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Dual Representations and Kernels
Nearest neighbor methods and Kernel regression shift focus away from features and
their parameters to examples and their weights. In many machine learning methods
there is a duality between feature weights and example weights. This duality allows us
to use the kernel trick to expand the representational power of a model without (much)
computational expense. Before we tackle more complex applications of this idea, let’s
consider standard MAP (a.k.a. ridge) regression from the dual perspective.

Linear Regression: A dual view
Recall that the model is

and the prior is a zero-mean diagonal Gaussian

The MAP estimate is:

Taking the derivative with respect to  and setting it to zero, we get:

where

.
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Expressing  as a linear combination of examples is called dual representation.
In fact MAP parameters for other linear models with Gaussian priors (i.e. quadratic
regularization) can be expressed this way (this can be proved rigorously in very general
settings using the Representer Theorem).

Logistic regression: A dual view
We can express the MAP solution to logistic regression in a similar way. Recall that the
model is (assuming ):

and the prior is a zero-mean diagonal Gaussian:

The MAP estimate is:

Taking the derivative with respect to  and setting it to zero, we get:

where
.

Again, the MAP solution is a linear combination of examples.

Solving Regression in the Dual
Plugging in  into the linear regression objective, we get

Let’s define the Gram matrix  and plug it in above to get:

Notice that the entire objective is a now function of ,  and dual weights . All the
information about features went into defining , the Gram matrix, also called the
kernel matrix. The kernel matrix is  by  and is defined by the dot products between
feature vectors.  The kernel function, defined as the  is
what generates the matrix given a set of examples.

Minimizing over , we obtain the solution in terms of the kernel  and outcomes :



11/30/14, 6:35 PMCIS520 Machine Learning | Lectures / Kernels | Print

Page 3 of 5https://alliance.seas.upenn.edu/~cis520/wiki/index.php?n=Lectures.Kernels?action=print

Plugging this solution back into our model prediction for a new instance, , we get:

where

is a vector with i’th component equal to . Once again, the remarkable fact is that
the prediction is a linear combination of training set values , where the weighting is
only a function of the dot products between feature vectors of a new instance and
training instances  as well as the dot products between the training
instances .

The Kernel Trick
The dual representation of the prediction function, which does not refer to the features
directly, but only through dot-products, allows us to expand the number of features (as
long as we can compute the dot-product between them efficiently). By defining a
feature mapping  we can redefine the kernel function as the dot
product in the new expanded feature space of dimension M. 

 With this mapping, our weight
vector is of dimension M  but the importance of the kernel trick
is that we never need to explicitly construct  or  for any example, just
evaluate the dot product. Luckily, for many feature mappings, the dot product above
can be evaluated much more efficiently than O(M). Consider an original feature space
of dimension , where  and a kernel function defined as:

This kernel function can be expressed as a dot product of a feature mapping:

If the dimension m of  is larger than 2, the mapping will create m choose 2 new
features which are all the second order terms, so , but computing 

 is . If we consider a higher-order polynomial kernel, 
, we will get a feature mapping with , while

computing the kernel function is again .

Constructing Kernels
Often, kernels are constructed by trying to express a similarity function between
instances and then making sure that indeed it corresponds to some feature mapping .
To show that a kernel corresponds to a feature mapping it is enough to check that 
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 is positive semi-definite, which means that for any set of points  and
any n, the Gram matrix K is positive semi-definite [1]. Recall that an n by n real
symmetric matrix  is positive semi-definite ( ) if for any vector  of dimension
n, 

Intuitively, positive semi-definiteness is a matrix analog of non-negativity for scalars.
Using eigen-decomposition, a positive semi-definite matrix can always be written as:

where  are real eigenvectors and  are non-negative and real eigenvalues.

One of the most common way of constructing kernels is by building more complex valid
kernels ones by composing other valid kernels.

Here are some construction rules (we assume below that c>0,  and  are
valid kernels,  is a polynomial with positive coefficients, , and  is any
function.

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. …

Using the rules above, it is easy to show that the Gaussian kernel is valid:

You will show in your homework that the Gaussian kernel corresponds to an infinite-
dimensional feature mapping function.

The great advantage of kernels is that they can also be constructed when  is not a pre-
defined vector of features, but instead some complex object, like an image or a set of
items, or a sequence or a graph. For example, if  and  are sets, then a valid kernel
on sets is the size of their intersection, exponentiated:

Kernels have been popularized in the machine learning community through Support
Vector Machines, which have nice sparsity properties (  has many zeros) that make
them particularly well suited to using kernels. Here is a little preview of kernel SVMs
[2].

Copyright © 2005–2014 the Main wiki and its authors

https://alliance.seas.upenn.edu/~cis520/wiki/index.php?n=Lectures.Kernels?action=print#end1
https://alliance.seas.upenn.edu/~cis520/wiki/index.php?n=Lectures.Kernels?action=print#end2


11/30/14, 6:35 PMCIS520 Machine Learning | Lectures / Kernels | Print

Page 5 of 5https://alliance.seas.upenn.edu/~cis520/wiki/index.php?n=Lectures.Kernels?action=print

Links
1.  en.wikipedia.org/wiki/Positive-definite_matrix
2.  www.csie.ntu.edu.tw/~cjlin/libsvm
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