
Lab 10 c©2010 Felleisen, Proulx, et. al.

10 Generating Javadocs; HashMap: Overriding ’equals’

Goals

The first part of the lab you will learn how to generate Javadoc documenta-
tion, and practice reading Javadoc style documentation for programs.

In the second part we will both learn how to define the equalsmethod,
as well as how to use the HashMap data structure defined in the Java Col-
lections Frameworks.

10.1 Documentation

For this lab download the following files:

• The file Balloon.java — our sample data class

• The file TopThree.java will be used to practice working with
ArrayList in imperative style (using mutation).

• The Examples.java file that defines examples of all data and defines all
tests.

Create a new Project Lab10 and import into it all files from the zip file.
Import the tester.jar and colors.jar.

Generating Documentation

• Once Eclipse shows you that there are no errors in your files select
Generate Javadoc... from the Project pull-down menu. Select to gen-
erate docs for all files in your project with the destination Lab9/doc
directory. Make sure you select all files for which you wish to gener-
ate the documentation.

You should be able to open the index.html file in the Lab10/doc direc-
tory and see the documentation for this project. Compare the docu-
mentation for the class Balloon with the web pages. You see that
all comments from the source file have been converted to the web
document.

Observe the format of the comments, especially the /** at the begin-
ning of the comment. If you do not understand the rules, ask the TA
or one of the tutors, or experiment with new comments. From now on
all of your work should have a proper Javadoc style documentation.

1

c©2010 Felleisen, Proulx, et. al. Lab 10

• Now use the documentation to see what are the fields in various
classes and what methods have been defined already.

• Define a method isHit in the class Balloon that determines whether
a shot aimed at the given x and y coordinate hits this Balloon. Add
documentation in the Javadoc style. Of course, add tests in the
Examples class. Run the tests, then rebuild the Javadocs and make
sure your documentation shows up correctly.

10.2 HashMap and JUnit

Ultimately, the goal of this part of the lab is to learn to use the professional
test harness JUnit. It is completely separated from the application code. It is
designed to report not only the cases when the result of the test differs from
the expected value, but also to report any exceptions the program would
throw. The slight disadvantage is that it uses the Java equals method that
by default only checks for the instance identity. To use the JUnit for the
method tests similar to those we have done before we need to override the
equals any time we wish to compare two instances of a class in a manner
different from the strict instance identity.

However, each time we override the equals method we should make
sure that the hashCode method is changed in a compatible way. That
means that if two instances are equal under our definition of equals then
the hashCode method for both instances must produce the same value.

We start with learning to use HashMap class. We then see how we
can override the needed hashCode method. Finally, we also override the
equals method to implement the equality comparison that best suits our
problem.

Part 1: Using the HashMap

Our goal is to design a program that would show us on a map the locations
of the capitals of all 48 contiguous US states and show us how we can travel
from any capital to another.

This problem can be abstracted to finding a path in a network of nodes
connected with links — known in the combinatorial mathematics as a graph
traversal problem. You have already seen this problem in your assignments
at least once.

2

Lab 10 c©2010 Felleisen, Proulx, et. al.

The Data

To provide real examples of data the provided code includes the (incom-
plete) definitions of the class City and the class State.

1. Download the code for Lab 10 and build the project USmap.

2. Download the file of state capitals caps.txt.

3. The project contains an implementations of the Traversal interface
by the class InFileCityTraversal that allows you to read a file
of City data. The code in the Examples class saves the city data
generated by the InFileCityTraversal into an ArrayList.

Run the code with some of the city data files.

4. The Examples class contains examples of the data for three New
England states (ME, VT, MA) and their capitals. Add the data for
the remaining three states: CT, NH, RI. Initialize the lists of neigh-
boring states for each of these states. Do not include the neighbors
outside of the New England region.

5. Finally, look at the definition of the method toString both in the
City class and in the State class. The class Object defines such
method for all classes, but it is of little use. Comment out the toString
method in the class City and see what happens when you run the
code.

From now on, you should define a toString method for every class
you define, making sure the resulting String is readable and the
fields are clearly identifiable.

We now have all the data we need to proceed with learning about hash
codes, equals, and JUnit.

Using HashMap

The class USmap contains only one field and a constructor. The field is
defined as:

HashMap<City, State> states = new HashMap<City, State>();

The HashMap is designed to store the values of the type State, each
corresponding to a unique key, an instance of a City — its capital.

Note: In reality this would not be a good choice to the keys for a HashMap —
we do it to illustrate the problems that may come up.

3

c©2010 Felleisen, Proulx, et. al. Lab 10

1. Go to Java documentation and read what is says about HashMap. The
two methods you will use the most are put and get.

2. Define the method initMap in the class Examples that will add to
the given HashMap the six New England states.

3. Test the effects by verifying the size of the HashMap and by checking
that it contains at least three of the items you have added. Consult
Javadocs to find the methods that allow you to inspect the contents
and the size of the HashMap.

Understanding HashMap

We will now experiment with HashMap to understand how changes in the
equals method and the hashCode method affect its behavior.

1. Define a new City instance boston2 initialized with the same val-
ues as the original boston. Now put the state MA again into the table,
using boston2 as the key. The size of the HashMap should now be 7.

2. Now define the equals method in the class City that makes sure
the two cities have the same name, state, zip code, and the same lat-
itude and longitude. Use the given helper method sameDouble to
compare the last two fields. Start the method with:

public boolean equals(Object obj){
City temp = (City)obj; ...

If the given object is of the type that cannot be cast to City the method
will fail at runtime with the ClassCastException.

Now run the same experiment as above. The resulting HashMap still
has size seven. Even though we think the two cities are equal, they
produce a different hash code.

3. Now hide the equals method (comment it out) and define a new
hashCode method by producing an integer that is the sum of the
hash codes of all the fields in the City class.

Now run the same experiment as above. The resulting HashMap still
has size seven. Even though the two cities produce the same hash
code, the HashMap sees that they are not equal and does not confuse
the two values.

4

Lab 10 c©2010 Felleisen, Proulx, et. al.

4. Now un-hide the equals method so that two City objects that we
consider to be the same produce the same hash code.

When you run the experiment again you will see that the size of the
HashMap remains the same after we inserted Massachusetts with the
boston2 key.

Note: Read in ”Effective Java” a detailed tutorial on overriding equals and
hashCode.

Part 2: Introducing JUnit

You will now rewrite all your tests using the JUnit4. In the File menu
select New then JUnitTestCase. The tests for each of the methods will then
become one test case similar to this one:

/**
* Testing the method toString

*/
public void testToString(){

assertEquals("Hello: 1\n", this.hello1.toString());
assertEquals("Hello: 3\n", this.hello3.toString());

}

We see that assertEquals calls are basically the same as the test meth-
ods for our test harnesses, they just don’t include the names of the tests. Try
to see what happens when some of the tests fail, when a test throws an ex-
ception, and finally, make sure that at the end all tests succeed.

• Add a method that determines whether the city is South of the given
latitude. Run the tests using the JUnit.

• Add a method that determines whether this city is in the same state
as the given city. Run the tests using the JUnit.

Ask for help, try things — make sure you can use JUnit, so you will not run
into problems when working on the assignment and the final project.

Warning

Try to get as much as possible during the lab. Ask questions when you do
not understand something. The first part of the next assignment asks you to
hand in a complete solution to this lab.

5

c©2010 Felleisen, Proulx, et. al. Lab 10

Stack, Queue, Priority Queue, LinkedList; Vector

Look up the documentation for the following Java classes and interfaces:
Stack, Queue, PriorityQueue, List, LinkedList and Vector.
Identify which of them represent interfaces, which represent abstract classes,
and which provide a complete implementation that you can use in your
program. Draw a class diagram that shows the relationship between these
classes and interfaces.

6

