old

make a list of all female runners under 40 years old

make a list of all female runners over 50 years old

make a list of all runners who finished under 2 hrs and 30 minutes

42

Designing and Understanding Abstractions

Abstracting over similarities: functions as parameters

In the Boston Marathon Problem:
AList selectSuch(Alist allRunners)
AList result = new Alist();
while ('allRunners.isEmpty()X
if (allRunners.getFirst() ?77?)
result = result.add(allRunners.getFirst();
allRunners.getRest();

}

return result;

43

Designing and Understanding Abstractions

In Scheme:
;; to produce a list of all runners such that ... from the given list
;; [Listof X] (X -> Boolean) -> [Listof X]
(define (filter alist predicate?)
(cond
[(empty? alist) empty]
[(cons? alist)
(cond
[(predicate? (first alist))
(cons (first alist)
(filter (rest alist) predicate?))]

[else (filter (rest alist) predicate?)])]))

44

Designing and Understanding Abstractions

In Java:

// to produce a list of all runners such that ... from the given list
AList selectSuch(Alist allRunners, ISelect choice){
AList result = new Alist();
while (!allRunners.isEmpty()¥
iIf (choice.select(allRunners.getFirst()))
result = result.add(allRunners.getFirst();

allRunners.getRest();

}

return result;

45

Designing and Understanding Abstractions

Abstracting over similarities: functions as parameters

interface 1Select{

boolean select(); }

class QualifyingTime implements ISelect{
boolean select(Runner ry

return r.runningTime() < 150; }

AListRunners qualified =

allRunners filter(new QualifyingTime());

46

Designing and Understanding Abstractions

Abstracting over similarities: functions as parameters

Sort all marathon runners by their names
Sort all marathon runners by their running times

Sort all marathon runners by their bib numbers

interface Comparator...

47

Designing and Understanding Abstractions

Abstracting over similarities:

o Traversal of a container » iterator

Methods:
o boolean isEmpty()
o Data getFirst()

° Traversal getRest()

Reason: provide the container class as a library -- no more changes

48

Designing and Understanding Abstractions

Abstracting over similarities:

o Classes with similar data or methods » abstract classes

o Classes with same concrete methods » abstract classes
o Lists of different data » list of <T> » generics

o Classes with common functional representation of structures »
ADTs

o Comparisons » interfaces that represent a function object

o Traversal of a container » iterator

49

Designing and Understanding Abstractions

Abstractions --- integrated throughout the course

© motivated by observing repeated code patterns

© students are taught to design abstractions

50

Designing and Understanding Abstractions

Abstractions --- integrated throughout the course

© motivated by observing repeated code patterns

© students are taught to design abstractions

Designing abstractions: Design Recipe for Abstractions
o |dentify the differences between similar solutions
° Replace the differences with parameters and rewrite the solution

© Rewrite the original examples and test them again

51

Introduction

Understanding Data
Designing Computations
Designing Abstractions
» Conclusion and Acknowledgements
Other Work; Our Plans

52

Conclusion

Solid understanding of principles
Student is the designer

Language features motivated by need
Language weaknesses exposed
Abstractions are made concrete

Exposure to alternate ways of solving problems

53

Understanding Mutation

When is mutation needed
What are the dangers of using mutation

Designing tests in the presence of mutation

« The need for mutation:
°© First used to support the definition of circularly referential data
° ArrayList - the need for mutating a structure

o GUIs - the need to record the current state - apart from the
current view

o Efficiency - mutating sort and other algorithms

54

Understanding the Big Picture

The foundations are there for understanding full Java

- Study of the Java Collections Framework

« Understanding the meaning of Javadocs

* Foundations for reasoning about complexity

- Foundations for understanding the data structure tradeoffs
o HashMap, Set, TreeMap, Linked structures

 Motivation for and using the JUnit

55

Our Experiences

TeachScheme! --- over 500 high schools - great results

ReachdJaval! --- four years at Northeastern University, many others

Instructors in follow-up courses feel students are
much better prepared

Students are much more confident in their understanding of program
design

Two very successful summer workshops for secondary school and
university teachers

Workshops planned for summer 2007, 2008, 2009

A growing number of followers despite the 'work in progress'

56

Understanding Data --- Desighing Porgrams

ProfessorJ

Web sites:
http://teach-scheme.org
http://www.ccs.neu.edu/home/vkp/HtDCH.hitml

57

Understanding Data --- Desighing Porgrams

ProfessorJ

Web sites:
http://teach-scheme.org
http://www.ccs.neu.edu/home/vkp/HtDCH.hitml

58

