
Workshop: How to Design Class Hierarchies

Viera K. Proulx

July 13, 2003

c©2003 Felleisen, Flatt, Findler, Gray, Krishnamurthi, Proulx

How to design class hierarchies: an introduction to object-oriented
programming
Matthias Felleisen, Matthew Flatt, Robert Findler, Kathy Gray, Shriram
Krishnamurthi, Viera K. Proulx

p. cm.
Includes index.
ISBN 0-262-06218-6 (hc.: alk. paper)
1. Computer Programming. 2. Electronic data processing.

QA76.6 .H697 2001
005.1’2—dc21 00-048169

2 Section 1

1 Lab Monday am:

Do the following sets of problems from HtDP:

• Functions: 2.3.3, 3.1.1, 3.1.2, 3.1.3, and 3.3.2, 3.3.3, 3.3.4

Exercise 2.3.3 An old-style movie theater has a simple pro£t func-
tion. Each customer pays $5 per ticket. Every performance costs the
theater $20, plus $.50 per attendee. Develop the function total-pro£t.
It consumes the number of attendees (of a show) and produces how
much income the attendees produce.

Exercise 3.1.1 The next step is to make up examples for each of the
functions. Determine how many attendees can afford a show at a
ticket price of $3.00, $4.00, and $5.00. Use the examples to formulate
a general rule that shows how to compute the number of attendees
from the ticket price. Make up more examples if needed.

Exercise 3.1.2 Use the results of exercise 3.1.1 to determine how much
it costs to run a show at $3.00, $4.00, and $5.00. Also determine how
much revenue each show produces at those prices. Finally, £gure
out how much pro£t the monopolistic movie owner can make with
each show. Which is the best price (of these three) for maximizing the
pro£t?

Exercise 3.1.3 Determine the pro£t that the movie owner makes at
$3.00, $4.00, and $5.00 using the program de£nitions in both columns.
Make sure that the results are the same as those predicted in exer-
cise 3.1.2.

Exercise 3.3.2 Develop the program volume-cylinder. It consumes the
radius of a cylinder’s base disk and its height; it computes the volume
of the cylinder.

Exercise 3.3.3 Develop area-cylinder. The program consumes the ra-
dius of the cylinder’s base disk and its height. Its result is the surface
area of the cylinder.

Lab Monday am: 3

Exercise 3.3.4 Develop the function area-pipe. It computes the surface
area of a pipe, which is an open cylinder. The program consumes
three values: the pipe’s inner radius, its length, and the thickness of
its wall.

Develop two versions: a program that consists of a single de£nition
and a program that consists of several function de£nitions. Which
one evokes more con£dence?

• Structures: 6.3.1, 6.3.2, 6.4.1, 6.5.1

Exercise 6.3.1 Consider the following structure de£nitions:

1. (de£ne-struct movie (title producer))

2. (de£ne-struct boyfriend (name hair eyes phone))

3. (de£ne-struct cheerleader (name number))

4. (de£ne-struct CD (artist title price))

5. (de£ne-struct sweater (material size producer))

What are the names of the constructors and the selectors that each of
them adds to Scheme? Draw box representations for each of these
structures.

Exercise 6.3.2 Consider the following structure de£nition

(de£ne-struct movie (title producer))

and evaluate the following expressions:

1. (movie-title (make-movie ’ThePhantomMenace ’Lucas))

2. (movie-producer (make-movie ’TheEmpireStrikesBack ’Lucas))

Now evaluate the following expressions, assuming x and y stand for
arbitrary symbols:

1. (movie-title (make-movie x y))

2. (movie-producer (make-movie x y))

Formulate equations that state general laws concerning the relation-
ships of movie-title and movie-producer and make-movie.

4 Section 1

Exercise 6.4.1 Provide data de£nitions for the following structure def-
initions:

1. (de£ne-struct movie (title producer))

2. (de£ne-struct boyfriend (name hair eyes phone))

3. (de£ne-struct cheerleader (name number))

4. (de£ne-struct CD (artist title price))

5. (de£ne-struct sweater (material size producer))

Make appropriate assumptions about what data goes with which £eld.

Exercise 6.5.1 Develop templates for functions that consume the fol-
lowing structures:

1. (de£ne-struct movie (title producer))

2. (de£ne-struct boyfriend (name hair eyes phone))

3. (de£ne-struct cheerleader (name number))

4. (de£ne-struct CD (artist title price))

5. (de£ne-struct sweater (material size producer)) .

• Unions: 7.2.1

Exercise 7.2.1 Develop structure and data de£nitions for a collection
of zoo animals. The collection includes

spiders, whose relevant attributes are the number of remaining legs
(we assume that spiders can lose legs in accidents) and the space
they need in case of transport;

elephants, whose only attributes are the space they need in case of
transport;

monkeys, whose attributes are intelligence and space needed for trans-
portation.

Then develop a template for functions that consume zoo animals.

Develop the function £ts?. The function consumes a zoo animal and
the volume of a cage. It determines whether the cage is large enough
for the animal.

Lab Monday am: 5

• : Lists: 9.3.3, 9.5.1, 9.5.2, 9.5.3, 9.5.4

Exercise 9.3.3 Develop the function contains?, which consumes a sym-
bol and a list of symbols and determines whether or not the symbol
occurs in the list.

Exercise 9.5.1 Use DrScheme to test the de£nition of sum on the fol-
lowing sample lists of numbers:

empty
(cons 1.00 empty)
(cons 17.05 (cons 1.22 (cons 2.59 empty)))

Compare the results with our speci£cations. Then apply sum to the
following examples:

empty
(cons 2.59 empty)
(cons 1.22 (cons 2.59 empty))

First determine what the result should be; then use DrScheme to eval-
uate the expressions.

Exercise 9.5.2 Develop the function how-many-symbols, which consumes
a list of symbols and produces the number of items in the list.

Develop the function how-many-numbers, which counts how many
numbers are in a list of numbers. How do how-many-symbols and how-
many-numbers differ?

Exercise 9.5.3 Develop the function dollar-store?, which consumes a
list of prices (numbers) and checks whether all of the prices are below
1.

For example, the following expressions should evaluate to true:

(dollar-store? empty)

(not (dollar-store? (cons .75 (cons 1.95 (cons .25 empty)))))

6 Section 1

(dollar-store? (cons .75 (cons .95 (cons .25 empty))))

Generalize the function so that it consumes a list of prices (numbers)
and a threshold price (number) and checks that all prices in the list
are below the threshold.

Exercise 9.5.4 Develop the function check-range1, which consumes a
list of temperature measurements and checks whether all measure-
ments are between 5

oC and 95
oC.

Generalize the function to check-range, which consumes a list of tem-
perature measurements and a legal interval and checks whether all
measurements are within the legal interval.

• Exercise: Produce a list of all positive numbers form a given list of
numbers.

Lab Monday pm: 7

2 Lab Monday pm:

Goals

Learn to make data de£nitions
Learn to use ProfJ

Simple classes

(2.1.1, 2.1.2, 2.1.3, 2.1.4) - do two of these

Exercise 2.1.1 Translate the three examples of information from the GPS
problem into instances of GPSLocation.

Also interpret new GPSLocation(50.288,0.11) in this context.

Exercise 2.1.2 Take a look at this problem statement:

Develop a program that assists a bookstore manager. The pro-
gram should keep a record for each book. The record must in-
clude its book, the author’s name, its price, and its publication
year.

Develop an appropriate data de£nition and implement the de£nition
with a class. Create instances of the class to represent these three books:

1. Daniel Defoe, Robinson Crusoe, $15.50, 1719;

2. Joseph Conrad, Heart of Darkness, $12.80, 1902;

3. Pat Conroy, Beach Music, $9.50, 1996.

Exercise 2.1.3 Study this class de£nition:

class Image {
int height /∗ pixels ∗/ ;
int width /∗ pixels ∗/ ;
String source /∗ £le name ∗/ ;
String quality /∗ informal ∗/ ;

8 Section 2

Image(int height, int width, String source, String quality) {
this.height = height;
this.width = width ;
this.source = source;
this.quality = quality;

}
}

Draw the class diagram.
The class de£nition was developed in response to this problem state-

ment:

Develop a program that creates a gallery from image descrip-
tions. Those specify the height, the width, the source of the
images, and, for aesthetic reasons, some informal information
about its quality.

Interpret the following three instances in this context:

new Image(5, 10, "small.gif", "low");
new Image(120, 200, "med.gif", "low");
new Image(1200, 1000, "large.gif", "high");

+-------------------------+
| Car |
+-------------------------+
| String model |
| int price /* dollars */ |
| double milage |
| boolean used |
+-------------------------+

Figure 1: A class diagram for cars

Exercise 2.1.4 Translate the class diagram in £gure 1 into a class de£nition.
Also create instances of the class.

Lab Monday pm: 9

+-----------------------------+
| WeatherRecord |
+-----------------------------+
| Date d |-----------------+
TemperatureRange today	--+	
TemperatureRange normal	--+	
TemperatureRange record	--+	
double precipitation		
+-----------------------------+ | |

v v
+---------------------+ +------------+
| TemperatureRange | | Date |
+---------------------+ +------------+
| int high | | int day |
| int low | | int month |
+---------------------+ | int year |

+------------+

Figure 2: A class diagram for weather records

Classes with containment

(3.1.1, 3.1.2, 3.1.3) - do two of these

Exercise 3.1.1 Develop a data de£nition and Java classes for this problem:

Develop a “real estate assistant” program. The “assistant” helps
the real estate agent locate houses of interest for clients. The in-
formation about a house includes its kind, the number of rooms,
its address, and the asking price. An address consists of a street
number, a street name, and a city.

Represent the following examples using your classes:

1. Ranch, 7 rooms, $375,000, 23 Maple Street, Brookline;

2. Colonial, 9 rooms, $450,000, 5 Joye Road, Newton; and

3. Cape, 6 rooms, $235,000, 83 Winslow Road, Waltham.

10 Section 2

Exercise 3.1.2 Take a look at the data de£nition in £gure 2. Translate it into
a collection of classes. Also create examples of weather record information
and translate them into instances of the matching class.

Exercise 3.1.3 Revise the data representation for the book store assistant in
exercise 2.1.2 so that the program keeps track of an author’s year of birth
in addition to its name. Modify class diagram, the class de£nition, and the
examples.

Union

(4.1.2, 4.1.3, 4.1.4) - do two of these

Exercise 4.1.1 Consider a revision of the problem statement in exercise 2.1.3:

Develop a program that creates a gallery from three different
kinds of records: images (gif), texts (txt), and sounds (mp3). All
have names for source £les and sizes (number of bytes). Images
also include information about the height, the width, and the
quality of the image. Texts specify the number of lines needed
for visual representation. Sounds include information about the
playing time of the recording, given in seconds.

Develop a data de£nition and Java classes for representing these records.
Then represent these three examples with Java objects:

1. an image, stored in flower.gif; size: 57,234 bytes; width: 100 pix-
els; height: 50 pixels; quality: medium;

2. a text, stored in welcome.txt; size: 5,312 bytes; 830 lines;

3. a music piece, stored in theme.mp3; size: 40960 bytes, playing time
3 minutes and 20 seconds.

Exercise 4.1.2 Take a look at the data de£nition in £gure 3. Translate it into
a collection of classes. Also create instances of each class.

Exercise 4.1.3 Draw a UML diagram for the classes in £gure 4.

Lab Monday pm: 11

+---------------------+
| ATaxiVehicle |
+---------------------+
| int idNum |
| int passangers |
| int pricePerMile |
+---------------------+

/ \

|

+----------------+--+-----------------+
| | |

+--------+ +---------------+ +----------------+
| Cab | | Limo | | Van |
+--------+ +---------------+ +----------------+
| | | int minRental | | boolean access |
+--------+ +---------------+ +----------------+

Figure 3: A class diagram for taxis

12 Section 2

abstract class AMuseTicket {
Date d;
int price;
}

class MuseAdm
extends AMuseTicket {
MuseAdm(Date d,

int price) {
this.d = d;
this.price = price;

}
}
anewline
anewline
anewline
anewline
anewline
anewline
anewline
anewline
anewline
anewline

class OmniMax
extends AMuseTicket {
ClockTime t;
String title;

anewline
OmniMax(Date d,

int price,
ClockTime t,
String title) {

this.d = d;
this.price = price;
this.t = t;
this.title = title;

}
}
anewline
anewline
anewline

class LaserShow
extends AMuseTicket {
ClockTime t;
String row;
int seat;

anewline
LaserShow(Date d,

int price,
ClockTime t,
String row,
int seat) {

this.d = d;
this.price = price;
this.t = t;
this.row = row;
this.seat = seat;

}
}

Figure 4: Some classes

Lab Tuesday am: 13

3 Lab Tuesday am:

Designing classes that represent lists and trees

Containment in Union — Lists

(5.1.2, 5.1.3, 5.1.4) - do two of these

Exercise 5.1.2 Consider a revision of the problem in exercise 3.1.1:

Develop a program that assists real estate agents. The program
deals with listings of available houses. . . .

Make examples. Develop a data de£nitions for listings of houses. Imple-
ment the de£nition with Java classes. Translate the examples into Java in-
stances.

Exercise 5.1.3 Consider a revision of the problem in exercise 2.1.2:

Develop a program that assists a bookstore manager with read-
ing lists. . . .

The diagram in £gure 5 represents the data de£nitions for classes that
represent reading lists. Implement the de£nitions with classes. Create two
book lists that contain at least one of the books in exercise 2.1.2 plus one or
more of your favorite books.

Exercise 5.1.4 Take a look at £gure 6, which contains the data de£nition
for weather reports. A weather report is a sequence of weather records
(see exercise 3.1.2). Translate the diagram into a collection of classes. Also
represent two (made-up) two weather reports, one for your home town and
one for your college town, in Java.

Containment in Union — Trees

(5.3.1, 5.3.2) - do at leat one of these

Exercise 5.3.1 Consider the following problem:

14 Section 3

+----------------+
| AReadingList |<-----------------+
+----------------+ |

/ \

+---------+---------+ |
| | |

+---------+ +------------------+ |
| MTLoB | | ConsLoB | |
+---------+ +------------------+ |

+-------| Book fst | |
| | AReadingList rst |--+
| +------------------+
v

+-----------------+
| Book |
+-----------------+
| String author |
| String title |
| int price |
| int year |
+-----------------+

Figure 5: A class diagram for reading lists

Develop program that helps with recording a person’s ancestry
tree. Speci£cally, for each person we wish to remember the per-
son’s name and year of birth, in addition to the ancestry on the
father’s and the mother’s side, if it is available.

See £gure 7 for an example of the relevant information.
Develop the class diagram and the Java class hierarchy that represents

the information in an ancestry tree. Then translate the sample tree into Java
code. Also draw your family’s ancestor tree as far as known and represent
it as a Java object.

Lab Tuesday am: 15

+----------------+
| AWR |<---------------+
+----------------+ |

/ \

+---------+---------+ |
| | |

+---------+ +-------------------+ |
| MTWR | | ConsWR | |
+---------+ +-------------------+ |

+----| WeatherRecord fst | |
| | AWR rst |--+
| +-------------------+
v

+-----------------------------+
| WeatherRecord |
+-----------------------------+
| Date d |-----------------+
TemperatureRange today	--+	
TemperatureRange normal	--+	
TemperatureRange record	--+	
double precipitation		
+-----------------------------+ | |

| |
v v

+---------------------+ +------------+
| TemperatureRange | | Date |
+---------------------+ +------------+
| int high | | int day |
| int low | | int month |
+---------------------+ | int year |

+------------+

Figure 6: A class diagram for weather reports

Exercise 5.3.2 Take a look at the class diagram for a program that manages
a phone tree (like those for a soccer team). To inform the team about rain-
outs and schedule changes, the league calls the coach, who in turn calls the

16 Section 3

Bob
1917
|

+--+--+ +--+--+ +--+--+
| | |

Angela Robert Annie
1936 1935 1938
| | |
+----+----+ +----+----+

| |
Janet Paul
1958 1956
| |
+----------+----------+

|
Peter
1980

Figure 7: A family tree

team captain. Each player then calls at most two other players.
Translate the following examples into pictures of phone trees:

Player coach = new Player("Bob", 5432345);
Player p1 = new Player("Jan", 5432356);
Player p2 = new Player("Kerry", 5435421);
Player p3 = new Player("Ryan", 5436571);
Player p4 = new Player("Erin", 5437762);
Player p5 = new Player("Pat", 5437789);

APT empty = new MTTeam();

APT pt =

new PhoneTree(
p2,
new PhoneTree(p3, empty, empty),
new PhoneTree(

p4,
new PhoneTree(p5, empty, empty),
new PhoneTree(p1, empty, empty)));

Lab Tuesday am: 17

+--------------+
| Coach |
+--------------+

+------| Player p |
| | APT players |-+ +---------------+
+--------------+		+---------+			
v v v					
+-------------+					
	APT				
+-------------+					
/ \					

+-----------+-----+					
+------------+ +--------------+					
	MTTeam		PhoneTree		
+------------+ +--------------+					
+--------	Player p				
+------+ | | APT call1 |---+ |

| | | APT call2 |------+
v v +--------------+

+--------------+
| Player |
+--------------+
| String name |
| int phone |
+--------------+

Figure 8: A class diagram for a phone tree

Coach ch = new Coach(coach, pt);

Now develop Java code that corresponds to the given data de£nition.

18 Section 4

4 Lab Tuesday pm:

Design methods, build a test suite, introduction to templates

Methods for simple classes and classes with containment

(9.1.2, 9.1.3, 9.1,4, 9.1.5)

Exercise 9.1.2 Draw the complete diagram for Coffee with all the method
signatures included in the method compartment.

Exercise 9.1.3 Remember the class Image from exercise 2.1.3 for creating
Web pages. Develop the following methods for this class:

1. isPortrait, which determines whether the image is taller than wider;

2. size, which computes how many pixels the image contains;

3. isLarger, which determines whether one image contains more picture
than some other image.

Exercise 9.1.4 Develop the following methods for the class House from ex-
ercise 3.1.1:

1. isBigger, which determines whether one house has more rooms than
some other house;

2. thisCity, which checks whether the advertised house is in some given
city (assume we give the method a city name);

3. sameCity, which determines whether one house is in the same city as
some other house.

Don’t forget to test these methods.

Exercise 9.1.5 Here is a revision of the problem of managing a runner’s log
(see £gure ??):

Develop a program that manages a runner’s training log. Ev-
ery day the runner enters one entry concerning the day’s run.
. . . For each entry, the program should compute how fast the
runner ran. . . .

Develop a method that computes the pace for a daily entry.

Lab Wednesday am: 19

5 Lab Wednesday am:

Design recipes and methods for composition

Methods for composition

(10.1.1, 10.1.2)

Exercise 10.1.1 Recall the problem of writing a program that assists a book
store manager (see exercise 3.1.3). Develop the following methods for this
class:

• currentBook that checks whether the book was published in 2003 or
2002;

• currentAuthor that determines whether a book was written by a cur-
rent author (born after 1940);

• thisAuthor that determines whether a book was written by the speci-
£ed author;

• sameAuthor that ddetermines whether one book was written by the
same author as some other book;

• sameGeneration that determines whether two books were written by
two authors born less than 10 year apart.

Exercise 10.1.2 Exercise 3.1.2 provides the data de£nition for a weather
recording program. Develop the following methods:

1. withinRange that determines whether today’s high and low were within
the normal range;

2. rainyDay that determines whether the precipitation is higher than
some given value;

3. recordDay that determines whether the temperature broke either the
high or the low record;

4. warmerThan that determines whether one day was wormer than an-
other day;

5. lowerRecord that determines whether the record low for one day was
lower than for some other day.

20 Section 6

6 Lab Wednesday pm:

Methods for Unions

(12.1.1, 12.1.2, 12.1.3, 12.1.4) - do two of these

Exercise 12.1.1 Recall problem 4.1.1: that described a revision of the prob-
lem in exercise 2.1.3:

Problem Develop class de£nitions for a collection of classes that
represent several different kinds of £les. All £les have name
and size given in bytes. Image £les (gif) also include informa-
tion about the height and width of the image, and the quality of
the image. Text £les (txt) include information about the num-
ber of characters, words, and lines. Sound £les (mp3) include
information about the playing time of the recording, given in
seconds.

1. Develop the method timeToDownload that computes how long it takes
to download a £le at some network connection speed, typically given
in bytes per second. The size of the £le is given in bytes.

2. Develop the method smallerThan that determines whether the £le is
smaller than some maximum size that can be mailed as an attach-
ment.

3. Develop the method sameName that determines whether the name of
a £le is the same as some speci£ed name.

Exercise 12.1.2 Recall the problem ??:

Problem Develop a program that keeps track of the items in the
grocery store. For now, we assume that the store deals only with
ice cream, coffee, and juice. Each of the items is speci£ed by its
brand name, weight and price. Each coffee is also labelled as
either regular or decaffeinated. Juice items come in different ¤a-
vors, and can be packaged as frozen, fresh, bottled, or canned.
Each package of ice cream speci£es its ¤avor and whether this
is a sorbet, a frozen yogurt, or regular ice cream.

1. Develop the method unitPrice that computes the unit price of some
grocery item. The unit price is given in cents per unit of weight.

Lab Wednesday pm: 21

2. Develop the method lowerPrice that determines whether the unit price
of some grocery item is lower than some amount.

3. Develop the method cheaperThan that determines whether one gro-
cery item is cheaper than some other one, in terms of the unit cost.

Exercise 12.1.3 Recall the exercise 4.1.2: Take a look at the data de£nition
in £gure 9. Translate it into a collection of classes. Also create instances of

+---------------------+
| ATaxiVehicle |
+---------------------+
| int idNum |
| int passangers |
| int pricePerMile |
+---------------------+

/ \

|

+----------------+--+-----------------+
| | |

+--------+ +---------------+ +----------------+
| Cab | | Limo | | Van |
+--------+ +---------------+ +----------------+
| | | int minRental | | boolean access |
+--------+ +---------------+ +----------------+

Figure 9: A class diagram for taxis

each class.

1. Develop the method fare that computes the fare in a given vehicle,
based on the number of miles travelled, and using the following for-
mulas for different vehicles.

(a) passengers in a cab just pay ¤at fee per mile

(b) passengers in a limo must pay at least the minimum rental fee,
otherwise they pay by the mile

22 Section 6

(c) passengers in a van pay $1.00 extra for each passenger

2. Develop the method lowerPrice that determines whether the fare for a
given number of miles is lower than some amount.

3. Develop the method cheaperThan that determines whether the fare in
one vehicle is lower than the fare in another vehicle for the same num-
ber of miles.

Exercise 12.1.4 Consider the following revision of the problem in exercise 2.1.2:

Problem Develop a program that assists a bookstore manager
in a discount bookstore. The program should keep a record for
each book. The record must include its title, the author’s name,
its price, and its publication year. In addition, the books There
are three kinds of books with different pricing policy. The hard-
cover books are sold at 20% off. The sale books are sold at 50%
off. The paperbacks are sold at the list price.

1. Develop the class hierarchy to represent books in the discount book-
store.

2. Develop the method salePrice that computes the sale price of each
book.

3. Develop the method cheaperThan that determines whether on book is
cheaper than another book.

4. Develop the method sameAuthor that determines whether some book
was written by the speci£ed author.

Lab Thursday am: 23

7 Lab Thursday am:

Methods for lists

(14.1.1, 14.1.2, 14.1.3), (optional 14.1.4)

Exercise 14.1.1 Develop the data de£nition for a list of grocery items se-
lected among those described in 12.1.2.

1. Develop the method total that computes the total price of the pur-
chase.

2. Develop the method brandlist that produces a list of all items with the
speci£ed brand name.

3. Develop the method highestPrice that determines the highest unit price
among all items in the shopping list.

Exercise 14.1.2 Develop the data de£nition for a shopping list of grocery
items selected among those described in 12.1.2. This time, the list also
records how many of each item do we need.

1. Develop the data de£nition for this class hierarchy.

2. Develop the method total that computes the total price of the pur-
chase.

3. Develop the method saletotal that computes the total price of the pur-
chase when all items with the speci£ed brand name are on sale at 20%
off.

Exercise 14.1.3 Develop a program that assists a bookstore manager in a
discount bookstore (see exercise 12.1.4.

1. Develop the class hierarchy to represent a list of books in the discount
bookstore.

2. Describe in English examples of three book lists and represent them
as objects in this class hierarchy.

3. develop the method price that computes the total for the sale, based
on the sale price of each book.

24 Section 7

4. Develop the method thisAuthor that produces a list of all books by
this author in the bookstore list.

Exercise 14.1.4 Develop the following additional methods for the river sys-
tem.

1. Develop the method maxlength that computes the length of the longest
river segment.

2. Develop the method con¤uences that counts the number of con¤u-
ences in the river system.

3. Develop the method locations that produces a list of all locations on
this river - the sources, the mouths, and the con¤uences.

Methods for trees and similar structures

• Refer to the problem 5.3.1: develop methods to count the number of
ancestors, to determine whether there is a person with some name in
the tree, etc.

• Refer to the problem 5.3.2: Develop methods to £nd whether a given
player is in the list, count the players, etc.

Lab Thursday pm: 25

8 Lab Thursday pm:

Methods for cyclic class hierarchies

Problem Develop a program that assists a bookstore manager.
The manager’s program should keep a record for each book.
The record must include information about the author, the book’s
title, its price, and its publication year. The information about
the author includes author’s name, year of birth, and a list of
books written by this author.

Write programs that help the bookstore manager solve the following prob-
lems:

• Find out how many books did some writer publish.

• Produce a list of all books in his store written by modern authors -
those born after 1940.

• Find out which one of the two authors wrote more books.

• Produce a list of all books some author published during the past
three years.

• Produce a list of all authors who published a book this year, if you
have a list of all authors.

• Produce a list of all authors who published books in the bookstore
manager’s list.

26 Section 9

9 Lab Friday am:

Implementing interfaces - Lists of Objects

Exercise
Return to the exercises 14.1.1, 14.1.2, and 14.1.3.

• Follow the design recipe for abstractions: highlight the differences in
the class de£nitions, and observe the similarities.

• Design the interface IPriced that contains the method price(). Assume
the price is given in cents as a whole number.

• Rewrite the classes in exercises 14.1.1, 14.1.2, and 14.1.3, so that they
now implement the IPriced interface.

• Develop the class hierarchy to represent a list of objects from classes
that implement the IPriced interface.

• Develop the method totalPrice that computes the total price of all
items in this list.

• Rewrite the examples from exercises 14.1.1, refex:methods-shoppinglist,
and 14.1.3, using the list of Objects.

• Design the methods lowerPrice and cheaperThan in the classes that rep-
resent the list of IPriced objects.

• Design the necessary abstractions to implement the sort method in the
classes that represent a list of Objects. You can use the price method,
or design and implement an additional interface.

Lab Friday pm: 27

10 Lab Friday pm:

Inner classes; Free time

Note: This is a preliminary version of this exercise.

Problem University keeps records for all students and instruc-
tors at the university. For each person it records the name and
id number. Each instructor also has a title, and is a member of
some department (for now, we just know the name of the de-
partment). Each student has a major and grade point average
(GPA).

De£ne the class hierarchy to represent students and instructors at the uni-
versity, as well as a list of all people, all students, and all instructors.

De£ne the following methods for these classes:

• sortStName that sorts the students in a list of Students by their name.

• sortStGPA that sorts the students in a list of Students by their GPA.

• sortInsName that sorts the instructors in a list of Instructors by their
name.

• sortInsDept that sorts the instructors in a list of Instructors by their
department.

Work on refactoring this code as follows:

• Study the Java Comparator interface.

• In the class Person de£ne a Comparator object that compares the per-
sons by their name.

• In the class Student de£ne a Comparator object that compares the stu-
dents by their GPA.

• In the class Instructor de£ne a Comparator object that compares the
persons by their department.

• Refactor your code to use a list of Objects and rewrite the sort method
so that it receives as a parameter an object in the class that implements
Comparator interface.

• Add method to £nd whether an object is in the list.

