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Abstract Most optimization methods for logistic regression or maximum entropy solve
the primal problem. They range from iterative scaling, coordinate descent, quasi-Newton,
and truncated Newton. Less efforts have been made to solve the dual problem. In contrast,
for linear support vector machines (SVM), methods have been shown to be very effective
for solving the dual problem. In this paper, we apply coordinate descent methods to solve
the dual form of logistic regression and maximum entropy. Interestingly, many details are
different from the situation in linear SVM. We carefully study the theoretical convergence as
well as numerical issues. The proposed method is shown to be faster than most state of the
art methods for training logistic regression and maximum entropy.

Keywords Logistic regression · Maximum entropy · Coordinate descent optimization ·
Linear classification

1 Introduction

Logistic regression (LR) is useful in many areas such as document classification and natural
language processing (NLP). It models the conditional probability as:

Pw(y = ±1|x) ≡ 1

1 + e−ywT x
,

where x is the data, y is the class label, and w ∈ Rn is the weight vector. Given two-class
training data {xi , yi}l

i=1,xi ∈ Rn,yi ∈ {1,−1}, logistic regression minimizes the following
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regularized negative log-likelihood:

P LR(w) = C

l∑

i=1

log(1 + e−yiw
T xi ) + 1

2
wT w, (1)

where C > 0 is a penalty parameter. Problem (1) is referred to as the primal form of logistic
regression, as one may instead solve the following dual problem.

min
α

DLR(α) = 1
2
αT Qα +

∑

i:αi>0

αi logαi +
∑

i:αi<C

(C − αi ) log(C − αi )

subject to 0 ≤ αi ≤ C, i = 1, . . . , l,

(2)

where Qij = yiyjx
T
i xj ∀i, j .1 By defining 0 log 0 = 0, (2) becomes

min
α

DLR(α) = 1
2
αT Qα +

l∑

i=1

αi logαi + (C − αi ) log(C − αi )

subject to 0 ≤ αi ≤ C, i = 1, . . . , l.

(3)

We omit the derivation of the dual problem as later we show details for the more general
maximum entropy model.

Numerous optimization methods have been applied to train logistic regression, as sur-
veyed in, for example, Minka (2003). Most of them solve the primal problem. Darroch and
Ratcliff (1972), Della Pietra et al. (1997), Goodman (2002), Jin et al. (2003) and many others
have proposed iterative scaling methods. Huang et al. (2010) apply a coordinate descent ap-
proach. A quasi-Newton method is included in the comparison by Minka (2003). Komarek
and Moore (2005) and Lin et al. (2008) propose truncated Newton techniques. Less efforts
have been made to solve the dual problem. A few existing studies include Jaakkola and
Haussler (1999) and Keerthi et al. (2005). These works, interested in kernel LR, consider the
dual because of the easy embedding of kernels. In contrast to LR, for linear support vector
machines (SVM),2 optimization methods have been shown to be very effective for solving
the dual problem (e.g., Hsieh et al. 2008). Note that LR is very related to linear SVM, which
takes the following primal and dual forms:

min
w

P SVM(w) = C

l∑

i=1

max(1 − yiw
T xi ,0) + 1

2
wT w, (4)

and

min
α

DSVM(α) = 1
2
αT Qα −

l∑

i=1

αi

subject to 0 ≤ αi ≤ C, ∀i,

1In this work we do not consider kernel LR.
2By linear SVM we mean that kernel tricks are not employed.
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where Qij = yiyjx
T
i xj . An overview of dual forms of various regularized classifiers in-

cluding LR and SVM can be found in Zhang (2002) though it does not explore detailed
optimization algorithms for each classifier.

Coordinate descent methods, a classic optimization approach, have been very success-
fully applied to solve the dual form of large linear SVM (Hsieh et al. 2008). Motivated by
their work, in this paper we study if coordinate descent methods are useful for solving the
dual problem of LR. Interestingly, we find that many details are different from the situation
in support vector machines. In particular, numerical issues due to logarithmic evaluations
must be properly handled. We carefully design a coordinate descent algorithm to avoid nu-
merical difficulties and prove the convergence. The proposed method is shown to be faster
than most state of the art methods for training logistic regression.

Maximum Entropy (ME) is a generalization of logistic regression for multi-class scenar-
ios.3 Thus we also study a coordinate descent method for the dual form of ME. ME models
the conditional probability as:

Pw(y|x) ≡ exp(wT f (x, y))∑
y′ exp(wT f (x, y ′))

,

where x denotes a context, y is the label of the context, and w ∈ Rn is the weight vector.
A function vector f (x, y) ∈ Rn indicates features extracted from the context x and the la-
bel y. Assume N training samples {(x, y)} are given, and we have grouped x’s to l unique
contexts {xi} and calculate the empirical probability distribution P̃(xi, y) = Nxi,y/N , where
Nxi,y is the number of times that (xi, y) occurs in the training data. ME minimizes the fol-
lowing regularized negative log-likelihood:

min
w

P ME(w) = −
l∑

i=1

∑

y

P̃(xi, y) log Pw(y|xi) + 1
2σ 2

wT w

=
l∑

i=1

P̃(xi) log

(
∑

y

exp(wT f (xi, y))

)

− wT f̃ + 1
2σ 2

wT w, (5)

where σ is the penalty parameter similar to C in (1), P̃(xi)=
∑

y P̃(xi, y) is the marginal
probability of xi , and

f̃ =
l∑

i=1

∑

y

P̃(xi, y)f (xi, y) (6)

is the expected vector of f (xi, y). For convenience, we assume that

yi ∈ Y ≡ {1,2, . . . , |Y |}.

Many optimization methods have been applied to train ME, as discussed in Malouf (2002),
Gao et al. (2007), Huang et al. (2010) and references therein. Most existing methods solve
the primal problem, though there are a few exceptions: Memisevic (2006) applies a two-level
coordinate descent method. Collins et al. (2008) propose an exponentiated gradient (EG)

3See the derivation in Sect. 6.1 of Huang et al. (2010). If xi ∈ Rn,∀i, are training instances, then in ME,
w ∈ Rn|Y |. LR formulation in (1) is a simplified form because its w has n instead of 2n elements.
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algorithm for conditional random fields (CRF) and their methods can be modified for dual
ME. In this paper, we extend the two-level coordinate descent method (Memisevic 2006) to
a numerically robust algorithm. Moreover, we carefully study the theoretical convergence.

This paper is organized as follows. In Sect. 2, we discuss basic concepts of coordinate
descent methods and show some existing examples for SVM and primal LR. In Sects. 3 and 4,
we describe our proposed algorithms for LR and ME, respectively. A related optimization
method for LR /ME duals is discussed in Sect. 5. In Sect. 6, we compare our method with
state of the art implementations. Results show that the new methods are more efficient. We
conclude our work in Sect. 7.

2 Coordinate descent methods

This section gives an overview of coordinate descent methods by considering the following
optimization problem with linear constraints:

min
α∈Rl

F (α)

subject to Aα = b, and 0 ≤ α ≤ Ce,
(7)

where A ∈ Rm×l , b ∈ Rm, 0 < C ≤ ∞ and e ∈ Rl is the vector of all ones. Coordinate
descent methods iteratively update a block of variables because optimizing all variables
together is more difficult. At each iteration, a nonempty subset B ⊂ {1, . . . , l} is chosen to
construct the following sub-problem.

min
z

F(α + z)

subject to zi = 0, ∀i /∈ B,

Az = 0, and 0 ≤ αi + zi ≤ C, ∀i ∈ B.

(8)

That is, we consider changing αB using the solution of (8), while fixing all other elements.
The two design considerations for coordinate descent methods are how to select a block B

and how to solve the sub-problem (8). We take SVM and primal LR as examples and discuss
different situations.

2.1 Exactly solving one-variable sub-problem

If the sub-problem has a closed-form solution, we can exactly solve it without using opti-
mization software. We discuss Hsieh et al. (2008) for dual SVM as an example. They restrict
B to contain only one element and sequentially select an element from {1, . . . , l}. If αi is
being updated, the one-variable sub-problem is

min
z

DSVM(α1, . . . ,αi + z, . . . ,αl )

= 1
2
Qiiz

2 + ∇iD
SVM(α)z + constant,

subject to 0 ≤ αi + z ≤ C,

(9)
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where ∇iD
SVM(α) is the ith component of the gradient. As (9) is a quadratic function of z,

if Qii > 0, easily the solution is:

z = min
(

max
(

αi − ∇iD
SVM(α)

Qii

,0
)

,C

)
− αi . (10)

We need to calculate:

∇iD
SVM(α) = (Qα)i − 1 =

l∑

j=1

Qijαj − 1, (11)

which costs O(ln) for calculating the ith row of the matrix Qα. Such operations are expen-
sive. Hsieh et al. (2008) propose an efficient way of O(n) to calculate (11). This technique is
applied to our method for logistic regression. We will have a detailed discussion in Sect. 3.
Algorithm 1 summarizes Hsieh et al. (2008)’s procedure.

In practice, for every round of going through l variables, Hsieh et al. (2008) randomly
permute l indices to decide the order for update. They report this setting yields better con-
vergence than sequential updates. In all coordinate descent methods we will discuss, this
technique can be applied.

2.2 Approximately solving one-variable sub-problem

If the sub-problem does not have a closed-form solution, optimization methods must be used
to solve the sub-problem. We show the work by Huang et al. (2010) as an example. They
apply a one-variable coordinate descent method to solve the primal form of LR. If wj is
being updated, the sub-problem minimizes

g(z) = P LR(w + zej )

= z2

2
+ zwj + C

(
l∑

i=1

log
(

1 + ezxij − 1

1 + e−wT xi

)
− z

l∑

i=1,yi=1

xij

)

+ P LR(w), (12)

where ej is the indicator vector for the j th element. This sub-problem does not have a
closed-form solution, so Huang et al. (2010) consider the Newton method with the following
update rule:

z ← z − g′(z)/g′′(z).

The first and second derivatives of g(z) are respectively:

g′(z) = wj + z + C

(
l∑

i=1

xij e
zxij

ezxij + e−wT xi
−

l∑

i=1,yi=1

xij

)

, (13)

and

g′′(z) = 1 + C

(
l∑

i=1

x2
ij e

−wT xi ezxij

(ezxij + e−wT xi )2

)

. (14)

If wT xi is available, (13) and (14) cost O(l). In particular, there are l exponential operations,
each of which is much more expensive than a multiplication or a division on most computers.
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As each Newton update is not cheap, Huang et al. (2010) apply only one update and obtain
an approximate solution of the sub-problem (12). They also need a line search procedure to
guarantee the convergence.

Compared to Sect. 2.1, clearly the situation is more complicated if the sub-problem does
not have a closed-form solution.

2.3 Constrained problems and using more than one variable

Examples in Sects. 2.1 and 2.2 choose one variable at a time, so the sub-problem is simple.
Instead, we can choose more than one variable. This is particularly needed for constrained
problems as a one-variable update may fail to change the solution (i.e., z = 0 is optimal for
the sub-problem). We show several examples in this section.

For most classical SVM software, they solve SVM with a bias term b. That is, wT xi in (4)
is replaced by wT xi + b. The dual problem then contains an equality constraint:

min
α

1
2
αT Qα −

l∑

i=1

αi

subject to
l∑

i=1

yiαi = 0, and 0 ≤ αi ≤ C, ∀i.

(15)

Due to the equality constraint, the sub-problem must contain at least two variables.
Another example needing more than one variable per sub-problem is multi-lass SVM.

Assume there are |Y | classes. Then yi ∈ {1, . . . , |Y |} instead of {1,−1}. We discuss the
multi-class SVM approach by Crammer and Singer (2000) because its formulation is related
to maximum entropy discussed later. The dual problem is

min
α

DCS(α) = 1
2

|Y |∑

y=1

l∑

i=1

l∑

j=1

αiyαjyx
T
i xj +

l∑

i=1

|Y |∑

y=1,y≠yi

αiy

subject to
|Y |∑

y=1

αiy = 0, ∀i = 1, . . . , l, and

αiy ≤ Cy
yi
, ∀i = 1, . . . , l, y = 1, . . . , |Y |,

(16)

where

α = [α11, . . . ,α1|Y |, . . . ,αl1, . . . ,αl|Y |]T and Cy
yi

=
{

0 if yi ≠ y,

C if yi = y.

The optimization problem (16) has |Y |l variables. The l equalities imply that several
variables must be chosen for a sub-problem. As each equality involves variables associ-
ated with an instance, Crammer and Singer (2000) decompose α to l blocks with ᾱi =
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Algorithm 1 Dual coordinate descent method for linear SVM

1. Given initial α ∈ [0,C]l .
2. While α is not optimal

– Choose an index i from {1, . . . , l}.
– Solve the sub-problem (9) exactly by the analytic form (10).
– Update αi .

Algorithm 2 Dual coordinate descent method for logistic regression

1. Given initial α ∈ (0,C)l .
2. While α is not optimal

– Choose an index i from {1, . . . , l}.
– Solve the sub-problem (18) exactly or approximately.
– Update αi .

[αi1, . . . ,αi|Y |]T , i = 1, . . . , l, and update one block at a time. The sub-problem is

min
z

DCS(ᾱ1, . . . , ᾱi + z, . . . , ᾱl )

= 1
2

|Y |∑

y=1

xT
i xiz

2
y +

|Y |∑

y=1

∇iyD
CS(α)zy + constant,

subject to
∑

y

zy = 0 and 0 ≤ αiy + zy ≤ Cy
yi
, ∀y = 1, . . . , |Y |,

(17)

where ∇iyD
CS(α) is the partial derivative with respect to αiy . Crammer and Singer

(2000, Sect. 6) show that a closed-form solution of this sub-problem can be obtained in
O(|Y | log |Y |) time. Alternatively, we can apply general optimization methods.

3 A dual coordinate descent method for logistic regression

We begin with discussing difficulties for applying coordinate descent methods for LR. Next
we devise an effective method to solve the sub-problem and present our overall procedure.
Earlier studies employing coordinate descent methods for dual LR include Minka (2003,
Sect. 9) and Keerthi et al. (2005). We also discuss the differences between ours and their
works.

3.1 Issues in applying coordinate descent methods for logistic regression

Since the dual form for LR is very close to SVM dual, naturally we try to extend existing
methods for SVM (e.g., Algorithm 1). In the following we check if each step of Algorithm 1
is applicable to LR.

To give an initial α, Algorithm 1 allows any point in a closed interval [0,C]l and one
often uses α = 0 due to the sparsity at the SVM dual optimal solution. However, for dual
LR the objective function is not well defined at αi = 0 or αi = C. Therefore, an initial α
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must be in an open interval (0,C)l . Further, as limαi→0+ αi logαi = 0, it is unclear if an
optimal solution occurs at αi = 0 or C. The following theorem shows that (3) attains a
unique minimum in (0,C)l :

Theorem 1 The LR dual problem (3) attains a unique optimal solution α∗ and α∗ ∈ (0,C)l .

The proof is in Appendix A.2. In Sect. 3.4, we discuss how to choose an appropriate
initial point in (0,C)l .

Another important difference from SVM is that the sub-problem no longer has a closed-
form solution. If the ith variable is selected, the sub-problem is

min
z

g(z) ≡ (c1 + z) log(c1 + z) + (c2 − z) log(c2 − z) + a

2
z2 + bz

subject to −c1 ≤ z ≤ c2,

(18)

where

c1 = αi , c2 = C − αi , a = Qii, and b = (Qα)i .

This sub-problem has been studied in, for example, Keerthi et al. (2005) and Memisevic
(2006).4 We will discuss the difference between our approach and theirs.

If using Newton methods to solve (18), the update rule without considering the constraint
−c1 ≤ z ≤ c2 is

zk+1 = zk + d, d = − g′(zk)

g′′(zk)
, (19)

where k is the index of iterations and ∀z ∈ (−c1, c2)

g′(z) = az + b + log
c1 + z

c2 − z
and g′′(z) = a + c1 + c2

(c1 + z)(c2 − z)
. (20)

To ensure the convergence of Newton methods, we often need a line search procedure to
check the sufficient decrease of function values. For example, we may search for the first
λ = 1,β,β2, . . . , such that

g(zk + λd) − g(zk) ≤ γ λg′(zk)d, (21)

where γ ,β ∈ (0,1). In Keerthi et al. (2005), they suggest a combination of Newton and
bisection methods to ensure the convergence, but details are not given. We give an imple-
mentation in Sect. 6.3 and compare it with our proposed method.

We can apply many or few Newton iterations to accurately or loosely solve the sub-
problem, respectively. The decision relies on analyzing the cost per iteration; see Table 1. In
the beginning, we must construct the sub-problem by calculating coefficients in (18). Since
Qii can be pre-stored, the main cost is O(nl) for calculating (Qα)i . The same operation
is needed for SVM; see (11). To reduce the cost, we adopt a commonly used trick in linear
SVM (e.g., Hsieh et al. 2008) by maintaining a vector:

w(α) ≡
l∑

i=1

yiαixi . (22)

4Their sub-problem, though in the same form as (18), is from solving maximum entropy instead of logistic
regression. See more discussion in Sect. 4.
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Table 1 Cost of operations at a
Newton iteration Operation Cost

Constructing the sub-problem O(n)

Finding Newton direction d O(1)

Calculating g(zk + λd) in line search O(1)

Then the cost is reduced to O(n):

(Qα)i =
l∑

j=1

yiyjαjx
T
j xi = yi

(
l∑

j=1

yjαjx
T
j

)

xi = yiw(α)T xi . (23)

To apply (23), w(α) should be maintained throughout the procedure. By

w(α + zei ) = w(α) + zyixi , (24)

where z is the solution of the sub-problem (18) and ei is the indicator vector for the ith
component, w(α) can be maintained in O(n) time. Hence constructing the sub-problem
costs O(n). From Table 1, the complexity of solving the sub-problem is

O(n) + #Newton steps × (O(1) + O(1) × (#Line search steps)) . (25)

Because of the cheap O(1) cost for finding Newton directions and conducting line search,
we should accurately solve the sub-problem. Interestingly, the situation is very different for
solving primal LR via coordinate descent methods (Sect. 2.2). The sub-problem (12) does
not have a closed-form solution either, but Huang et al. (2010) conduct only one Newton
iteration (with line search). The reason is that both finding Newton directions and conducting
line searches are expensive.

From (20), the time for calculating d is dominated by the log operation, which is much
more expensive than addition and multiplication operations. In the line search procedure,
calculating one function value g(z + λd) involves two log operations; see (18). Hence line
search is more expensive than finding the Newton direction. In Sect. 3.2, we propose a
modified Newton method so that line search is not needed but the convergence still holds.
Moreover, our approach will take the constraint −c1 ≤ z ≤ c2 into consideration.

The discussion so far indicates that while LR dual is very close to SVM dual, many details
in applying coordinate descent methods are different.

3.2 A modified Newton method for solving the sub-problem

We propose a modified Newton method for (18) without needing line search procedures.
Besides, we properly handle the inequality constraint and establish the global convergence.
To begin, we follow Theorem 2 to show that the optimum of (18) is in the open interval
(−c1, c2):

Theorem 2 The sub-problem (18) has a unique minimum z∗. Moreover, z∗ ∈ (−c1, c2) and
g′(z∗) = 0.

The proof is in Appendix A.3. We draw Fig. 1 to analyze how Newton updates (19)
may find a root of g′(z). By considering two different situations, we can draw some crucial
observations:
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Fig. 1 Newton steps for finding a root of g′(z). zk is an initial point, zk+1 is derived from zk by the Newton
step, z∗ is the optimizer, and zm ≡ (c2 − c1)/2 is the mid-point of (−c1, c2). (a) shows that Newton step
works fine with a good starting point. (b) shows the situation that Newton step zk + d walks outside the
interior

– From Fig. 1(a), if zk is on the “correct” side of z∗, then not only subsequent points gener-
ated by (19) are in (−c1, c2), but also the Newton method converges to z∗.

– From Fig. 1(b), if zk is on the “wrong” side of z∗, then zk+1 by (19) may be outside
(−c1, c2).

We need a mechanism so that eventually all points are on the “correct” side of z∗. To do
so a good understanding of “correct” and “wrong” sides is needed. Let zm ≡ (c2 − c1)/2
be the mid-point of the interval (−c1, c2). From Fig. 1, we can see that g′(z) is concave
in (−c1, zm], and convex in [zm, c2).5 The following theorem shows that we can check the
position of z∗ and zm to see if zk is on the correct side:

Theorem 3 Let z∗ be the optimizer of (18) and zm = (c2 − c1)/2. If z∗ ≥ zm, then {zk}
generated by (19) converges to z∗ for any starting point in [z∗, c2). If z∗ ≤ zm, then {zk}
converges to z∗ for any starting point in (−c1, z

∗]. For any zk satisfying these conditions,
we say it is on the “correct” side of z∗.

This theorem can be easily obtained by the standard convergence proof of Newton meth-
ods.6

For any zk on the “wrong” side, there are two cases. The first one is zk + d ∈ (−c1, c2).
If zk + d falls on the “correct” side, Theorem 3 implies that subsequent Newton updates
converge. If zk + d is still on the “wrong” side, it at least gets closer to z∗. Thus we take
zk + d as zk+1. The second case is that zk + d /∈ (−c1, c2). Because (−c1, c2) is an open
interval, it is not possible to do a direct projection. Assume zk + d ≥ c2 as Fig. 1(b). We
propose finding a point z in [zk, c2) closer to the “correct” side by

zk+1 = ξzk + (1 − ξ)c2, (26)

5Formally, we can prove g′′′(zm) = 0, g′′′(z) > 0 if z > zm, and g′′′(z) < 0 if z < zm.
6For example, http://planetmath.org/encyclopedia/NewtonsMethodWorksForConvexRealFunctions.html.

http://planetmath.org/encyclopedia/NewtonsMethodWorksForConvexRealFunctions.html
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Algorithm 3 A modified Newton method to solve (18)
– Given coefficients: a, b, c1, and c2.
– Set initial z0 ∈ (−c1, c2).
– For k = 0,1 . . .

– If g′(zk) = 0, break.
– d ← −g′(zk)/g′′(zk).
–

zk+1 =

⎧
⎪⎨

⎪⎩

zk + d if zk + d ∈ (−c1, c2),

ξzk + (1 − ξ)(−c1) if zk + d ≤ −c1,

ξzk + (1 − ξ)c2 if zk + d ≥ c2.

(27)

where ξ ∈ (0,1). For any zk on the “wrong” side, we prove that the above setting eventually
reaches a point on the “correct” side. Then this point can be considered as a starting point in
Theorem 3 for the convergence.

Theorem 4 Assume z∗ ≥ zm. If we generate a sequence of Newton iterations by starting
from zk < z∗ (i.e., zk on the “wrong” side of z∗), and applying the update rule:

zk+1 =
{

zk + d if zk + d < c2,

ξzk + (1 − ξ)c2 if zk + d ≥ c2,

then there is k′ > k such that zk′ ≥ z∗. That is, zk′
is on the “correct” side. The situation for

z∗ ≤ zm and zk > z∗ is similar.

The proof is in Appendix A.4.
We describe the modified Newton method in Algorithm 3. The update rule is very simple

and no line search is needed. Combining Theorems 3 and 4, the global convergence of
Algorithm 3 is established.

Theorem 5 The sequence {zk} generated by Algorithm 3 converges to the optimum z∗

of (18) for any z0 ∈ (−c1, c2).

The initial z0 can be any value in (−c1, c2), but we hope it is close to z∗ for fast conver-
gence of the Newton method. In the final stage of the decomposition method, αi does not
change much and z∗ ≈ 0, so z0 = 0 is a reasonable choice. However, in the early stage of
the decomposition method, this z0 may be far away from z∗. While we cannot easily find a
z0 on the “correct” side, Theorem 3 indicates that z0 should satisfy

z0 ∈
{

(−c1, zm) if z∗ ≤ zm,

[zm, c2) if z∗ ≥ zm.
(28)

Later in Sect. 3.3 we show an easy way to check if zk ≤ zm or not; see (34). Thus we use
z0 = 0 in general, but also ensure that z0 satisfies (28). This is achieved by

z0 =

⎧
⎪⎨

⎪⎩

(1 − ξ0)(−c1) if z∗ ≤ zm ≤ 0,

(1 − ξ0)(c2) if z∗ ≥ zm ≥ 0,

0 otherwise.

(29)



52 Mach Learn (2011) 85:41–75

We explain that 0 < ξ0 ≤ 0.5 will let z0 satisfy (28). If

−c1 < z∗ ≤ zm ≤ 0 < c2, (30)

then −(1 − ξ0)c1 ∈ (−c1,0) and is closer to −c1. Since zm is the mid-point of (−c1, c2), we
have −(1 − ξ0)c1 ≤ zm. The situation for z∗ ≥ zm ≥ 0 is similar.

3.3 Numerical difficulties

Unfortunately, a direct implementation of Algorithm 3 may face numerical difficulties.
Keerthi et al. (2005) point out that when αi is close to 0 or C, it may be difficult to reach a
solution z∗ satisfying

g′(z∗) = Qiiz
∗ + (Qα)i + log(αi + z∗) − log(C − αi − z∗) ≈ 0.

They explain that if C is large (say 105), (Qα)i is large as well. Then αi + z∗ may be too
small (e.g., e−105

) to be represented as a floating-point number. They propose some ways
to handle such a situation. However, through experiments we find that even if C is as large
as 105, (Qα)i is generally much smaller (e.g., a few hundreds or thousands). The reason
seems to be that from (23), (Qα)i is the sum of positive and negative terms, so the value is
not as large as αi . Instead, we find that numerical difficulties occur because of catastrophic
cancellations (i.e., subtraction between two nearly-equal floating-point numbers) when αi +
z is close to zero. That is, if z ≈ −αi , the relative numerical error of calculating αi + z

can be large (Goldberg 1991). Then log(αi + z) is erroneous. A common solution to avoid
catastrophic cancellation is by some reformulations.

Let Z1 = c1 + z and s = c1 + c2. An equivalent form to (18) is

min
Z1

g1(Z1) = Z1 logZ1 + (s − Z1) log(s − Z1) + a

2
(Z1 − c1)

2 + b1(Z1 − c1)

subject to 0 ≤ Z1 ≤ s, b1 = b.

Clearly, when z ≈ −c1,

s − Z1 = c2 − z ≈ c2 + c1 = s (31)

is far away from zero. Thus we avoid a catastrophic cancellation. However, a new subtraction
Z1 −c1 occurs. In calculating the Newton direction, Z1 −c1 appears only in g′

1(Z1); see (32).
If Z1 − c1 ≈ 0, then a(Z1 − c1) + b1 ≈ b1 and the large relative error in calculating Z1 − c1

does not cause serious problems.
Similarly, if z ≈ c2, we let Z2 = c2 − z and adopt the following reformulation.

min
Z2

g2(Z2) = Z2 logZ2 + (s − Z2) log(s − Z2) + a

2
(Z2 − c2)

2 + b2(Z2 − c2)

subject to 0 ≤ Z2 ≤ s, b2 = −b.

Therefore, instead of minimizing on z, we now work on the distance from z to the lower (or
upper) bound. To minimize gt (Zt ), t = 1,2 by the Newton method, we need the first and
the second derivatives:

g′
t (Zt ) = log

Zt

s − Zt

+ a(Zt − ct ) + bt and g′′
t (Zt ) = a + s

Zt (s − Zt)
. (32)
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Next we check if g1(Z1) or g2(Z2) should be used. From the above discussion, g1(Z1)

aims to handle the situation of z ≈ −c1, while g2(Z2) is for z ≈ c2. As {zk} generated by
Algorithm 3 converges to z∗, most of the points in {zk} are close to z∗. Hence we can choose
g1(Z1) or g2(Z2) based on z∗’s closeness to the two bounds:

z∗ closer to

{
−c1

c2
⇒ choose

{
g1(Z1),

g2(Z2).
(33)

To use (33), as z∗ is unknown before applying the Newton method, we consider the following
property:

z∗ closer to

{
−c1

c2
⇔ z∗

{
≤ zm

≥ zm

⇔ g′(zm)

{
≥ 0
≤ 0

⇔ zm

{
≥ −b/a,

≤ −b/a.
(34)

The proof is in Appendix A.5. Thus the decision is by easily comparing zm and −b/a.
Using Z1 = c1 + z, Z2 = c2 − z, and (34), a direct calculation shows that the initial z0

considered in (29) becomes

Z0
1 =

{
ξ0c1 if c1 ≥ s/2,

c1 otherwise,
and Z0

2 =
{

ξ0c2 if c2 ≥ s/2,

c2 otherwise.
(35)

We also need to adjust (26), which handles the situation if zk + d > c2. Assume g2(Z2)

is used. Equation (26) becomes

c2 − Zk+1
2 = ξ(c2 − Zk

2) + (1 − ξ)c2

and can be simplified to

Zk+1
2 = ξZk

2 .

The situation for g1(Z1) is similar. By minimizing g1(Z1) or g2(Z2), Algorithm 3 becomes
Algorithm 4. The returned values can be either (t,Zk

t ) or (Zk
1,Z

k
2). We adopt the latter to

avoid possible catastrophic cancellations in calculating c1 and c2 for the next sub-problem.
See details in Sect. 3.4.

3.4 The overall procedure

Different from the situation in SVM, now α = 0 is not a valid starting point. A naive choice
is to set αi = C/2 ∈ (0,C), ∀i. However, experiments show that this initialization is far
away from the optimal solution. Note that for SVM, α = 0 is a reasonable choice because at
the final solution many elements remain at zero (i.e., the solution is sparse). Though LR does
not produce a sparse solution, we explain that many αi values are small. From the optimality
condition,7 the optimal (w,α) satisfies

αi = C exp(−yiw
T xi )

1 + exp(−yiwT xi )
, ∀i.

7We do not show the optimality condition for LR, but a similar form can be found in (A.18) for ME.
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Algorithm 4 A new modified Newton method for (18)
– Given coefficients: a, b, c1, and c2. Let s = c1 + c2

– t ←
{

1 if zm ≥ −b
a

,

2 if zm < −b
a

.

– Z0
t ∈ (0, s).

– For k = 0,1, . . .

– If g′
t (Z

k
t ) = 0, break.

– d ← −g′
t (Z

k
t )/g

′′
t (Z

k
t ).

– Zk+1
t =

{
ξZk

t if Zk
t + d ≤ 0,

Zk
t + d otherwise.

–

{
Zk

2 = s − Zk
1 if t = 1,

Zk
1 = s − Zk

2 if t = 2.

– return (Zk
1,Z

k
2).

As exp(−yiw
T xi ) quickly decays to zero for negative −yiw

T xi , many correctly classified
instances have their corresponding αi/C close to zero. Therefore, similar to SVM, we should
use an initial point close to the zero vector. We consider

αi = min(ϵ1C, ϵ2) ∀i, (36)

where ϵ1 and ϵ2 are small positive values less than one. Keerthi et al. (2005) consider
αi = C/l+ if yi = 1 and C/l− if yi = −1, where l+ and l− are the numbers of posi-
tive/negative data, respectively. Ours differs from them in ϵ2, which ensures that the initial
αi is sufficiently small regardless of the C value.

In constructing the sub-problem (18), another catastrophic cancellation may occur. If
αi ≈ C, then calculating c2 = C − αi is a catastrophic cancellation. An erroneous c2 then
causes more numerical errors in subsequent calculations. To remedy this problem, a re-
formulation can be performed in the previous update of αi : From the definition of Z2 in
Sect. 3.3,

Z2 = c2 − z = C − αold
i − z = C − αnew

i .

Therefore, if earlier g2(Z2) is considered, the returned Z2 can be directly used as c2 for the
current sub-problem. Alternatively, if g1(Z1) is used, we calculate Z2 = s −Z1 in the end of
Algorithm 4. According to (31), this is not a catastrophic cancellation. The discussion here
explains why we choose to output both (Z1,Z2) in Algorithm 4.

Algorithm 5 gives details of the proposed coordinate descent method for LR dual. To
update w(α) via (24), we need to obtain z, but Algorithm 4 gives only Z1 and Z2. We can
consider either Z1 − αi or C − Z2 though a catastrophic cancellation may occur. However,
the situation seems to be less serious than that in Sect. 3.2, which involves a log operation af-
ter a catastrophic cancellation. Finally, the following theorem shows the linear convergence
of Algorithm 5.

Theorem 6 Let αs denote the vector in the beginning of each iteration in the while loop of
Algorithm 5. The sequence {αs} globally converges to the unique optimum α∗. The conver-
gence rate is at least linear: there are 0 < µ < 1 and an iteration s0 such that

DLR(αs+1) − DLR(α∗) ≤ µ(DLR(αs) − DLR(α∗)), ∀s ≥ s0. (37)
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Algorithm 5 A dual coordinate descent method for logistic regression
– Set initial αi = min(ϵ1C, ϵ2) ∀i and the corresponding w ← ∑

i αiyixi .
– α′

i ← C − αi and Qii ← xT
i xi ∀i.

– While α is not optimal
For i = 1, . . . , l

1. Construct the sub-problem (18) for instance xi by

c1 = αi , c2 = α′
i , a = Qii, and b = yiw

T xi .

2. Solve (18) by Algorithm 4 and get Z1 and Z2. Note that in Algorithm 4, s ≡ c1 +
c2 = C.

3. w ← w + (Z1 − αi )yixi .
4. αi ← Z1,α

′
i ← Z2.

The proof is in Appendix A.6.

4 A two-level dual coordinate descent method for maximum entropy

Based on the experience for LR in Sect. 3, this section investigates a two-level dual coordi-
nate descent method for ME. The outer level considers a block of variables at a time. The
resulting sub-problem is then solved by an inner loop of coordinate descent updates. Our
method extends that in Memisevic (2006), but we give more complete analysis.

4.1 Dual of ME and coordinate descent methods

We derive in Appendix A.7 the following dual form for (5):

min
α

DME(α) = 1
2σ 2

w(α)T w(α) +
∑

i

∑

y:αiy>0

αiy logαiy

subject to
∑

y

αiy = P̃(xi) and αiy ≥ 0 ∀i, y,

(38)

where

w(α) ≡ σ 2

(

f̃ −
∑

i,y

αiyf (xi, y)

)

(39)

and f̃ is defined in (6). The vector α ∈ Rl|Y | can be decomposed to l blocks

α = [ᾱ1, . . . , ᾱl]T and ᾱi = [αi1, . . . ,αi|Y |]T , (40)

where ᾱi corresponds to the unique context xi in the data set. If w∗ and α∗ are respectively
the optimal solution of primal and dual problems, then w(α∗) = w∗.

Equation (39) is slightly different from the formulation considered in Lebanon and Laf-
ferty (2002), Memisevic (2006), Collins et al. (2008), where

w(α) ≡ σ 2
∑

i,y

αiy(f (xi, yi) − f (xi, y)). (41)
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The difference is due to that these works additionally assume that there is a unique yi for
each xi among all training data. That is, P̃(xi, yi) = P̃(xi) and P̃(xi, y) = 0 ∀y ≠ yi . Under
this assumption and using the equality constraint in (38), (39) can be reduced to (41):

σ 2

(

f̃ −
∑

i,y

αiyf (xi, y)

)

= σ 2

(
∑

i,y

(P̃(xi, y) − αiy)f (xi, y)

)

= σ 2

(
∑

i

P̃(xi)f (xi, yi) −
∑

i,y

αi,yf (xi, y)

)

= σ 2
∑

i,y

αiy(f (xi, yi) − f (xi, y)).

Like the situation in LR, the following theorem shows that the optimal α∗ for (38) is in
general an interior point.

Theorem 7 The ME dual problem (38) attains a unique optimal solution α∗ and for any i, y

α∗
iy

{
= 0 if P̃(xi) = 0,

∈ (0, P̃(xi)) otherwise.

The proof is in Appendix A.8.
Next we design a coordinate descent method to solve (38). We observe that (38) is very

similar to (16) for multi-class SVM in several aspects. First, the α vector can be decomposed
to several blocks, and each block is associated with an xi and all labels; see (40).8 Second,
each equality constraint corresponds to a single xi . Therefore, we follow Memisevic (2006)
and earlier SVM works (Crammer and Singer 2000; Hsu and Lin 2002; Keerthi et al. 2008)
to consider variables associated with an xi as a block. The sub-problem is:

min
z

h(z)

subject to
∑

y

zy = 0 and zy ≥ −αiy ∀y,
(42)

where

h(z) ≡ DME(ᾱ1, . . . , ᾱi + z, . . . , ᾱl )

=
∑

y

(αiy + zy) log(αiy + zy) + 1
2σ 2

∥∥∥∥∥w(α) − σ 2
∑

y

zyf (xi, y)

∥∥∥∥∥

2

+ constant

=
∑

y

(αiy + zy) log(αiy + zy) −
∑

y

zyw(α)T f (xi, y) + σ 2

2
zT Kiz + constant,

(43)

where Ki ∈ R|Y |×|Y | is a matrix with Ki
yy′ = f (xi, y)T f (xi, y

′), ∀y, y ′ ∈ Y .

8In fact, by defining w(α) =

⎡

⎢⎣

∑
i αi1xi

.

.

.∑
i αi|Y |xi

⎤

⎥⎦, (16) also has a w(α)T w(α) term like (38).
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4.2 Solving the sub-problem

Clearly, (42) is very similar to the sub-problem in (17) because of the same equality con-
straint. Equation (17) has a closed-form solution, but (42) has not due to the log terms in
the objective function. Many optimization methods can be applied to solve (42). Collins
et al. (2008) propose an exponentiated gradient (EG) method to get an approximate solu-
tion. We leave details of EG in Sect. 5. We follow Memisevic (2006) to use a coordinate
descent method, so the procedure for solving (38) becomes a two-level coordinate descent
method. Each step of the outer level considers variables associated with an xi as a block
and gets the sub-problem (42). The inner level then solves (42) via coordinate descent meth-
ods. Such two-level approaches have been considered in training SVM (e.g., Rüping 2000;
Pérez-Cruz et al. 2004).

To solve the sub-problem (42), each time we select two variables αiy1 and αiy2 . Using the
equality constraint, we obtain a one-variable sub-problem:

min
d

h(z + d(ey1 − ey2)) ≡ (αiy1 + zy1 + d) log(αiy1 + zy1 + d)

+ (αiy2 + zy2 − d) log(αiy2 + zy2 − d)

+ (σ 2((Kiz)y1 − (Kiz)y2) − w(α)T (f (xi, y1) − f (xi, y2)))d

+ σ 2

2

(
Ki

y1y1
+ Ki

y2y2
− 2Ki

y1y2

)
d2 + constant

subject to −(αiy1 + zy1) ≤ d ≤ αiy2 + zy2 .

(44)

By assigning

a ← σ 2(Ki
y1y1

+ Ki
y2y2

− 2Ki
y1y2

)

b ← σ 2((Kiz)y1 − (Kiz)y2) − w(α)T (f (xi, y1) − f (xi, y2))

c1 ← αiy1 + zy1 and c2 ← αiy2 + zy2 ,

(45)

(44) is in the same form as (18), so Algorithm 4 can be applied.
There are many ways to select the two indices y1 and y2. In SVM, this issue, called the

working set selection, has been thoroughly studied. For example, we can sequentially go
through all pairs of indices. Alternatively, using gradient information (e.g., Joachims 1998;
Keerthi et al. 2001; Fa et al. 2005) may lead to faster convergence. Memisevic (2006) adopts
the “maximal violating pair” (Keerthi et al. 2001) by selecting the two indices violating the
optimality condition the most. From a proof similar to Theorem 1, the optimal z∗ of (42)
satisfies z∗

y > −αiy ,∀y. Thus without considering inequality constraints, the optimality con-
dition implies

∇zy h(z∗) = ∇zy′ h(z∗), ∀y, y ′,

where

∇zy h(z) ≡ log(αiy + zy) + 1 + σ 2(Kiz)y − w(α)T f (xi, y). (46)

We can select the maximal violating pair by

y1 = arg max
y

∇zy h(z) and y2 = arg min
y

∇zy h(z).
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Algorithm 6 Solving the sub-problem (42) by a coordinate descent method with maximal
violating pairs. We assume the property (48)

– Given αi ,w(α),Ki
yy,∀y.

– ẑ0 ← αi .
– vy ← w(α)T f (xi, y), ∀y.
– Find the initial gradient

Gy ← log(ẑ0
y) + 1 − vy, ∀y.

– For k = 0,1,2, . . . ,

– If maxy Gy = miny Gy , break
– y1 ← arg maxy Gy, y2 ← arg miny Gy .
– Calculate coefficients of (44) by using the variable ẑ

a ← σ 2(Ki
y1y1

+ Ki
y2y2

)

b ← σ 2((ẑk
y1

− αiy1

)
Ki

y1y1
−

(
ẑk
y2

− αiy2

)
Ki

y2y2

)
− vy1 + vy2

c1 ← ẑk
y1

, c2 ← ẑk
y2

(47)

– Solve (44) by Algorithm 4 and get the optimal Z∗
1 ,Z

∗
2 .

– ẑk+1
y1

← Z∗
1 , ẑk+1

y2
← Z∗

2 .
– Update the gradient

Gy1 ← log
(
ẑk+1
y1

)
+ 1 + σ 2Ki

y1y1

(
ẑk+1
y1

− αiy1

)
− vy1 ,

Gy2 ← log
(
ẑk+1
y2

)
+ 1 + σ 2Ki

y2y2

(
ẑk+1
y2

− αiy2

)
− vy2 .

Algorithm 7 A coordinate descent method for the dual of ME (38)
– Set initial α by (51).
– w(α) ← σ 2(

∑
i

∑
y(P̃(xi, y) − αiy)f (xi, y)).

– While α is not optimal
For i = 1, . . . , l

∗ Solve the sub-problem (42) by Algorithm 6 and get the optimal ẑ∗.
∗ Update α and w(α) by (50).

Once the optimum d∗ of (44) is obtained, for the next coordinate descent step we need
the new ∇h(z) for selecting the maximal violating pair. As w(α)T f (xi, y) is considered as
a constant in (46), the main cost is on updating Kiz to Ki(z + d(ey1 − ey2)). The vector
Kiz should be maintained as it is also used in (45). Therefore, each iteration to solve (42)
requires

cost for Ki
yy1

d and − Ki
yy2

d, ∀y + cost for finding pairs + cost for solving (44).

The first term needs |Y | inner products as in general storing Ki, ∀i is not possible. This
is much more expensive than the second term involving only finding the largest/smallest
entries of |Y | values. Moreover, solving (44) is cheap due to the small number of Newton
updates. The discussion raises a question if using/maintaining the gradient is cost-effective.
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For SVM, the same reason leads Hsieh et al. (2008, Sect. 4) to suggest that for linear SVM we
should avoid using gradients for selecting working sets. Fortunately, for most ME applica-
tions, features often specify an indicator function of properties of xi and a class y (Jurafsky
and Martin 2008), so

f (x, y)T f (x, y ′) = 0, if y ≠ y ′. (48)

Thus Ki
yy′ = 0 if y ≠ y ′ and (46) is reduced to

∇zy h(z) = log(αiy + zy) + 1 + σ 2Ki
yyzy − w(α)T f (xi, y). (49)

As Ki
yy,∀y can be pre-stored, the cost for calculating the gradient is significantly reduced

to constant time. Therefore, using gradients for the working set selection is very suitable for
most ME applications.9

For practical implementations, we must handle the numerical issue discussed in Sect. 3.2
when solving (44). If using Algorithm 4, what we have obtained are Z∗

1 and Z∗
2 :

Z∗
1 = αiy1 + zy1 + d∗, Z∗

2 = αiy2 + zy2 − d∗.

Therefore, instead of maintaining the vector z, we work on ẑ ≡ ᾱi + z. From (45) and (48),
the coefficients of problem (44) using the variable ẑ are described in (47). Algorithm 6 gives
details for solving (42). In particular, it shows the loop to update the vector ẑ. Note that
w(α)T f (xi, y), ∀y is a constant vector independent of the loop, so we pre-calculate and
pre-store it as a vector v. The following theorem shows that Algorithm 6 solves (42):

Theorem 8 The sequence {ẑ0
, ẑ1

, . . .} generated by Algorithm 6 converges to αi +z∗, where
z∗ is the optimum of (42).

The proof is omitted because it is very similar to Theorem 1 in Keerthi et al. (2005).

4.3 The overall procedure

The overall procedure to solve ME dual is in Algorithm 7. Under the coordinate descent
setting, we sequentially update ᾱi by solving (42). Once (42) is solved and ẑ∗ = z∗ + ᾱi is
obtained, α and w(α) are respectively updated by

ᾱi ← ẑ∗
,

w(α) ← w(α) − σ 2
∑

y

(ẑ∗
y − αiy)f (xi, y).

(50)

This calculation needs to access f (xi, y),∀y. As finding w(α)T f (xi, y), ∀y before solv-
ing (42) requires the same data access, the update in (50) is affordable.

Regarding the initial point, similar to the case in LR, α = 0 is not a valid point. Memisevic
(2006) simply sets αiy = P̃(xi)/|Y | to satisfy the equality constraint

∑
y αiy = P̃(xi). From

the optimality condition (A.18), we think that αiy should be related to P̃(xi, y). For each i,

9If using a heap structure for the gradient, then maintaining the heap and getting the maximal violating pair
cost only O(log |Y |). However, this is only useful when |Y | is large.
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we consider two cases based on the unseen label set Ei ≡ {y | P̃(xi, y) = 0} and heuristically
set

αiy =

⎧
⎪⎨

⎪⎩

P̃(xi, y) if |Ei | = 0,{
(1 − ϵ)P̃(xi, y) ∀y /∈ Ei

ϵ
|Ei | P̃(xi) ∀y ∈ Ei

if |Ei | ≠ 0,
(51)

where ϵ is a small positive value. The following theorem shows that Algorithm 7 solves (38).

Theorem 9 The sequence generated by Algorithm 7 converges to the optimum α∗ of (38).

The proof is in Appendix A.9.

5 A related method

In this section, we describe an existing method which also solves dual ME.

5.1 Exponentiated gradient method

Collins et al. (2008) propose batch and online exponentiated gradient (EG) algorithms for
CRF. Their methods are applicable to ME as ME is a special case of CRF. Here we discuss
only their online EG algorithm, as it is more related to our coordinate descent methods. At
each iteration an example i is randomly chosen from {1, . . . , l} and ᾱi is updated to ᾱ′

i by
the following way.

α′
iy = αiy exp(−ηi∇iy)∑

y′ αiy′ exp(−ηi∇iy′)
, ∀y, (52)

where

∇iy ≡ ∂DME(α)

∂αiy

= 1 + logαiy + w(α)T (f (xi, yi) − f (xi, y)) (53)

and ηi > 0 is a learning rate. Note that we follow Collins et al. (2008) to use w(α) in (41).
To improve the convergence, Collins et al. (2008) adaptively adjust the learning rate ηi

for each instance. If the function value does not decrease, they iteratively halve ηi at most
maxTrial times (maxTrial is set by users). Finally, they slightly increase ηi to avoid it being
too small. The detailed procedure is in Algorithm 8.

The most expensive operation in Algorithm 8 is to calculate the function difference.
Using (38),

DME(α′) − DME(α) =
∑

y

α′
iy logα′

iy −
∑

y

αiy logαiy

+ 1
2σ 2

(∥∥∥∥∥w(α) + σ 2
∑

y

(α′
iy − αiy)f (xi, y)

∥∥∥∥∥

2

− ∥w(α)∥2

)

=
∑

y

α′
iy logα′

iy −
∑

y

αiy logαiy +
∑

y

(α′
iy − αiy)w(α)T f (xi, y)

+ σ 2

2
(ᾱ′

i − ᾱi )K
i(ᾱ′

i − ᾱi ). (54)



Mach Learn (2011) 85:41–75 61

Algorithm 8 A randomized online EG algorithm (Collins et al. 2008)
– Given maxTrial and a learning rate ηi = 0.5 ∀i = 1, . . . , l. Set initial α.
– w(α) ≡ σ 2 ∑

i,y αiy(f (xi, yi) − f (xi, y)).
– While α is not optimal

– Randomly choose i from the set {1, . . . , l}.
– trial = 0
– While trial < maxTrial

• Calculate α′
iy by (52).

• If DME(α′) − DME(α) ≤ 0
· ηi ← 1.05ηi .
· Update α and w(α) by equations similar to (50).
· Break.

• Else
· ηi ← ηi/2.

• trial ← trial + 1.

The vector w(α) is maintained in a way similar to (50), so the most expensive operation
in (54) is for inner products between features (see the last term). If the condition (48) holds
and Ki

yy, ∀y are pre-calculated, then (54) needs O(|Y |) time. Thus each of the maxTrial
iterations in Algorithm 8 costs O(|Y |), comparable to each coordinate descent step in Algo-
rithm 6.

EG differs from our Algorithm 6 mainly on solving the sub-problem (42). Ours more
accurately solves the sub-problem, while EG uses only the update rule (52). Therefore, EG’s
convergence may be slower. However, EG’s implementation is easier and we do not observe
numerical difficulties such as catastrophic cancellations described in Sect. 3.3.

6 Experiments

In this section, we investigate the performance of the proposed coordinate descent meth-
ods for logistic regression and maximum entropy. We consider two types of NLP ap-
plications. One is logistic regression for data with real-valued features and the other is
maximum entropy for 0/1-featured data. Programs used for experiments are available at
http://www.csie.ntu.edu.tw/~cjlin/liblinear/exp.html. We run all experiments on a 64-bit ma-
chine with Intel Xeon 2.0GHz CPU and 32GB main memory.

6.1 Logistic regression for data classification

We compare the following implementations. The first two solve the dual, while the other
three solve the primal.

1. CDdual: the dual coordinate descent method in Algorithm 5.
2. CDdual-ls: the same as CDdual except that the sub-problem (18) is approximately solved

by one Newton update with line search; see (21). The setting is similar to that in Sect. 2.2
for primal LR. We use β = 0.5 and γ = 0.01.

3. CDprimal: a primal coordinate descent method for logistic regression; see Sect. 2.2.
4. EG: an online exponentiated gradient implementation for LR; see Sect. 5.1.

http://www.csie.ntu.edu.tw/~cjlin/liblinear/exp.html
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Table 2 Statistics of data
(real-valued features). l: number
of instances, n: number of
features, #nz: number of total
non-zero feature values, and
C: best regularization parameter
from five-fold cross validation

Problem l n #nz C

a9a 32,561 123 451,592 4

real-sim 72,309 20,958 3,709,083 8

yahoo-japan 176,203 832,026 23,506,415 4

rcv1 677,399 47,236 49,556,258 8

5. LBFGS: a limited memory quasi Newton method for general unconstrained optimization
problems (Liu and Nocedal 1989).

6. TRON: a trust region Newton method for logistic regression (Lin et al. 2008).

Our implementations are extended from the framework used in Huang et al. (2010). We
consider four data sets. All of them except yahoo-japan are available at LIBSVM data set.10

Data statistics and the regularization parameter C (obtained by cross validation) are in Ta-
ble 2. The initial w of the three primal-based methods is 0. For CDdual, CDdual-ls and EG,
the dual-based methods, the initial solution is via (36) with ϵ1 = 10−3 and ϵ2 = 10−8. All
three coordinate descent methods (CDdual, CDdual-ls, CDprimal) apply the random permuta-
tions of indices; see the explanation in Sect. 2.1. For CDdual, we set ξ = 0.1 in Algorithm 4.
For the stopping condition of Algorithm 4, we use |g′

t (Zt )| ≤ ϵ ′, where ϵ ′ is set to 10−2

initially and is gradually reduced to ϵ′ = 10−8. This strategy saves Newton iterations in the
early stage.

We begin with checking training time versus the relative difference of the function value
to the optimum:

P LR(w) − P LR(w∗)

P LR(w∗)
, (55)

where w∗ is the optimal solution of (1). As w∗ is not available, we obtain a reference point
satisfying ∥∇P LR(w)∥ ≤ 0.01. We use primal objective values even for dual solvers because
from a dual solution it is easy to estimate a primal solution by (22). In contrast, finding a
corresponding dual solution from a given primal vector w is more difficult. Results of (55)
are in the first column of Fig. 2. Next, we check these methods’ gradient values in the
second column of Fig. 2, as ∥∇P LR(w)∥ = 0 implies that w is the global minimum. We are
also interested in the time needed to achieve a reasonable testing result. The third column
of Fig. 2 presents testing accuracy versus training time. Note that (55) and ∥∇P LR(w)∥ in
Fig. 2 are both log scaled.

From Fig. 2, CDdual and CDdual-ls are more efficient than other solvers on all problems
except a9a. Note that a9a has much fewer features than data points. For such problems
solving the primal problem may be more suitable because the number of variables is the
same as the number of features. We observe that CDdual is always faster than CDdual-ls,
a result consistent with the analysis in Sect. 3. CDprimal is worse than CDdual because
of its slower convergence and higher cost per iteration. From the discussion in Sect. 2.2
and (25), for every round of going through all variables, CDprimal (n variables) and CDdual
(l variables) respectively need

O(nl) and O(l × #Newton Steps)

10http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets.

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets
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Fig. 2 Results for logistic regression on real-valued document data. The first column shows time versus the
relative function difference (55). The second and third columns show ∥∇P LR(w)∥ and testing performances
along time, respectively. Time is in seconds



64 Mach Learn (2011) 85:41–75

Table 3 CDdual for LR with
different ξ . The table shows time
in seconds to reduce the relative
difference to the optimal function
value to be less than 0.01. We
boldface the best approach.
Clearly, the running time is not
sensitive to the choice of ξ

Problem ξ = 0.1 ξ = 0.5 ξ = 0.9

a9a 0.30 0.29 0.31

real-sim 0.24 0.24 0.24

yahoo-japan 1.02 1.01 1.02

rcv1 3.56 3.59 3.65

Table 4 Statistics of NLP data
(0/1 features). l: number of
contexts, |Y |: number of class
labels, n: number of features, and
#nz: number of total non-zero
feature values

Data set l |Y | n #nz

CoNLL2000-P 197,979 44 168,674 48,030,163

CoNLL2000-C 197,252 22 273,680 53,396,844

BROWN 935,137 185 626,726 601,216,661

exp/log operations, where #Newton steps is the average number of Newton updates in Al-
gorithm 4. We experimentally observe that for all problems except a9a, to go through all
variables once, CDprimal is at least six times more expensive than CDdual. Regarding the
three dual-based methods CDdual, CDdual -ls and EG, CDdual is generally faster. For TRON
and LBFGS, they are Newton and quasi-Newton methods respectively, so fast final conver-
gence is observed. However, since they take significant efforts at each iteration, they fail to
generate a reasonable model quickly. From the experiment results, CDdual converges as fast
as TRON and LBFGS, but also performs well in early iterations.

We find that different initial z’s in the Newton method for CDdual cause different running
time. Using z = 0 is the best because near the optimum, α is not changed much and z is close
to zero. Regarding the parameter ξ in CDdual, Table 3 shows that the running time is not
sensitive to the choice of ξ . This is because the operation in (26) takes only a small portion
of the total running time.11

6.2 ME for 0/1-featured data in NLP

We apply ME models to part of speech (POS) tagging and chunking tasks following the
setting in Huang et al. (2010). It is based on the OpenNLP package (Baldridge et al. 2001),
which extracts binary features and predicts the tag sequences by the method in Ratnaparkhi
(1998). We use CoNLL2000 shared task data12 for chunking (denoted as CoNLL2000-C)
and POS tagging (CoNLL2000-P), and BROWN corpus13 for POS tagging. Table 4 lists the
statistics of data sets.

We compare the following methods: CDdual, CDprimal, LBFGS, TRON and EG. CDdual-
ls is not included because it is shown in Sect. 6.1 to be slower than CDdual. CDdual and
EG solve the dual problem, while the others solve the primal. We use the regularization
parameter σ 2 = 10l. As Huang et al. (2010) report under this value, ME achieve good testing
performances. The initial w of primal-based methods is 0. For CDdual and EG, the initial α
is set by (51) with ϵ = 10−10. Figure 3 shows the results of the relative function difference
to the optimum, the gradient ∥∇P ME(w)∥, and the testing accuracy.

11Note that (26) is used only if zk + d /∈ (−c1, c2).
12http://www.cnts.ua.ac.be/conll2000/chunking.
13http://www.nltk.org.

http://www.cnts.ua.ac.be/conll2000/chunking
http://www.nltk.org
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Fig. 3 Results for maximum entropy on 0/1-featured data. The first column shows time versus the relative
function difference (55). The second and third columns show ∥∇P ME(w)∥ and testing performances along
time, respectively. Time is in seconds

For the function value, results in Fig. 3 are different from Fig. 2, in which CDdual is the
fastest all the time. Now CDprimal is the fastest in the beginning, but has the slowest final
convergence. CDdual is only slightly slower than CDprimal in the very early stage, but its
final convergence is much better. Moreover, LBFGS may surpass CDdual in the final stage.
Regarding the two dual-based methods CDdual and EG, CDdual is generally faster. Overall,
the proposed CDdual method is competitive for these data sets.

6.3 A comparison between Algorithm 4 and a strategy of combining bisection and Newton
methods

In Sect. 3.2, we use Newton methods to solve the sub-problem (18). If zk is on the “wrong”
side of z∗, we use the technique (27) and prove that in a finite steps a point on the “correct”
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Algorithm 9 A combination of bisection and Newton methods to solve (18)
– Given coefficients: a, b, c1, and c2.

– t ←
{

1 if zm ≥ −b
a

,

2 if zm < −b
a

.

– Z0
t ∈ (0, s/2).

– While 1
– If g′

t (Z
0
t ) ≤ 0, break.

Else, Z0
t ← Z0

t /2.
– For k = 0,1, . . .

– If g′
t (Z

k
t ) = 0, break.

– Zk+1
t ← Zk

t − g′
t (Z

k
t )/g

′′
t (Z

k
t ).

–

{
Zk

2 = s − Zk
1 if t = 1,

Zk
1 = s − Zk

2 if t = 2.

– return (Zk
1,Z

k
2).

side will be obtained. Here we experiment with an alternative strategy by using a bisection
method to find a point on the “correct” side of z∗ before Newton updates.

Since g′(z∗) = 0 and g′(z) is increasing, (33) and (34) imply that a point on the “correct”
side of z∗ satisfies

g′(z)

{
≤ 0 if t = 1,

≥ 0 if t = 2.
(56)

From the fact g′
1(Z1) = g′(z) and g′

2(Z2) = −g′(z), (56) becomes

g′
t (Zt ) ≤ 0. (57)

Simple calculations show that g′
t (0) = −∞ and g′

t (s/2) ≥ 0. Therefore, starting from a point
in (0, s/2], the bisection method sequentially cut the point to half until (57) is satisfied.
See Algorithm 9 for details. In our implementation, (35) is used as the initial point of the
bisection procedure.

We refer to the strategy of combining bisection and Newton methods as BN. In Fig. 4,
we compare BN and CDdual. Note that BN is the same as CDdual except that (18) is solved
by Algorithm 9. We can see that CDdual has slightly better final convergence. The reason
seems to be that Algorithm 4 takes Newton updates regardless of whether the current zk is
on the “correct” side of z∗ or not. The only exception is that the point after update is outside
the interval (−c1, c2); see (27).

7 Discussion and conclusions

We have illustrated in various places that this work is related to some our earlier develop-
ments. Table 5 summarizes their relationship.

In summary, motivated from the success of coordinate descent methods for solving SVM
dual, in this work we study if similar methods can be used for LR and ME duals. An impor-
tant lesson learned is that some algorithmic and implementation details are different from
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Fig. 4 A comparison between BN and CDdual on logistic regression for real-valued document data. The
figures show time versus the relative function value difference defined in (55). Time is in seconds

Table 5 The relationship between this work and our earlier developments

2-class Multi-class

SVM LR SVM ME

Primal Chang et al. (2008) Huang et al. (2010) Huang et al. (2010)

Dual Hsieh et al. (2008) This paper Keerthi et al. (2008) This paper

SVM. This is mainly because log operations are involved in LR and ME dual problems. We
carefully address theoretical and numerical issues of the coordinate descent procedure. Ex-
periments indicate that the proposed method is faster than state of the art methods for logistic
regression and maximum entropy.

Acknowledgements The authors thank anonymous reviewers for helpful comments. This work was sup-
ported in part by the National Science Council of Taiwan via the grant 98-2221-E-002-136-MY3.
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Appendix A

A.1 Lemma 1

We need the following lemma to prove subsequent theorems.

Lemma 1 Let f (x) be a continuous function over [a, b]. If

1. f is differentiable in (a, b),
2. limx→a+ f ′(x) = −∞,
3. limx→b− f ′(x) = ∞,

then there are xa, xb ∈ (a, b) such that f (xa) < f (a) and f (xb) < f (b). That is, any mini-
mizer of f must be an interior point.

Proof From the second condition, there exists xa ∈ (a, b) such that f ′(x) < 0 ∀x ∈ (a, xa).
By the Mean-Value Theorem, there exists ϵ ∈ (a, xa) such that

f (xa) = f (a) + f ′(ϵ)(xa − a).

Then f (xa) < f (a) due to f ′(ϵ) < 0 and (xa − a) > 0. By similar arguments, there is
xb ∈ (a, b) such that f (xb) < f (b). !

A.2 Proof of Theorem 1

By defining 0 log 0 = 0, DLR(α) is a continuous function on a closed set [0,C]l . Hence a
minimum in [0,C]l exists. We prove that any minimizer α∗ ∈ (0,C)l . Suppose that α∗

i = 0
for some i. Consider the following one-variable problem

min
z

g(z) = DLR(α∗
1 , . . . ,α

∗
i + z, . . . ,α∗

l )

= z log z + (C − z) log(C − z) + (xT
i xi )z

2 + (Qα∗)iz + constant

subject to 0 ≤ z ≤ C.

By Lemma 1, there is z∗ ∈ (0,C) such that g(z∗) < g(0) = DLR(α∗), which contradicts that
α∗ is a minimizer. By the same arguments, we can get that α∗

i < C ∀i.
Next we show the uniqueness by claiming that DLR(α) is strictly convex in (0,C)l . The

Hessian ∇2DLR(α) of (3) is the sum of a positive semi-definite matrix Q and a diagonal
matrix with positive entries C/(αi (C − αi )) ∀i. Thus ∇2DLR(α) is positive definite and
DLR(α) is strictly convex. Then the uniqueness of the optimum is obtained. !

A.3 Proof of Theorem 2

Since g(z) satisfies all three conditions in Lemma 1, immediately we have z∗ ∈ (−c1, c2).
The optimality condition and the property z∗ ∈ (−c1, c2) then imply g′(z∗) = 0.

A.4 Proof of Theorem 4

To begin, we list four important properties for the function g(z):

g′(z1) < g′(z2), if z1 < z2, (A.1)
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g′′(z1) < g′′(z2), if zm ≤ z1 < z2, (A.2)

g′′(z1) > g′′(z2), if z1 < z2 ≤ zm, (A.3)

g′′(z) > 0, ∀z. (A.4)

We prove the results for the situation z∗ ≥ zm as the proof for the other situation is similar.
If the result does not hold, then starting from zk , we have

zk+s < z∗, ∀s = 0,1,2, . . . . (A.5)

From zk+s to zk+s+1, two update rules may be applied:

zk+s+1 = zk+s − g′(zk+s)/g′′(zk+s), (A.6)

zk+s+1 = ξzk+s + (1 − ξ)c2. (A.7)

Using (A.1) and (A.5), g′(zk+s) < g′(z∗) = 0. With (A.4) and ξ > 0, both update rules lead
to

zk+s+1 > zk+s , ∀s. (A.8)

We claim that the number of updates via (A.7) must be finite. Otherwise, since

c2 − zk+s+1 = ξ(c2 − zk+s)

if (A.7) is taken, an infinite number of updates via (A.7) and the property in (A.8) will cause
that {zk+s} converges to c2. As z∗ < c2 by Theorem 2, {zk+s} will eventually be larger than
z∗ and the assumption (A.5) is violated. Therefore, we can let k0 be the starting index so that
all zk0+s ,∀s are generated by (A.6).

We then claim that there exists k1 ≥ k0 such that zk1 ≥ zm. If such k1 does not exist, then

zk0+s ≤ zm, ∀s. (A.9)

Consider the difference between two consecutive iterations:

{z̄k0+s | z̄k0+s ≡ zk0+s+1 − zk0+s = −g′(zk0+s)/g′′(zk0+s)}.

From (A.3), (A.4), and (A.9) we have 0 < g′′(zk0+s) < g′′(zk0). With (A.1) and (A.9),

z̄k0+s = −g′(zk0+s)

g′′(zk0+s)
>

−g′(zm)

g′′(zk0)
> 0, ∀s.

However, {z̄k0+s} should approach 0 as {zk0+s} is a convergent sequence following from the
increasing property (A.8) and the boundedness (A.5). Therefore (A.9) is wrong and k1 exists
such that zk1 ≥ zm.

By the Mean-Value Theorem, (A.6) and (A.8), there is z̃ ∈ (zk1 , zk1+1) such that

g′(zk1+1) = g′(zk1) + g′′(z̃)
−g′(zk1)

g′′(zk1)
= g′(zk1)

(
1 − g′′(z̃)

g′′(zk1)

)
> 0.

The inequality comes from g′(zk1) < 0 by (A.1) and (A.5), and g′′(z̃) > g′′(zk1) by zk1 ≥ zm

and (A.2). As g′(zk1+1) > 0 implies zk1+1 > z∗, we obtain a contradiction to (A.5). Thus
there is k′ such that zk′ ≥ z∗ and the proof is complete.



70 Mach Learn (2011) 85:41–75

A.5 Proof of (34)

The first relationship follows from the fact that zm is the middle points of (−c1, c2). The
second relationship comes from g′(z) is an increasing function. For the third relationship,
from (20), g′(zm) = azm + b. With the property that g′(z) is increasing, we have

g′(zm)

{
≥ 0 if zm ≥ −b/a,

≤ 0 if zm ≤ −b/a.

A.6 Proof of Theorem 6

We consider the analysis in Luo and Tseng (1992), which studies coordinate descent meth-
ods for problems in the following form:

min
α

g(Eα) + bT α

subject to Li ≤ αi ≤ Ui,
(A.10)

where g is a proper closed convex function, E is a constant matrix and Li ∈ [−∞,∞), Ui ∈
(−∞,∞] are lower/upper bounds. They establish the linear convergence of the coordinate
descent method if (A.10) satisfies the following conditions:

1. E has no zero column.
2. The set of optimal solutions for (A.10), denoted by A∗, is nonempty.
3. The domain of g is open, and g is strictly convex and twice continuously differentiable

on its domain.
4. ∇2g(Eα∗) is positive definite for all α∗ ∈ A∗.

We explain that dual LR satisfies all the above conditions. Define E as an (n + l) × l matrix

E ≡
[
y1x1, . . . , ylx l

Il

]
, (A.11)

where Il is the identity matrix. Let g be the following function:

g

([
w
β

])
≡ 1

2
wT w +

l∑

i=1

βi logβi + (C − βi ) log(C − βi ), (A.12)

where (w,β) ∈ an open domain Rn × (0,C)l , and b = 0, Li = 0, Ui = C,∀i. Then
DLR(α) = g(Eα) + bT α and (3) is the same as (A.10). Obviously E contains no zero col-
umn. For the set of optimal solutions, the unique minimum α∗ exists by Theorem 1 and
satisfies 0 < α∗

i < C, ∀i. The function g is closed because it is twice continuously differen-
tiable on its open domain. The matrix ∇2g([ w

β ]) is diagonal and has positive entries:

∇2
iig

([
w
β

])
=

{
1 if i = 1, . . . , n,

C
βj (C−βj )

if i = n + j, j = 1, . . . , l.

Hence g is strictly convex and ∇2g(Eα∗) is positive definite. All conditions are satisfied
and the linear convergence is obtained.
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A.7 The derivation of dual ME

For convenience, we define some notation:

– l = the number of unique xi ,
– P̃i = P̃(xi), f iy = f (xi, y), and
– f̃ = ∑

i,y P̃(xi, y)f (xi, y).

The primal ME problem in (5) can be written as the following equality-constrained form:

min
w,ξ

1
2σ 2

wT w +
∑

i

P̃i log
∑

y

exp(ξiy) − wT f̃

subject to ξiy = wT f (xi, y) ∀y ∈ Y, i = 1, . . . , l.

(A.13)

The Lagrangian for (A.13) is:

L(w, ξ ,α) = 1
2σ 2

wT w +
∑

i

P̃i log
∑

y

exp(ξiy) − wT f̃ −
∑

i

∑

y

αiy(ξiy − wT f iy)

= L∗(w,α) +
∑

i

Li(ξ i , ᾱi ),

where

L∗(w,α) ≡ 1
2σ 2

wT w +
∑

i

∑

y

αiyw
T f iy − wT f̃ , and

Li(ξ i , ᾱi ) ≡ P̃i log
∑

y

exp(ξiy) −
∑

y

αiyξiy , i = 1, . . . , l.

The dual problem is

max
α

inf
w,ξ

L(w, ξ ,α) = max
α

(

inf
w

L∗(w,α) +
∑

i

inf
ξ i

Li(ξ i , ᾱi )

)

. (A.14)

For infw L∗(w,α), the minimum is obtained by

∇wL∗(w,α) = 1
σ 2

w +
∑

i

∑

y

αiyf iy − f̃ = 0.

By representing the minimum as a function of α, we have

inf
w

L∗(w,α) = − 1
2σ 2

w(α)T w(α), where w(α) = σ 2

(

f̃ −
∑

i

∑

y

αiyf iy

)

. (A.15)

To minimize Li(ξ i , ᾱi ), we check several cases depending on the value of ᾱi . The first
case considers ᾱi satisfying

ᾱi ≥ 0 and
∑

y

αiy = P̃i . (A.16)
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Let Fi ≡ {y | αiy > 0}.

inf
ξ i

Li(ξ i , ᾱi ) = inf
ξiy :y∈Fi

((

inf
ξiy :y /∈Fi

P̃i log
∑

y

exp(ξiy)

)

−
∑

y∈Fi

αiyξiy

)

= inf
ξiy :y∈Fi

(

P̃i log

(
∑

y∈Fi

exp(ξiy) +
∑

y /∈Fi

inf
ξiy

exp(ξiy)

)

−
∑

y∈Fi

αiyξiy

)

= inf
ξiy :y∈Fi

(

P̃i log
∑

y∈Fi

exp(ξiy) −
∑

y∈Fi

αiyξiy

)

. (A.17)

The optimality condition implies any minimizer ξ ∗
i satisfies that for all y ∈ Fi :

∇ξiy Li(ξ
∗
i ) = −αiy +

P̃i exp(ξ ∗
iy)∑

y′∈Fi
exp(ξ ∗

iy′)
= 0. (A.18)

Thus

ξ ∗
iy = logαiy + log

∑

y′∈Fi

exp(ξ ∗
iy′) − log P̃i .

By embedding ξ ∗
i into Li(ξ i , ᾱi ) and using (A.16), (A.17) becomes

inf
ξ i

Li(ξ i , ᾱi ) = P̃i log
∑

y∈Fi

exp(ξ ∗
iy) −

∑

y∈Fi

(

αiy logαiy + αiy log
∑

y′∈Fi

exp(ξ ∗
iy′) − αiy log P̃i

)

= −
∑

y∈Fi

αiy logαiy + P̃i log P̃i . (A.19)

If ᾱi does not satisfy (A.16), then either

there is αiy′ < 0 or
∑

y

αiy ≠ P̃i .

If there is αiy′ < 0, we consider a point ξ i with ξiy = ϵ if y = y ′ and 0 otherwise. Then,

inf
ξ i

Li(ξ i , ᾱi ) ≤ lim
ϵ→−∞

(P̃i log(|Y | − 1 + exp(ϵ)) − αiy′ϵ) = −∞. (A.20)

If
∑

i αiy ≠ P̃i , we consider ξiy = ϵ,∀y to obtain

inf
ξ i

Li(ξ i , ᾱi ) ≤ inf
ϵ

(

P̃i log(|Y | exp(ϵ)) − ϵ
∑

y

αiy

)

= P̃i log |Y | + inf
ϵ

ϵ

(

P̃i −
∑

y

αiy

)

= −∞. (A.21)
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Combining (A.15), (A.19), (A.20) and (A.21),

inf
w,ξ

L(w, ξ ,α) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

− 1
2σ 2

w(α)T w(α) −
∑

i

(
∑

y:αiy>0

αiy logαiy + P̃i log P̃i

)

if
∑

y

αiy = P̃i ∀i,α ≥ 0,

−∞ otherwise.

(A.22)

As the dual problem defined in (A.14) maximizes the value (A.22) by adjusting α, we will
not consider the situation with the value −∞. Then the dual problem can be written as (38).

A.8 Proof of Theorem 7

By defining 0 log 0 = 0, DME(α) is a continuous function on a closed set. Hence a minimum
exists. We first show the interior property. If P̃(xi) = 0, then α∗

iy = 0 follows from constraints
of (38). If P̃(xi) > 0, we prove the result by contradiction. If there exists α∗

iy1
= 0, then we

can find another α∗
iy2

> 0 due to the constraint
∑

y α∗
iy = P̃i . We consider a problem by fixing

all variables except αiy1 and αiy2 .

min
z

g(z) = DME(ᾱ1, . . . , ᾱi + (ey1 − ey2)z, . . . , ᾱl )

= z log z + (α∗
iy2

− z) log(α∗
iy2

− z) + a

2
z2 + bz + constant

subject to 0 ≤ z ≤ α∗
iy2

,

where ey1 and ey2 are indicator vectors,

a ≡ σ 2(Ki
y1y1

+ Ki
y2y2

− 2Ki
y1y2

)
and b ≡ −wT (α∗)(f (xi, y1) − f (xi, y2)).

By Lemma 1, there is z∗ ∈ (0,α∗
iy2

) such that g(z∗) < g(0) = DME(α∗), which contradicts
the fact that α∗ is the minimum. Therefore, α∗

iy > 0 ∀y. The constraints in (38) then imply
α∗

iy < P̃(xi) ∀y, so α∗
iy ∈ (0, P̃(xi)) ∀i, y.

We then show the uniqueness by the strict convexity of DME(α) over (0,∞)l|Y |. DME(α)

can be decomposed into two parts. The first part is

1
2σ 2

w(α)T w(α) = 1
2σ 2

∥f̃ − F α∥2, (A.23)

where F is a n × l|Y | matrix and each column is f (xi, y). The Hessian of (A.23) is a
positive semi-definite matrix F T F . The Hessian of the second part is a diagonal matrix with
positive elements 1/αiy ∀i, y. Therefore, DME(α) is strictly convex for all interior α, so the
uniqueness is obtained.

A.9 Proof of Theorem 9

We apply Proposition 2.7.1 by Bertsekas (1999), which gives the convergence of coordinate
descent methods for the following problem:

min D(α)

subject to α ∈ A1 × · · · × Al,
(A.24)
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where Ai is a closed convex set. Sequentially a block of variables over Ai is updated and it
is required that the minimum of each sub-problem is uniquely attained.

Problem (38) is in the form of (A.24) as we can define the following closed and convex
set:

Ai ≡ {ᾱi ∈ [0, P̃(xi)]|Y | | eT ᾱi = P̃(xi)}.
Moreover, a proof similar to Theorem 7 shows that for each sub-problem (42), the minimum
is uniquely attained. Therefore, Algorithm 7 converges.
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