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6 Abstracting with Function Objects

Goals

In this lab you will learn how to abstract over the functional behavior.

6.1 Abstracting with Function Objects

Download the files in Lab6.zip. The folder contains the files ImageFile.java,
ISelectImageFile.java, SmallImageFile.java, IListImageFile.java, MTListImageFile.java,
ConsListImageFile.java, and ExamplesImageFile.java.

Starting with partially defined classes and examples will give you the
opportunity to focus on the new material and eliminate typing in what
you already know. However, make sure you understand how the class is
defined, what does the data represent, and how the examples were con-
structed.

Create a new Project Lab6-sp10 and import into it all of the given files.
Also import tester.jar from the previous lab.

We will now practice the use of function objects. The only purpose for
defining the class SmallImageFile is to implement one method that de-
termines whether the given ImageFile object has the desired property (a
predicate method). An instance of this class can then be used as an argu-
ment to a method that deals with ImageFiles.

1. Start with defining in the ExamplesImageFile class the missing
tests for the class SmallImageFile.

2. Design the method allSmallerThan40000 that determines whether
all items in a list are smaller that 40000 pixels. The method should
take an instance of the class SmallImageFile as an argument.

3. We now want to determine whether the name in the given ImageFile
object is shorter than 4. Design the class NameShorterThan4 that
implements the ISelectImageFile interface with an appropriate
predicate method.

Make sure in the class ExamplesImageFile you define an instance
of this class and test the method.

4. Design the method allNamesShorterThan4 that determines whether
all items in a list have a name that is shorter than 4 characters. The
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method should take an instance of the class NameShorterThan4 as
an argument.

5. Design the method allSuchImageFile that that determines whether
all items in a list satisfy the predicate defined by the select method
of a given instance of the type ISelectImageFile. In the
ExamplesImageFile class test this method by abstracting over the
method allSmallerThan40000 and the method
allNamesShorterThan4.

6. Design the class GivenKind that implements the
ISelectImageFile interface with a method that produces true
for all ImageFiles that are of the given kind. The desired kind is
given as a parameter to the constructor, and so is specified when a
new instance of the class GivenKind is created.

Hint: Add a field to represent the desired kind to the class
GivenKind.

7. In the ExamplesImageFile class use the method allSuch and the
class GivenKind to determine whether all files in a list are jpg files.
This should be written as a test case for the method
allSuchImageFile.

Do it again, but now ask about the giff files.

8. If you have some time left, design the method filterImageFile
that produces a list of all ImageFiles that satisfy the
ISelectImageFile predicate. Test it with as many of your pred-
icates as you can.

9. Follow the same steps as above to design the method
anySuchImageFile that that determines whether there is an item
a list that satisfies the predicate defined by the select method of a
given instance of the type ISelectImageFile.

10. Finish the work at home and save it in your portfolio.

Food for thought: Think how this program would be different if we
have instead worked with lists of Books, or lists of Shapes.
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