\relax \select@language{english} \@writefile{toc}{\select@language{english}} \@writefile{lof}{\select@language{english}} \@writefile{lot}{\select@language{english}} \@writefile{toc}{\contentsline {section}{\numberline {1}What's SVM}{1}} \@writefile{toc}{\contentsline {section}{\numberline {2}Margins}{1}} \@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces Confident Example, linearly separable.}}{2}} \newlabel{fig:confident}{{1}{2}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.1}Functional and Geometric Margins}{2}} \@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces Margin Example. The black separating plane is better than the green one, because it has larger margins (sits more ``in the middle''). A mechanical analogy: if the separating plane is free to rotate but constrained to be separator, when the points start pushing force towards the plane, the plane will settle in an equilibrium ``middle'' position - thats where the black separator is. }}{3}} \newlabel{fig:margin}{{2}{3}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {2.1.1}Geometric Margins}{3}} \@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces Geometric Margin: $w$ and $b$ are scaled such that closest points are on the line $|w^Tx+b|=1$. If the plane is in the middle, the minimum margin (geometrical distance from plane to points) is $\rho = 1/w$. }}{4}} \newlabel{fig:geometric}{{3}{4}} \@writefile{toc}{\contentsline {section}{\numberline {3}The Optimal Margin Classifier}{4}} \@writefile{toc}{\contentsline {section}{\numberline {4}Solution part 1: the dual problem}{5}} \@writefile{toc}{\contentsline {subsection}{\numberline {4.1}Linearly Separable case}{5}} \@writefile{lof}{\contentsline {figure}{\numberline {4}{\ignorespaces Seperable Example}}{5}} \newlabel{fig:separable}{{4}{5}} \@writefile{toc}{\contentsline {section}{\numberline {5}Kernel trick}{7}} \@writefile{lof}{\contentsline {figure}{\numberline {5}{\ignorespaces Intercept illustration for $b$ calculation: calculate the $b_A,b_B$ the closest "b" to the plane from either side, then infer $b$ from these tow values.}}{8}} \newlabel{fig:b}{{5}{8}} \@writefile{toc}{\contentsline {subsection}{\numberline {5.1}Non-Separable case and slack variables}{8}} \@writefile{lof}{\contentsline {figure}{\numberline {6}{\ignorespaces Outlier Example}}{9}} \newlabel{fig:outlier}{{6}{9}} \newlabel{fig:alpahs_0_C}{{5.1}{10}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {5.1.1}Slack variables dual form derivation [optional material]}{10}} \@writefile{toc}{\contentsline {section}{\numberline {6}Solution part 2 : SMO Algorithm instead of Quadratic Solvers}{11}} \@writefile{toc}{\contentsline {subsection}{\numberline {6.1}Coordinate Ascent}{11}} \@writefile{lof}{\contentsline {figure}{\numberline {7}{\ignorespaces Coordinate Ascent}}{12}} \newlabel{fig:coordinate}{{7}{12}} \@writefile{toc}{\contentsline {subsection}{\numberline {6.2}SMO}{12}} \@writefile{toc}{\contentsline {subsection}{\numberline {6.3}SMO Pseudocode}{13}} \@writefile{toc}{\contentsline {subsection}{\numberline {6.4}SMO Details}{15}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {6.4.1}How to Select $\alpha _i$ and $\alpha _j$}{15}} \@writefile{lof}{\contentsline {figure}{\numberline {8}{\ignorespaces Idea about Choosing $\alpha $}}{16}} \newlabel{fig:ex1}{{8}{16}} \@writefile{lof}{\contentsline {figure}{\numberline {9}{\ignorespaces KKT dual complementary $\alpha $}}{16}} \newlabel{fig:ex2}{{9}{16}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {6.4.2}How to Optimize $W(\alpha )$ respect to $\alpha _i$ and $\alpha _j$}{18}} \@writefile{lof}{\contentsline {figure}{\numberline {10}{\ignorespaces Constrains on $\alpha $}}{20}} \newlabel{fig:constrain}{{10}{20}} \@writefile{lof}{\contentsline {figure}{\numberline {11}{\ignorespaces $y_1, y_2$ same value}}{20}} \newlabel{fig:constrains1}{{11}{20}} \@writefile{lof}{\contentsline {figure}{\numberline {12}{\ignorespaces $y_1, y_2$ different value}}{21}} \newlabel{fig:constrains2}{{12}{21}} \@writefile{toc}{\contentsline {section}{\numberline {7}Lagrange Duality [optional material]}{22}} \@writefile{toc}{\contentsline {subsection}{\numberline {7.1}Lagrange}{22}} \@writefile{toc}{\contentsline {subsection}{\numberline {7.2}Primal Problem}{23}} \@writefile{lof}{\contentsline {figure}{\numberline {13}{\ignorespaces Saddle Point}}{24}} \newlabel{fig:saddle}{{13}{24}} \@writefile{toc}{\contentsline {subsection}{\numberline {7.3}Dual Problem}{24}} \@writefile{toc}{\contentsline {subsection}{\numberline {7.4}Karush-Kuhn-Tucker conditions for duality gap }{24}}