
Computer Science vs. Computer Literacy
Which to Teach?

Viera K. Proulx
College of Computer Science, Northeastern University

Boston, MA, 02115, USA
vkp@ccs.neu.edu

With the widespread use of computers in all areas of work and play, it became clear
that all students (in secondary schools, universities, and even in elementary schools)
should be taught ‘something about computers’. The dilemma is, whether to teach
‘computer science’, or just ‘computer literacy’. In this paper we argue that both
computer science and a literate use of computers need to be taught to all students, if we
want them to function effectively in the new information age.

Using examples from real teaching situations, we illustrate how to incorporate the
teaching of effective computer literacy skills into traditional, programming based,
computer science course. In the second part of the paper we show how teaching
fundamentals of computer science within the context of a computer literacy course can
improve student’s ability to learn how to become an effective user of computer
technology.

Computers in computer science education - current situation.

In the USA, Advanced Placements courses taught in secondary schools are supposed to
cover material typically taught in the first year university courses. Students who
successfully pass the national advanced placement exam in a given subject, receive
university credit for that subject. The curriculum for Advanced Placement in Computer
Science, covers basic topics in computer science - algorithms, data structures, - in the
context of programming in Pascal. There is no requirement that students be able to use
spreadsheet application, build and query a data base, or even use a word processor.
Similarly, the Curriculum ‘91 - the major document used to define university level
computer science programs silently assumes that students will learn how to use
computers effectively, but does not have any specific recommendations or
requirements. Outside of the USA, especially in the countries, where computers are not
yet a commonplace item, the situation is similar. Computer science educators shun
teaching of ‘computer literacy’ as simple skill building and concentrate on the seminal,
theoretical foundations of the field. Many students become skilled programmers in one
of the higher level languages (C, Scheme, Lisp, Pascal), can build a compiler or an
operating system, analyze efficiency of an algorithm using powerful mathematical
methods, yet never used a spreadsheet to do a simple calculation.

Are we exaggerating? No. In the Spring 1994 I taught a graduate course on Computer
Architecture to about 30 graduate students at Northeastern University in Boston. For
the first assignment, in which students had to compare the performance improvement
achieved through different changes in the underlying architecture I insisted that
students perform the calculation and demonstrate their results using a spreadsheet
application of their choice. More than half of the class has never used a spreadsheet and

did not know where to find one. These were not weak students. Our admissions
standards are quite high and for most of these students this was at least their third
quarter in our program. Some of them were working in jobs that required daily use of
computers. Two of these students were working for our system group. Yet, they never
had the opportunity to explore how computers are used today by a large segment of
professionals in other fields.

Is this an isolated incident? We do not believe so. Several years ago, most of our
undergraduate computer science students completed their first year without ever using
computer for anything other than programming, word processing, and corresponding
via electronic mail. While they may have used computer applications to study foreign
language, to conduct simulated physics experiments, or learn about some topics in
history, computers were not used to illustrate lessons in computer science - not beyond
displaying the source code and possibly some other information supplied by the
debugger.

Computer science educators rarely use computers as educational tools, or as tools that
assist in problem solving, or for modeling and simulating events that are being studied.
One needs to only looks through catalogs of educational software, or visit the vendor
exhibits of major conferences on uses of computers in education.

Computers as educational tools in teaching computer science - new approaches.

There are two basic ways in which computers can be used to enhance teaching of
computer science. The first is by using standard applications such as spreadsheets, data
base programs, and even word processing programs to illustrate the fundamental
concepts. Spreadsheets should be used to analyze and display graphically timing data
or other data measuring the performance of different algorithms. Data base programs
can illustrate the need and the use of indirect addressing, index arrays, etc. Building a
simple paint program introduces student to the idea of main event loop and points out
some basic problems with the user interface design. Comparing simple student
solutions with commercial version of the program gives the student some
understanding of the complex issues facing practicing computer scientists today.

The second use of computers in computer science should be for modeling of dynamic
processes that are the basis of all computer science. well designed models of Turing
machine, logic circuits, an animation of the behavior of a data base program when
processing a query or making an update, interactive animations of all basic algorithms
students encounter, a model of information flow between different components of
computer system, - these all would help in de-mystifying the study of computer science.

Let us now present some examples how using computers as teaching and production
tools can enhance the effectiveness of teaching of computer science. We start by
describing a series of exercises in which students concurrently learn how to use a
spreadsheet program and learn how to conduct experimental evaluation and
comparison of algorithms. These exercises are used in our first year of study, after
students mastered Pascal programming, including records, pointers, and recursion.

Binary search exercise.

The first exercises involves binary search of a sorted table. The procedure that
implements the search is extremely simple, so there is little programming to be done.
Procedure returns the location of the item it found (zero, if not found), and the number
of probes needed to find the item. Students are asked to write the procedure, and write
a user interface driver that will allow them to test the procedure thoroughly. The
procedure header is predefined, and once the procedure works, students insert it into a
main program that automatically generates a large number of experiments with
increasing array size, and collects the data into a file. For each array size, there are
several items being searched for, and the program records the minimum , maximum,
and the average number of probes needed to find an item. Students are asked to use a
spreadsheet application to display the table and plot the results.

Heapsort exercise.
When students program a heapsort, they are asked to count both the number of moves
and the number of comparisons that algorithm needs first to build a heap from
unsorted array, then to create a sorted array from the heap. Students use the binary
search program as a model that teaches them how to collect data, format it so the file
could be imported into a spreadsheet, and how to test the procedure independently of
the data-collecting driver. They are now asked to display not only the data they
collected, but also the curves representing the theoretical bounds on the algorithm
complexity that have been derived in the class. An example of the results is shown
below.

Sorting algorithms comparison.
Students do no programming in this exercise. They are given a program that allows
them to collect timing data of 13 different sorting algorithms, and design the
appropriate experiments (number of tries, array sizes, array data: random, sorted,
inverted) and select which algorithms should be tested. Only three dimensional charts
show the results in a meaningful way. The lesson here is in designing experiments that
verify or contradict the hypothesis, and on experimenting with the best way of
displaying the data that has been collected.

These exercises do not teach students all tricks one can do with spreadsheets. Some
additional techniques are introduced in class, but mainly students now understand the
power of this tool, have several examples of its use, and learn to use the help system
and tutorial to learn more. They also learn that not all programming is done at the
higher level language level, and that one should use the right tool for a given task.

Another example of use of computer as a teaching tool is in presenting complex
algorithms. We teach students a number of different sorting algorithms because we
want to illustrate the number of choices faced by a designer of any computer program.
We also want to demonstrate the basic problem solving strategies, and the cost
associated with their use: divide and conquer, case enumeration, recursion,
backtracking; cost in terms of time, space, algorithm difficulty, etc. By observing the
dynamic behavior of a given algorithm using a well-designed interactive animation,
many of these points can be made more effectively. After playing with the animation
for just a few minutes, students understand how insertion or selection sort works. They
can see in action the behavior of divide and conquer algorithm by watching a quicksort.
They can predict the next step of algorithm searching for a shortest path in a graph -

and see immediately, whether they understand the algorithm. Seeing the behavior of
the algorithm, and having the opportunity to experiment with different alternatives, the
opportunity to ask questions, make s learning new algorithm no more difficult than
learning a new card game or board game.

Students that use computers in history courses may create a multimedia project that is a
tells us about some events students were learning about. The result is visually
appealing, attractive, and engaging. Students in computer science classes write
programs that generate several lines of output or save the results to a file. Most of the
time they do not see anything tangible, and have a hard time in finding whether the
results are correct, or what may have gone wrong. By making it possible to generate
sensible graphical output, students see where the program does not behave as expected.
It is not only a debugging tool, but also a powerful tool for motivating students. They
also learn what is behind all those exciting images computers bring to us every day.
Instead of writing the first loop to add ten numbers, students draw a balloon that floats
into the air (by painting and erasing a circle in different locations). They program a
robot to find an item in a square grid and see if the algorithm they invented works as
expected. They write a simple MiniPaint program with only four choices: circle, square,
line, and stop - and learn about the main event loop, they have a nice program to show
to others, and begin thinking about the difficulties encountered in user interface design.

Other opportunities lie in seeing a model of computer at all different levels, including
the theoretical world of finite state automata, in exploring a multimedia tour through
the computer history with tangible examples of what computers were capable of at a
given point in history, exploration of the different ways used to store sound, pictures,
and video images, observing the adaptive behavior of a neural net system, etc.

Is not using computers as educational tools in teaching computer science a serious
problem? Does it matter how we teach computer science? We think it does! For a long
time the methods used in teaching mathematics produced a significant percentage of
people ‘afraid of math’. Teachers explained abstract formulas, with very little
connection to useful activities from daily life. Similarly today, the teaching of computer
science today is mostly abstract, inaccessible to those not proficient in abstract thinking,
‘too complex’ to be understood by average people. It discourages many from studying
computer science, and undermines the confidence of many competent users who may
have been interested in learning more about computing.

Computer literacy - current situation

Today, everybody agrees that all students should learn something about computers.
Most students with access to computers use them at least for writing papers and written
reports. A typical course in computer literacy includes the use of spreadsheets for
tabulating data and computing standard statistical functions, as well as displaying the
results graphically. It also includes the use of database applications - learning how to
extract information from a database, and possibly, how to define and build one. In
addition, such course may cover one of presentation graphics programs, a statistical
simulation package, desktop publishing package, or a CAD program relevant for
student’s field of study. It is becoming a norm, that every professional program of study

includes a course on use of computers relevant to the particular subject. We need to
support this trend by providing instruction that will give students knowledge of
computing that will transcend current trends or specific applications packages and
computer systems. The knowledge student gains during such study should form a
foundation of understanding of computing that will serve the students throughout their
careers.

How can we increase the effectiveness of computer literacy courses? We can do it by
using different applications packages as examples of computer programs, as windows
into the computer architecture, or as case studies in hierarchical structure of
programming languages. Spreadsheet programs allow us to experiment with loss of
accuracy in iterations - illustrating the effect of limited space for number representation.
Explanation of different embedded functions leads into discussion of algorithms. To use
even the simplest package, students need to learn about the operating system user
interface. It is important, to explain, however simply, what is happening when different
selections are made, and buttons are pushed. By understanding the underlying
operations, students learn how all computers are the same, and will learn what
questions to ask when they are introduced to a new system.

Two examples illustrate the importance of learning what is happening inside the
computer. The first one is about a secretary who used mail merge program to generate
letters to a mailing list. All was great, except that not all addresses contained the same
number of lines. After all the wonderful work the computer did, she was editing out the
blank lines by hand. She never learned, that the computer could do it for her. Well, she
would have to have done a little macro programming - but nobody ever told her. The
second example is about a computer literacy class. Students were supposed to learn
how to use spreadsheet and database applications on two different computer systems.
At first, they were frustrated in trying to remember the right key sequences for different
operations - nothing they learned about the first system seemed to make sense in the
new environment. After spending some time learning about programming, and about
the underlying computer architecture, they began to see the similarities between the
two different systems, they understood how the computer interpreted their commands,
and could easily adopt to the new system. They made fewer mistakes, needed to ask
fewer questions, and were more confident not only in using the commands they studied
in the class, but also in exploring other features of the system.

Computer literacy with computer science: why and how

What are the computer science topics that shout be included in a computer literacy
course? The Association for Computing Machinery published recently a report entitled
ACM Model High School Computer Science Curriculum. The report recommends a
computer science course for all high school students, and lists the topics that should be
included in such course. They are: algorithms, programming languages, operating
systems and user support, computer architecture, and social, ethical, and professional
context. In addition, instructors should include additional topics based on their
interests, and cover examples of several areas of computer applications in today’s
world. Model curriculum implementations include a model based on application
packages. In addition, the report describes the level of competency students should
attain in different areas.

We elaborate on this list of proficiencies, in order to illustrate the need for including a
particular topic in the general course of study. Students should learn that algorithm is a
precise description of a process that will be performed by computer, human, or some
machine. They learn about the basic building blocks of algorithms, how algorithms can
be represented in different forms - both formal and informal, and they observe that
‘some things are easier said than done’ - that is, that some algorithms may be easy to
describe, but impossible to carry out in reasonable time. This gives students a real
understanding of the statement ‘the computer will only do what you tell it to do’. will
avoid a lot of frustration, and prepare students for using any computer system available
to them.

When learning about programming languages, students get a better understanding
why the command language of the operating system user interface is different from the
set of commands used inside an application,. By looking at the lowest levels of
computer languages (machine language compared to the language of calculators)
students begin to understand the basic computer architecture, and the levels of
complexity built upon it, to assist the user. Overall, it will be easier for them to learn a
new language or user interface - they will know what to look for and the commands
will become more meaningful.

Computers today come equipped with a plethora of different attachments: disk drives,
printers, scanners, microphones, network connections, etc. Students need to understand
the role of operating system as a resource manager, that keeps track of all the resources,
creates directories of all files, with information about their physical location, logical
hierarchical naming organization, size, type of organization and permissible access., etc.
By learning about the problems operating system needs to address, students gain a
better understanding of how the resources are organized. This empowers the students
to utilize the resources better, to understand what needs to be done to move
information from one computer to another, or from one format to another. Students also
need to learn about the use of computers as world wide communication and
information system. The resources available electronically surpass the resources of any
single library student can access. Every literate citizen of tomorrow should be able to
access these resources effectively.

By covering the previous topics, students already gained some understanding of
computer architecture - the CPU, memory, I/O model. To increase student’s
understanding of computers, we should also look in more detail at the data
representation in the computer. Students are familiar with several ways of representing
information: traffic signs, airport pictographs, roman and arabic number system,
alphabets used in different languages, the Morse code, to name a few. By learning about
ASCII representation of characters and the binary number system students will
understand better the differences between the file formats, the effect of rounding errors,
the loss of accuracy, etc. The computer will no longer be a black box. It will become an
effective tool to accomplish desired tasks.

As computers change almost every profession today, they also have a great impact on
the social structure of the society. Their use brings in new types of problems and
conflicts society has to learn to deal with. The issues of privacy, security, intellectual

property rights, trespassing, warranties, and others attain new meanings and
interpretations in the context of computer based systems. All literate citizens need to be
aware of these issues, understand the dangers, and see the need for new rules and laws
governing the use of computer based systems. Use of computer systems is bringing
with it a new class division - those without access to computer information network are
becoming increasingly disenfranchised. We have to find the ways to narrow this gap.
Teaching computer literacy with computer science to all high school students is one
step in this direction.

Of course, studying additional topics and examples of applications of computers to
solving problems in today’s world will increase student’s awareness of the enormous
potential and impact computers have on us today. They will understand how important
it is to continue learning about new uses of computers, new horizons opening up every
day.

Conclusion and acknowledgments

We suggested two ways of improving the teaching of computer science to all students
at both the secondary school and university level. The first point made is that computer
science should be taught as a foundation of understanding today’s information age, and
a necessity for becoming an effective user of computer technology. The second point
was that the methods used for teaching computer science must employ the best that
computers can offer as a teaching tools. The ideas for this paper are results of author’s
participation in two exciting projects: the ACM Task Force of the Pre-College
Committee on High School Computer Science Curriculum, and the Active Learning
Curriculum for Computer Science Project at College of Computer Science at
Northeastern University in Boston. The colleagues and friends working on these two
projects helped in formulating the ideas in this paper and the author would like to
acknowledge their contribution with deep gratitude. They are, Charles Bruen, Philip
East, Darlene Grantham, Susan Merritt, Charles Rice, Gerry Segal, and Carol Wolf from
the ACM Task Force, and Harriet Fell and Richard Rasala, collaborators in the project at
Northeastern University.

Bibliography

1. ACM Task Force, “ACM Model High School Computer Science Curriculum”,
Report of the Task Force on High School Curriculum of the ACM Pre-College
Committee”, ACM Press, 1993.

2. Moshe Augenstein and Langsam Yedidyah, Automatic Generation of Graphic
Displays of Data Structures Through a Preprocessor, SIGCSE Bulletin, February 1988,
Vol. 20, No. 1, p. 148.

3. C. Brown, H. J. Fell, V. K. Proulx, R. Rasala, "Instructional Frameworks: Toolkits
and Abstractions in Introductory Computer Science", Proceedings of ACM Computer
Science Conference, Indianapolis, IN, February 1993.

4. C. Brown, H. J. Fell, V. K. Proulx, R. Rasala, "Using Visual Feedback and Model
Programs in Introductory Computer Science", Journal of Computing in Higher
Education, Fall 1992, Vol. 4(1), 3-26.

5. C. Brown, H. J. Fell, V. K. Proulx, R. Rasala, "Programming by Example and
Experimentation", in Computer Assisted Learning, Proceedings of the 4th International
Conference on Computers and Learning, ICCAL ‘92, Wolfville, Nova Scotia, Canada,
June 1992, I. Tomek, ed., Springer Verlag, 136-147.

6. Marc H. Brown, Perspectives on Algorithm Animation, Proc. ACM SIGCHI ‘88
Conf. on Human Factors in Computing Systems, April 1988, pp. 33-44.

7. Marc H. Brown and Robert Sedgewick, “Techniques for Algorithm Animation,”
IEEE Software, January 1985, Vol. 22, Vol. 2, No. 1, pp. 28-39.

8. Thomas L. Naps, Algorithm Visualization in Computer Science Laboratories,
SIGCSE Bulletin, February 1990, Vol. 22, No. 1, pp. 105-110.

9. Viera K. Proulx, “Computer Science/Informatics: The Study of Information
World”, submitted to the Sixth World Conference on Computers in Education, WCCE
‘95.

10. Viera K. Proulx, “Computer Science in Elementary and Secondary Schools”, in
Informatics and Changes in Learning, Proceedings of the IFIP TC3/WG3.1/WG3.5
Open Conference on Informatics and Changes in Learning, Gmunden, Austria, 7-11
June 1993, D. C. Johnson, B. Samways, eds., North Holland, 1993, pp. 95-101.

11. Viera K. Proulx, Harriet J. Fell, Richard Rasala, Cynthia Brown, “Interactive
Animations in Computer Science”, in Proceedings, Frontiers in Education ‘93, 23rd
Annual Conference (Engineering Education: Renewing America’s Technology),
November 6-9, 1993, Washington, DC, IEEE Press, pp. 786-790.

12. Richard Rasala, Viera K. Proulx, Harriet J. Fell, “From Animation to Analysis in
Introductory Computer Science”, n Proceedings of ACM Computer Science Conference,
Phoenix, AZ, March 1994, pp. 61-65.

13. James Robergé, Creating Programming Projects with Visual Impact, SIGCSE
Bulletin, March 1992, Vol. 24, No. 1, pp. 230-234.

14. John T. Stasko, Tango: A Framework and System for Algorithm Animation, IEEE
Computer, September 1990, Vol. 23, No. 9, pp. 27-39.

15. Allen Tucker, Fundamentals of Computing I: Logic, Problem Solving, Programs,
& Computers, McGraw Hill, 1992.

16. Allen B. Tucker, et. al. (ed.), Computing Curricula 1991, Report of the
ACM/IEEE-CS Joint Curriculum Task Force, ACM Press, 1991.

