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1 Convex and di↵erentiable

Say f is convex and di↵erentiable
-then for any w1, w2 we have

f(
w1 + w2

2
) <

1
2
(f(w1) + f(w2))

or generalizing

f(�w1 + (1� �)w2) < �f(w1) + (1� �)f(w2)

and generalizing on more than two variables (for a set of �-s that form a distribution):

f(
X

i

�

i

w

i

) <

X

i

�

i

f(w
i

)

- Also for any w1,w2 we have (compare the slopes on the figure)

f 0(w2)(w2 � w1) � f(w2)� f(w1) � f 0(w1)(w2 � w1)

There exists w = �w1 + (1� �)w2,� 2 [0, 1] such that

f(w2)� f(w1) = f 0(w)(w2 � w1)
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2 Constrained Optimization Examples

constrained optimization

given convex functions f, g1, g2, ...., gk

, h1, h2, ...., hm

on convex set X, the problem

minimize f(w)
subject to
g

i

(w)  0 ,for all i

h

j

(w) = 0 ,for all j

has as its solution a convex set. If f is strict convex the solution is unique (if exists)

we will assume all the good things one can imagine about functions f, g1, g2, ...., gk

, h1, h2, ...., hm

like
convexity, di↵erentiability etc.That will still not be enough though....

Given that we can write an equality h

j

(w) = 0 as two inequality constraints, h

j

(w)  0 and h

j

(w) � 0,
we will keep only the inequality constraints.
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Figure 1: Constrained optimization. Mary has a date with Cal; she wants to get there as soon as possible,
but she has to stop by the river first. The optimal route can be seen as follows: all the routes of cost C
(fixed) are ellipses centered in M and C; Mary should take consider the smallest ellipse tangent to the river.
Such an ellipse has the property that the tangent line (di↵erential) in P for both the objective (route) and
the constraint (river) have the same direction, there fore the two di↵erentials are a proportional vectors. The
proportionality constants are the Lagrangian Multipliers.

Figure 2: Constrained optimization

3 Lagrangian multipliers

We distinguish two types of constraints:
- active : the solution will have g

i

(w) = 0
- inactive : the solution will have g

i

(w) < 0

Suppose for now (to make things easier) that we know what constraints are going to be active, and so
we can write them with equality

lagrange multipliersfor equality constraints

let ⌥ be the feasible region ⌥ = {w|h
j

(w) = 0 8j}
We assign a lagrangian multiplier to every constraint. So if there are n constraints, we introduce n variables
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� = �1,�2, ...,�n

); The Lagrangian is

L(w,�) = f(w) +
X

j

�

j

h

j

(w)

on ⌥ we have L(w,�) = f(w) and so our problem can be written as
minimize L(w,�)
subject to h

j

(w) = �

�j L(w,�) = 0
Lagrange theorem nec[essary] and su↵[icient] conditions for a point ew to be an optimum (ie a solution for
the problem above) are the existence of e

� such that

�wL(ew,

e
�) = 0 ; �

�j L(ew,

e
�) = 0

Example. Find the minimum of the function

f(x, y) = (x� 1)2 + (y � 2)2

subject to g(x, y) = 2x + y = 0

Figure 3: f constrained by g

L(x, y, ↵) = (x� 1)2 + (y � 2)2 + ↵(2x + y)

r
x

L = 2(x� 1) + 2↵ = 0;x = �↵ + 1

r
y

L = 2(y � 2) + ↵ = 0; y =
�↵ + 4

2

r
↵

L = 2x + y = 0;�2↵ + 2 +
�↵ + 4

2
= 0;↵ = 8/5.

x = �3/5; y = 6/5

Verification : the center of the circle is at (1,2); the radius vector to the line is (1,2) - (x,y) = (2/5, 4/5) .
This vector should be perpendicular on the constraint line.

For inactive constraints, the same exact strategy apply ( they are featured in the lagrangian formula)
but their lagrangian multipliers will end up being zero ( KKT theorem)
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4 Kuhn-Tucker Saddle point conditions

saddle point

minimize f(w)
subject to g

i

(w)  0 ,for all i

and the lagrangian function
L(w,↵) = f(w) +

X

i

↵

i

g

i

(w)

(ew, e↵) with e↵
i

� 0 is saddle point if 8(w,↵),↵
i

� 0

L(ew,↵)  L(ew, e↵)  L(w, e↵)

Figure 4: Saddle
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Figure 5: Saddle, linear ↵

5 Karush-Kun-Tucker for di↵erentiable, convex problems

Karush Kuhn Tucker theorem

minimize f(w)
subject to g

i

(w)  0 ,for all i

were g

i

are qualified constraints

define the lagrangian function
L(w,↵) = f(w) +

X

i

↵

i

g

i

(w)

KKT theorem nec and su↵ conditions for a point ew to be a solution for the optimization problem are the
existence of e↵ such that

rwL(ew, e↵) = 0
r

↵

L(ew, e↵) = 0
e↵
i

g

i

(ew) = 0
g

i

(ew)  0
e↵
i

� 0
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6 The dual problem

duality

f(w) � f(ew) � f(w) +
kX

i=1

↵

i

g

i

(w)

dual maximization problem :
maximize L(w,↵) = f(w) +

P
k

i=1 ↵

i

g

i

(w)
subject to ↵ � 0 ; �wL(w,↵) = 0

OR
set ✓(↵) = infw L(w,↵)
maximize ✓(↵)
subject to ↵ � 0

the primal and dual problem have the same solution if the KKT gap can be vanished
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7 Interior point methods
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