Exercise Set 8 (©2010 Felleisen, Proulx, et. al.

8 Abstracting Over the Data Type

Portfolio Problems

1. Finish Lab 8 and include all the work in your portfolio.

Pair Programming Assignment

8.1 Problem

Binary Search
Start with a new project and create two files: Algorithms.java and
ExamplesAlgorithms.java.

A. Inthe Exanpl esAl gori t hnms make examples of sorted Ar r ayLi st s|
of Stringsand | nt egers.

Of course, there is no constructor that creates an ArrayLi st filled
with values. You need to define a method i ni t Dat a that adds the
values to the initially empty Ar r ayLi st s one at a time.

B. Next, design two classes that implement the Conpar at or interface
in Java Collections — one that compares St r i ngs by lexicographical
ordering, one that compares | nt eger s by their magnitude.

C. Now, design the method bi nar ySear ch in the class Al gori t his
that consumes the lower index (inclusive), the upper index (exclu-
sive), an Ar r ayLi st of data of the type T, a Conpar at or of the type
T, and an object of the type T and produces the index for this object in
the given ArrayLi st or throws a Runt i neExcept i on if the object
is not found.

8.2 Problem

Abstracting Over the Data Type

Download the file Expressions.java. It includes the implementation and
some sample tests of the classes that represent an arithmetic expression
where the values can only be integers, and the only operation allowed is
addition.

A. Study the class diagram for this class hierarchy. Extend the example
so that the expressions can also include multiplication.

1

(©2010 Felleisen, Proulx, et. al. Exercise Set8

Hint: Add the class Ti nes.

B. Design the method t oSt ri ng that produces a St ri ng representa-
tion of this expression with parentheses surrounding every binary
expression. Define examples that represent the following expressions
and include tests that verify that they have been correctly rendered
as Strings”

(2 + (3 + 4))
((3 +5) » ((2*3) +5))

C. We now want to represent relational expressions (that compare two
integer values and produce a boolean value). We limit our choices to
the greater than and equal to comparisons. We also want to represent
boolean expressions, and as well as or.

Change the definitions so that they are parametrized over the type of
data you will use.

The | Exp interface is parametrized only over the type of value it rep-
resents when evaluated.

The Bi nQp class needs to be parametrized over the type of operands
it receives, as well as the type of value it produces.

D. Add the necessary class definitions so you can represent relational and
arithmetic expressions.

Make sure you have examples for each of them, as well as tests for
the eval method.

E. Now design two new classes | nt Var and Bool Var that will repre-
sent a variable of the appropriate type in the expression and i npl enent s|
| Exp. It needs to keep track of its name, e.g. X, or Wi dt h, etc.

It should include a method subst I nt for the class | nt Var and the
method subst Bool for the class Bool Var that consumes a Stri ng
and an argument of the appropriate type and produces an instance of
a Val ue that represents the given value, provided the given St ri ng
matches the variable name. In all other cases it just returns t hi s.

Of course, it has to include the method eval . However, this method
should t hr owan exception, indicating that an expression with a vari-
able in it cannot be evaluated.

Exercise Set 8 (©2010 Felleisen, Proulx, et. al.

F. Design the method noVar s, a predicate that verifies that the expres-

G.

8.3

sion does not contain any variables.

Design the methods subst | nt and subst Bool for the entire | Exp
class hierarchy, that produces a new | Exp in which every occurrence
of Var that matches the given name is replaced with an instance of
the class Val ue with the given value. Throw an exception if there
is an attempt to substitute a bool ean value for the identifier that
represents an i nt value as well as if there is an attempt to substitute
a i nt value for the identifier that represents an bool ean value.

Problem

Abstract Data Type
During the lectures we have defined the interface DataSet.java as fol-

lows:

/!l to represent a collection of data of the type T
i nterface DataSet <T>{

/! add the given itemto this data set
void add(T t);

/! EFFECT: renove an itemfromthis data set

/1l return the itemthat has been renoved

/1 throw a RuntineException if this data set is enpty
T renove();

/1 return the the nunber of itens in this data set
int size();

A.

Make examples of ArrayLi sts of St rings that represent playing
cards. If you do not wish to use playing cards as examples, you can
use any other collection of St ri ngs. In our choice of a simple repre-
sentation we have:

"h" - for queen of hearts
"10s" - for 10 of spades
"3d" - for 3 of dianopnds
"Jc" - for jack of clubs
etc.

Again, you will need an i ni t Dat a method to fill the sample lists
with values.

Use these examples to design tests for the next two classes:

3

(©2010 Felleisen, Proulx, et. al. Exercise Set8

B. Design the class St ack that implements the Dat aSet interface us-
ing an ArrayLi st to hold the data items and adds and removes the
items at the same end.

This is also known as LIFO — last in, first out organization.
C. Design the class Queue that implements the Dat aSet interface using

an ArrayLi st to hold the data items and adds the data items at one
end and removes the items from the other end.

This is also known as FIFO — first in, first out organization.

