
Workshop: How to Design Class Hierarchies

2004

Viera K. Proulx

July 19, 2004

c©2003 Felleisen, Flatt, Findler, Gray, Krishnamurthi, Proulx

How to design class hierarchies: an introduction to object-oriented
programming
Matthias Felleisen, Matthew Flatt, Robert Findler, Kathy Gray, Shriram
Krishnamurthi, Viera K. Proulx

p. cm.

Includes index.
ISBN 0-262-06218-6 (hc.: alk. paper)
1. Computer Programming. 2. Electronic data processing.

QA76.6 .H697 2001
005.1’2—dc21 00-048169

2 Section 2

2 Lab Monday pm:

Goals

Learn to use ProfessorJ

• Define classes using the Insert Java Class widget

• Make examples of data in the Java Interactions Box

• Explore the use of the Test Case tool

• Explore the use of the Interactions window

Design and use simple classes, classes with containment and unions:

• Translate information into data definitions

• Interpret data as information

• Translate class diagram into class definitions

• Represent Java classes as class diagrams

Simple classes

Exercise 2.1.1 The Book class.
Take a look at this problem statement:

Develop a program that assists a bookstore manager. The pro-
gram should keep a record for each book. The record must in-
clude its book, the author’s name, its price, and its publication
year.

This example is included in you notes.

• Use the Java class widget to define this class. Select add class diagram
checkbox.

• In the Interactions box make instances of this class that represent the
following information:

1. Daniel Defoe, Robinson Crusoe, $15, 1719;

2. Joseph Conrad, Heart of Darkness, $12, 1902;

Lab Monday pm: 3

3. Pat Conroy, Beach Music, $9, 1996.

• Use the Test Case tool to check that some of the fields of the instances
you defined have the correct values.

• Use the Interactions pane to make an instance of your favorite book.
Try some tests similar to those done iin the Test Case tool.

Exercise 2.1.2 Understanding data definitions.
Study this class definition:

class Image {
int height /∗ pixels ∗/ ;
int width /∗ pixels ∗/ ;
String source /∗ file name ∗/ ;
String quality /∗ informal ∗/ ;

Image(int height, int width, String source, String quality) {
this.height = height;
this.width = width ;
this.source = source;
this.quality = quality;

}
}

Draw the class diagram.
The class definition was developed in response to this problem state-

ment:

Develop a program that creates a gallery from image descrip-
tions. Those specify the height, the width, the source of the
images, and, for aesthetic reasons, some informal information
about its quality.

Interpret the following three instances in this context:

Image im1 = new Image(5, 10, "small.gif", "low");
Image im2 = new Image(120, 200, "med.gif", "low");
Image im3 = new Image(1200, 1000, "large.gif", "high");

What is the value of im2.quality, of im3.height?

Exercise 2.1.3 Translate the class diagram in figure 1 into a class definition.
Also create instances of the class.

4 Section 2

+-------------------------+
| Car |
+-------------------------+
| String model |
| int price /* dollars */ |
| double milage |
| boolean used |
+-------------------------+

Figure 1: A class diagram for cars

Classes with containment

Note: The solution to the exercise 3.1.3 is in your handout. You may use it
as a guide. Remember to include a class diagram and examples of instances
for each class you design.

+-----------------------------+
| WeatherRecord |
+-----------------------------+
| Date d |-----------------+
TemperatureRange today	--+	
TemperatureRange normal	--+	
TemperatureRange record	--+	
double precipitation		
+-----------------------------+ | |

v v
+---------------------+ +------------+
| TemperatureRange | | Date |
+---------------------+ +------------+
| int high | | int day |
| int low | | int month |
+---------------------+ | int year |

+------------+

Figure 2: A class diagram for weather records

Lab Monday pm: 5

Exercise 3.1.1 Develop a data definition and Java classes for this problem:

Develop a “real estate assistant” program. The “assistant” helps
the real estate agent locate houses of interest for clients. The in-
formation about a house includes its kind, the number of rooms,
its address, and the asking price. An address consists of a street
number, a street name, and a city.

Represent the following examples using your classes:

1. Ranch, 7 rooms, $375,000, 23 Maple Street, Brookline;

2. Colonial, 9 rooms, $450,000, 5 Joye Road, Newton; and

3. Cape, 6 rooms, $235,000, 83 Winslow Road, Waltham.

Exercise 3.1.2 Take a look at the data definition in figure 2. Translate it into
a collection of classes. Also create examples of weather record information
and translate them into instances of the matching class.

Exercise 3.1.3 Revise the data representation for the book store assistant in
exercise 2.1.1 so that the program keeps track of an author’s year of birth
in addition to its name. Modify class diagram, the class definition, and the
examples.

Union

Exercise 4.1.1 Defining classes from the given information.
Consider a revision of the problem statement in exercise 2.1.2:

Develop a program that creates a gallery from three different
kinds of records: images (gif), texts (txt), and sounds (mp3). All
have names for source files and sizes (number of bytes). Images
also include information about the height, the width, and the
quality of the image. Texts specify the number of lines needed
for visual representation. Sounds include information about the
playing time of the recording, given in seconds.

Develop a data definition and Java classes for representing these three
records. Then represent the following examples with Java objects:

1. an image, stored in the file flower.gif; size: 57,234 bytes; width:
100 pixels; height: 50 pixels; quality: medium;

6 Section 2

2. a text, stored in welcome.txt; size: 5,312 bytes; 830 lines;

3. a music piece, stored in theme.mp3; size: 40960 bytes, playing time
3 minutes and 20 seconds.

Exercise 4.1.2 Defining classes from the class diagrams.
Take a look at the data definition in figure 3. Translate it into a collection

of classes. Also create instances of each class.

+---------------------+
| ATaxiVehicle |
+---------------------+
| int idNum |
| int passangers |
| int pricePerMile |
+---------------------+

/ \

|

+----------------+--+-----------------+
| | |

+--------+ +---------------+ +----------------+
| Cab | | Limo | | Van |
+--------+ +---------------+ +----------------+
| | | int minRental | | boolean access |
+--------+ +---------------+ +----------------+

Figure 3: A class diagram for taxis

Exercise 4.1.3 Representing class hierarchies as class diagrams.
Draw a UML diagram for the classes in figure 4.

Exercise 4.1.4 You may want to think of other information that can be rep-
resented as simple classes, classes with containment, or union of classes.
Write the problem description and ask you partner to design the classes.
Or make the class diagram and ask your partner to make instances of these
classes.

Lab Monday pm: 7

abstract class AMuseTicket {
Date d;
int price;
}

class MuseAdm
extends AMuseTicket {
MuseAdm(Date d,

int price) {
this.d = d;
this.price = price;

}
}

class OmniMax
extends AMuseTicket {
ClockTime t;
String title;

OmniMax(Date d,
int price,
ClockTime t,
String title) {

this.d = d;
this.price = price;
this.t = t;
this.title = title;

}
}

class LaserShow
extends AMuseTicket {
ClockTime t;
String row;
int seat;

LaserShow(Date d,
int price,
ClockTime t,
String row,
int seat) {

this.d = d;
this.price = price;
this.t = t;
this.row = row;
this.seat = seat;

}
}

Figure 4: Some classes

8 Section 3

3 Lab Tuesday am:

Designing classes that represent lists and trees

Containment in Union — Lists

Note: The solution to the exercise 5.1.2 is in your handout. You may use it
as a guide. Remember to include a class diagram and examples of instances
for each class you design.

Exercise 5.1.1 Consider a revision of the problem in exercise 3.1.1:

Develop a program that assists real estate agents. The program
deals with listings of available houses. . . .

Make examples. Develop a data definitions for listings of houses. Imple-
ment the definition with Java classes. Translate the examples into Java in-
stances.

Exercise 5.1.2 Consider a revision of the problem in exercise 2.1.1:

Develop a program that assists a bookstore manager with read-
ing lists. . . .

The diagram in figure 5 represents the data definitions for classes that
represent reading lists. Implement the definitions with classes. Create two
book lists that contain at least one of the books in exercise 2.1.1 plus one or
more of your favorite books.

Exercise 5.1.3 Take a look at figure 6, which contains the data definition
for weather reports. A weather report is a sequence of weather records
(see exercise 3.1.2). Translate the diagram into a collection of classes. Also
represent two (made-up) two weather reports, one for your home town and
one for your college town, in Java.

Containment in Union — Trees

Exercise 6.1.1 Consider the following problem:

Lab Tuesday am: 9

+----------------+
| AReadingList |<-----------------+
+----------------+ |

/ \

+---------+---------+ |
| | |

+---------+ +------------------+ |
| MTLoB | | ConsLoB | |
+---------+ +------------------+ |

+-------| Book fst | |
| | AReadingList rst |--+
| +------------------+
v

+-----------------+
| Book |
+-----------------+
| String author |
| String title |
| int price |
| int year |
+-----------------+

Figure 5: A class diagram for reading lists

Develop program that helps with recording a person’s ancestry
tree. Specifically, for each person we wish to remember the per-
son’s name and year of birth, in addition to the ancestry on the
father’s and the mother’s side, if it is available.

See Figure 7 for an example of the relevant information.

Develop the class diagram and the Java class hierarchy that represents
the information in an ancestry tree. Then translate the sample tree into Java
code. Also draw your family’s ancestor tree as far as known and represent
it as a Java object.

10 Section 3

+----------------+
| AWR |<---------------+
+----------------+ |

/ \

+---------+---------+ |
| | |

+---------+ +-------------------+ |
| MTWR | | ConsWR | |
+---------+ +-------------------+ |

+----| WeatherRecord fst | |
| | AWR rst |--+
| +-------------------+
v

+-----------------------------+
| WeatherRecord |
+-----------------------------+
| Date d |-----------------+
TemperatureRange today	--+	
TemperatureRange normal	--+	
TemperatureRange record	--+	
double precipitation		
+-----------------------------+ | |

| |
v v

+---------------------+ +------------+
| TemperatureRange | | Date |
+---------------------+ +------------+
| int high | | int day |
| int low | | int month |
+---------------------+ | int year |

+------------+

Figure 6: A class diagram for weather reports

Exercise 6.1.2 Take a look at the class diagram for a program that manages
a phone tree (like those for a soccer team)(Figure 8). To inform the team
about rainouts and schedule changes, the league calls the coach, who in

Lab Tuesday am: 11

Bob
1917
|

+--+--+ +--+--+ +--+--+
| | |

Angela Robert Annie
1936 1935 1938

| | |
+----+----+ +----+----+

| |
Janet Paul
1958 1956

| |
+----------+----------+

|
Peter
1980

Figure 7: A family tree

turn calls the team captain. Each player then calls at most two other play-
ers.

Translate the following examples into pictures of phone trees:

Player coach = new Player("Bob", 5432345);
Player p1 = new Player("Jan", 5432356);
Player p2 = new Player("Kerry", 5435421);
Player p3 = new Player("Ryan", 5436571);
Player p4 = new Player("Erin", 5437762);
Player p5 = new Player("Pat", 5437789);

APT empty = new MTTeam();
APT pt =

new PhoneTree(
p2,
new PhoneTree(p3, empty, empty),
new PhoneTree(p4,

new PhoneTree(p5, empty, empty),
new PhoneTree(p1, empty, empty)));

Coach ch = new Coach(coach, pt);

12 Section 3

+--------------+
| Coach |
+--------------+

+------| Player p |
| | APT players |-+ +---------------+
+--------------+		+---------+			
v v v					
+-------------+					
	APT				
+-------------+					
/ \					

+-----------+-----+					
+------------+ +--------------+					
	MTTeam		PhoneTree		
+------------+ +--------------+					
+------+ +--------| Player p | | |

| | | APT call1 |---+ |
v v | APT call2 |------+

+--------------+ +--------------+
| Player |
+--------------+
| String name |
| int phone |
+--------------+

Figure 8: A class diagram for a phone tree

Now develop Java code that corresponds to the given data definition.

Exercise 6.1.3 Think of how you would design the classes that represent a
grade book. Follow the design recipe to design Java classes that represent
this information.

Lab Tuesday pm: 13

4 Lab Tuesday pm:

Design methods, build a test suite, introduction to templates

Methods for simple classes and classes with containment

Exercise 7.1.1 Remember the class Image from exercise 2.1.2 for creating
Web pages. Develop the following methods for this class:

1. isPortrait, which determines whether the image is taller than wider;

2. size, which computes how many pixels the image contains;

3. isLarger, which determines whether one image contains more picture
than some other image.

Exercise 7.1.2 Develop the following methods for the class House from ex-
ercise 3.1.1:

1. isBigger, which determines whether one house has more rooms than
some other house;

2. thisCity, which checks whether the advertised house is in some given
city (assume we give the method a city name);

3. sameCity, which determines whether one house is in the same city as
some other house.

Don’t forget to test these methods.

Exercise 7.1.3 Here is a revision of the problem of managing a runner’s log
(see figure 9):

Develop a program that manages a runner’s training log. Ev-
ery day the runner enters one entry concerning the day’s run.
. . . For each entry, the program should compute how fast the
runner ran. . . .

Develop a method that computes the pace for a daily entry.

14 Section 4

+-----------------+
| Entry |
+-----------------+ +-----------+
| Date d |-->| Date |
| double distance | +-----------+
| int duration | | int day |
| String comment | | int month |
+-----------------+ | int year |

+-----------+

Figure 9: An entry for a runner’s log

Methods for composition

Note: The classes for the exercise 8.1.1 are in your handouts. Add the
methods to these classes.

Exercise 8.1.1 Recall the problem of writing a program that assists a book
store manager (see exercise 3.1.3). Develop the following methods for this
class:

• currentBook that checks whether the book was published in 2003 or
2002;

• currentAuthor that determines whether a book was written by a cur-
rent author (born after 1940);

• thisAuthor that determines whether a book was written by the speci-
fied author;

• sameAuthor that determines whether one book was written by the
same author as some other book;

• sameGeneration that determines whether two books were written by
two authors born less than 10 year apart.

Exercise 8.1.2 Exercise 3.1.2 provides the data definition for a program that
keep track of weather records. Develop the following methods:

Lab Tuesday pm: 15

1. withinRange that determines whether today’s high and low tempera-
tures were within the normal range;

2. rainyDay that determines whether the precipitation is higher than
some given value;

3. recordDay that determines whether the temperature broke either the
high or the low record;

4. warmerThan that determines whether one day was wormer than an-
other day;

5. lowerRecord that determines whether the record low for one day was
lower than for some other day.

16 Section 5

5 Lab Wednesday am:

Methods for Unions

Exercise 9.1.1 Recall problem 4.1.1: that described a revision of the prob-
lem in exercise 2.1.2:

Problem Develop class definitions for a collection of classes that
represent several different kinds of files. All files have name
and size given in bytes. Image files (gif) also include informa-
tion about the height and width of the image, and the quality of
the image. Text files (txt) include information about the num-
ber of characters, words, and lines. Sound files (mp3) include
information about the playing time of the recording, given in
seconds.

1. Develop the method timeToDownload that computes how long it takes
to download a file at some network connection speed, typically given
in bytes per second. The size of the file is given in bytes.

2. Develop the method smallerThan that determines whether the file is
smaller than some maximum size that can be mailed as an attach-
ment.

3. Develop the method sameName that determines whether the name of
a file is the same as some specified name.

Exercise 9.1.2 Recall the exercise 4.1.2: Take a look at the data definition in
figure 10. Translate it into a collection of classes. Also create instances of
each class.

1. Develop the method fare that computes the fare in a given vehicle,
based on the number of miles travelled, and using the following for-
mulas for different vehicles.

(a) passengers in a cab just pay flat fee per mile

(b) passengers in a limo must pay at least the minimum rental fee,
otherwise they pay by the mile

(c) passengers in a van pay $1.00 extra for each passenger

2. Develop the method lowerPrice that determines whether the fare for a
given number of miles is lower than some amount.

Lab Wednesday am: 17

+---------------------+
| ATaxiVehicle |
+---------------------+
| int idNum |
| int passangers |
| int pricePerMile |
+---------------------+

/ \

|

+----------------+--+-----------------+
| | |

+--------+ +---------------+ +----------------+
| Cab | | Limo | | Van |
+--------+ +---------------+ +----------------+
| | | int minRental | | boolean access |
+--------+ +---------------+ +----------------+

Figure 10: A class diagram for taxis

3. Develop the method cheaperThan that determines whether the fare in
one vehicle is lower than the fare in another vehicle for the same num-
ber of miles.

Exercise 9.1.3 Consider this revision of the problem in exercise 2.1.1:

Problem Develop a program that assists a bookstore manager
in a discount bookstore. The program should keep a record for
each book. The record must include its title, the author’s name,
its price, and its publication year. In addition, the books There
are three kinds of books with different pricing policy. The hard-
cover books are sold at 20% off. The sale books are sold at 50%
off. The paperbacks are sold at the list price.

1. Develop the class hierarchy to represent books in the discount book-
store.

2. Develop the method salePrice that computes the sale price of each
book.

18 Section 5

3. Develop the method cheaperThan that determines whether on book is
cheaper than another book.

4. Develop the method sameAuthor that determines whether some book
was written by the specified author.

Methods for lists

Exercise 10.1.1 Develop a program that assists a bookstore manager in a
discount bookstore (see exercise 9.1.3).

1. Develop the class hierarchy to represent a list of books in the discount
bookstore.

2. Describe in English examples of three book lists and represent them
as objects in this class hierarchy.

3. develop the method price that computes the total for the sale, based
on the sale price of each book.

4. Develop the method thisAuthor that produces a list of all books by
this author in the bookstore list.

Exercise 10.1.2 Develop the following additional methods for the river sys-
tem.

1. Develop the method maxlength that determines the length of the
longest river segment.

2. Develop the method confluences that counts the number of conflu-
ences in the river system.

3. Develop the method locations that produces a list of all locations on
this river - the sources, the mouths, and the confluences.

Methods for trees and similar structures

• Refer to the problem 6.1.1: develop methods to count the number of
ancestors, to determine whether there is a person with some name in
the tree, etc.

• Refer to the problem 6.1.2: Develop methods to find whether a given
player is in the list, count the players, etc.

Lab Wednesday pm: 19

6 Lab Wednesday pm:

Simple drawing.

Designing methods for complex class hierarchies.

Exercise 11.1.1 Given a class diagram and the code for the data definitions,
that represent the descendant tree, develop the following methods:

• find, which produces the Person object for a person with the given
name, or null, if no person in the tree has this name.

• children, which produces a list of children for a person with the given
name, or an empty list of children, if a Person with this name is not in
the tree.

• count, which counts how many people are listed in the descendant
tree

Descendant Tree: Class Hierarchy

Abstract Class: ALoc Abstract Class: ADT

Member Data: (none) Member Data: (none)

Constructor: (none) Constructor: (none)

Methods: (none) Methods: (none)

Class Person

Member Data:

 String name;

 Color eyeColor;

 int date;

Constructor:

 Person(String n, Color c, int dob);

Methods: (none)

Class: EmptyLoc Class: ConsLoc Class: EmptyDT Class ConsDT

Member Data:

 (none)

 Member Data:

 ADT first;

 ALoc rest;

 Member Data:

 (none)

 Member Data:

 Person self;

 ALoc children;

Constructor:

 (default)

 Constructor:

 ConsLoc(ADT f, ALoc r);

 Constructor:

 (default)

 Constructor:

 ConsDT(Person p, ALoc lc);

Methods: (none) Methods: (none) Methods: (none) Methods: (none)

20 Section 6

Exercise 11.1.2 A GUI Component is one of the following:

• Checkbox

• Textfield

• OptionsView

• ColorView

• Table

Each component contains a label and some additional data.
The data for a Table is one of

• empty

• list of Rows

A Row is one of

• empty

• list of Components

Data for each of the remaining components is the default value to be
displayed, specified as a String, and the preferred width and height.

• Draw the UML diagram for this collection of classes.

• Develop the templates for methods needed to count the number of
primitive GUI elements in a given GUI Component.

• Develop the templates for the methods needed to determines the height
of a given GUI Component. The height of the table is the sum of the
heights of the Rows. The height of a Row is the maximum size of com-
ponents in the list of Components.

Lab Wednesday pm: 21

Exercise 11.1.3 A WebPage consists of a

• String header,

• and a Body b.

A Body is a list of HTML elements.
A HTML element is either

• a String word

• or a Link.

A Link consists of

• a String word

• and a WebPage.

• Draw the UML diagram for the collection of classes that represent
web pages.

• Develop the classes.

• Develop the method allWords, which produces a list of all words in
the web page

• Develop the method pages, which produces the list of immediate words
on a page. That is, it consumes a WebPage and produces a list of String.
An immediate word on a list of HTML elements is defined as follows:

– an HTML element that is a word is the immediate word

– for an HTML element that is a Link, the method extracts the word
from the Link.

• Develop the method occurs, which determines whether the given word
occurs in the web page or its embedded pages.

22 Section 7

7 Lab Thursday am:

Design a simple game and implement it in the class that extends the World
class.

• Worm Game: A worm (consisting of a head and a list of segments)
moves in ’its’ direction on each tick, unless the user selects s different
direction through the key stroke. A food morsel appears at random in
the play area. If the worm eats the food, it grows by a new segment.
The game ends when a worm either runs into the wall, or it ’eats
itself’, i.e., the head attempts to move is such way that it would eat a
part of itself.

• UFOs: An UFO is falling from the sky - moving slightly sideways as
the wind blows. The user can move a gun platform left or right, and
shoot a shot with the keystroke of letter ’x. Keep shooting, till you
either hit the UFO, or the UFO lands on the earth. Add more shots,
more UFOs, etc.

• Ant Game: An ant travels through the play area controlled by the
arrow keys. As it moves, is looses weight from hunger. When it finds
food (a number of food morsels appear at random in the play area), it
grows bigger. The game ends when the ant is too small to live, or get
too big to move. (You choose what is too small or too big). It can also
end when the ant hits the wall.

• Star Thalers: Star Money, Star Thalers by the Grimm Brothers

There was once upon a time a little girl whose father and mother were
dead, and she was so poor that she no longer had a room to live in,
or bed to sleep in, and at last she had nothing else but the clothes
she was wearing and a little bit of bread in her hand which some
charitable soul had given her. She was good and pious, however.
And as she was thus forsaken by all the world, she went forth into
the open country, trusting in the good God.

Then a poor man met her, who said, “Ah, give me something to eat, I
am so hungry.”

She handed him the whole of her piece of bread, and said, “May God
bless you,” and went onwards.

Then came a child who moaned and said, “My head is so cold, give
me something to cover it with.”

Lab Thursday am: 23

So she took off her hood and gave it to him. And when she had
walked a little farther, she met another child who had no jacket and
was frozen with cold. Then she gave it her own, and a little farther
on one begged for a frock, and she gave away that also.

At length she got into a forest and it had already become dark, and
there came yet another child, and asked for a shirt, and the good little
girl thought to herself, “It is a dark night and no one sees you, you
can very well give your shirt away,” and took it off, and gave away
that also.

And as she so stood, and had not one single thing left, suddenly some
stars from heaven fell down, and they were nothing else but hard
smooth pieces of money, and although she had just given her shirt
away, she had a new one which was of the very finest linen. Then she
put the money into it, and was rich all the days of her life.

Exercise: stolen fair and square from TS!2 workshop

Develop a game program based on the story of “Star Money, Star
Thalers.”

The program should consume a natural number and drop that many
thalers (from the top of the world) on the girl (at the bottom of the
world), one at a time. The thaler should move randomly to the left
or right and downwards, but should always stay within the bound-
aries of the world (canvas). The girl should react to ’left and ’right
keystrokes, moving a moderate number of pixels in reaction but al-
ways staying completely within the boundaries of the world.

24 Section 8

8 Lab Thursday pm:

Software provided:

• Classes that represent a list of books with author information, where
author information includes the name and year of birth.

• Interfaces IFilter and IFilter2 with examples of use.

• File objlists.java

Goals

• Learn to define and work with lists of Objects

• Learn to define interfaces and design classes that implement them

• Learn to use interfaces to design classes that encapsulate only behav-
ior

Details

1. A list of Objects

• Open the file objlists.java.

• Draw by hand a class diagram that represents these classes.

• Add two of your favorite books (and their authors) to the exam-
ples and to one of the lists in the examples and add tests that use
your examples.

• Make examples of lists of Authors.

• Add the method remove(Object obj) that produces a list
with only the first occurrence of the given object removed from
the list.

2. Using an interface

• class Book implements the interface IFilter. Study the
code. Study the code that implements orMap. Add two more
test cases to the test suite.

• Modify the class Author, so it implements the interface
IFilter to select authors born after 1945.

• Add tests that verify the implementation of the methods orMap
and howMany on your list of authors.

Lab Friday am: 25

9 Lab Friday am:

Implementing interfaces - representing functions

1. Defining objects that encapsulate behavior.

• Study the code for the class CheapBook that implements the
IFilter2 interface, and its use in orMap2.

• Design the method andMap that determines whether all items
in the list satisfy the predicate encapsulated in an object that im-
plements IFilter2 interface.

• Design the class ContemporaryAuthor that implements the
interface IFilter2 to select authors born after 1945.

• Test your class in the context of andMap and orMap.

2. The power of abstraction.

• Define interface ITransform that encapsulates a method with
signature Object transform(Object).

• Design the methods apply for the list of Objects classes that
produces a new list of Objects, applying the transform method
to every object in the list.

• Design the method authortitle that transforms a Book object
into a String that contains the title and the author’s name.
Hint: given a String s1 and s2, s1.concat(s2) produces a
String that concatenates String s1 and String s2.

• Use the methods and classes you designed to produce a list of
titles of all cheap books from a given list of books. (You will
need one more class!)

26 Section 10

10 Lab Friday pm:

Inner classes; Free time

Note: This is a preliminary version of this exercise.

Problem University keeps records for all students and instruc-
tors at the university. For each person it records the name and
id number. Each instructor also has a title, and is a member of
some department (for now, we just know the name of the de-
partment). Each student has a major and grade point average
(GPA).

Define the class hierarchy to represent students and instructors at the uni-
versity, as well as a list of all people, all students, and all instructors.

Define the following methods for these classes:

• sortStName that sorts the students in a list of Students by their name.

• sortStGPA that sorts the students in a list of Students by their GPA.

• sortInsName that sorts the instructors in a list of Instructors by their
name.

• sortInsDept that sorts the instructors in a list of Instructors by their
department.

Work on refactoring this code as follows:

• Study the Java Comparator interface.

• In the class Person define a Comparator object that compares the per-
sons by their name.

• In the class Student define a Comparator object that compares the stu-
dents by their GPA.

• In the class Instructor define a Comparator object that compares the
persons by their department.

• Refactor your code to use a list of Objects and rewrite the sort method
so that it receives as a parameter an object in the class that implements
Comparator interface.

• Add method to find whether an object is in the list.

