\relax 
\select@language{english}
\@writefile{toc}{\select@language{english}}
\@writefile{lof}{\select@language{english}}
\@writefile{lot}{\select@language{english}}
\@writefile{toc}{\contentsline {section}{\numberline {1}What's SVM}{1}}
\@writefile{toc}{\contentsline {section}{\numberline {2}Margins}{1}}
\@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces Confident Example, linearly separable.}}{2}}
\newlabel{fig:confident}{{1}{2}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.1}Functional and Geometric Margins}{2}}
\@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces Margin Example. The black separating plane is better than the green one, because it has larger margins (sits more ``in the middle''). A mechanical analogy: if the separating plane is free to rotate but constrained to be separator, when the points start pushing force towards the plane, the plane will settle in an equilibrium ``middle'' position - thats where the black separator is. }}{3}}
\newlabel{fig:margin}{{2}{3}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {2.1.1}Geometric Margins}{3}}
\@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces Geometric Margin: $w$ and $b$ are scaled such that closest points are on the line $|w^Tx+b|=1$. If the plane is in the middle, the minimum margin (geometrical distance from plane to points) is $\rho = 1/w$. }}{4}}
\newlabel{fig:geometric}{{3}{4}}
\@writefile{toc}{\contentsline {section}{\numberline {3}The Optimal Margin Classifier}{4}}
\@writefile{toc}{\contentsline {section}{\numberline {4}Solution part 1: the dual problem}{5}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.1}Linearly Separable case}{5}}
\@writefile{lof}{\contentsline {figure}{\numberline {4}{\ignorespaces Seperable Example}}{5}}
\newlabel{fig:separable}{{4}{5}}
\@writefile{toc}{\contentsline {section}{\numberline {5}Kernel trick}{7}}
\@writefile{lof}{\contentsline {figure}{\numberline {5}{\ignorespaces Intercept illustration for $b$ calculation: calculate the $b_A,b_B$ the closest "b" to the plane from either side, then infer $b$ from these tow values.}}{8}}
\newlabel{fig:b}{{5}{8}}
\@writefile{toc}{\contentsline {subsection}{\numberline {5.1}Non-Separable case and slack variables}{8}}
\@writefile{lof}{\contentsline {figure}{\numberline {6}{\ignorespaces Outlier Example}}{9}}
\newlabel{fig:outlier}{{6}{9}}
\newlabel{fig:alpahs_0_C}{{5.1}{10}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {5.1.1}Slack variables dual form derivation [optional material]}{10}}
\@writefile{toc}{\contentsline {section}{\numberline {6}Solution part 2 : SMO Algorithm instead of Quadratic Solvers}{11}}
\@writefile{toc}{\contentsline {subsection}{\numberline {6.1}Coordinate Ascent}{11}}
\@writefile{lof}{\contentsline {figure}{\numberline {7}{\ignorespaces Coordinate Ascent}}{12}}
\newlabel{fig:coordinate}{{7}{12}}
\@writefile{toc}{\contentsline {subsection}{\numberline {6.2}SMO}{12}}
\@writefile{toc}{\contentsline {subsection}{\numberline {6.3}SMO Pseudocode}{13}}
\@writefile{toc}{\contentsline {subsection}{\numberline {6.4}SMO Details}{15}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {6.4.1}How to Select $\alpha _i$ and $\alpha _j$}{15}}
\@writefile{lof}{\contentsline {figure}{\numberline {8}{\ignorespaces Idea about Choosing $\alpha $}}{16}}
\newlabel{fig:ex1}{{8}{16}}
\@writefile{lof}{\contentsline {figure}{\numberline {9}{\ignorespaces KKT dual complementary $\alpha $}}{16}}
\newlabel{fig:ex2}{{9}{16}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {6.4.2}How to Optimize $W(\alpha )$ respect to $\alpha _i$ and $\alpha _j$}{18}}
\@writefile{lof}{\contentsline {figure}{\numberline {10}{\ignorespaces Constrains on $\alpha $}}{20}}
\newlabel{fig:constrain}{{10}{20}}
\@writefile{lof}{\contentsline {figure}{\numberline {11}{\ignorespaces $y_1, y_2$ same value}}{20}}
\newlabel{fig:constrains1}{{11}{20}}
\@writefile{lof}{\contentsline {figure}{\numberline {12}{\ignorespaces $y_1, y_2$ different value}}{21}}
\newlabel{fig:constrains2}{{12}{21}}
\@writefile{toc}{\contentsline {section}{\numberline {7}Lagrange Duality [optional material]}{22}}
\@writefile{toc}{\contentsline {subsection}{\numberline {7.1}Lagrange}{22}}
\@writefile{toc}{\contentsline {subsection}{\numberline {7.2}Primal Problem}{23}}
\@writefile{lof}{\contentsline {figure}{\numberline {13}{\ignorespaces Saddle Point}}{24}}
\newlabel{fig:saddle}{{13}{24}}
\@writefile{toc}{\contentsline {subsection}{\numberline {7.3}Dual Problem}{24}}
\@writefile{toc}{\contentsline {subsection}{\numberline {7.4}Karush-Kuhn-Tucker conditions for duality gap }{24}}