CSG220 Machine Learning Fall 2008

Convex optimization

Convex optimization

Virgil Pavlu October 20, 2008

1 Convex and differentiable

Say f is convex and differentiable

-then for any wi, wy we have
w1 + wo 1

9 ) < g(f(wl)Jrf(wz))

I

or generalizing

FQwr 4+ (1 = Nwz) < Af(wr) + (1 = A) fwa)

and generalizing on more than two variables (for a set of A-s that form a distribution):

f(z Aiw;) < Z Ai f (w;)

- Also for any wy,ws we have (compare the slopes on the figure)
fr(wz)(wz —w1) = fw2) = f(wi) 2 fr(wr)(wz —w1)
There exists w = Aw; + (1 — AN)ws, A € [0, 1] such that

flwz) — f(wr) = friw)(we —w1)




f(w)

f(w}'

®
\ 4

f(w, ) > f(w)

2 Constrained Optimization Examples

constrained optimization

given convex functions f, g1, 9o, ..., gk, 1, ho, ...., by, on convex set X, the problem

minimize f(w)
subject to

gi(w) <0 (for all ¢
hj(w) =0 ,for all j

has as its solution a convex set. If f is strict convex the solution is unique (if exists)

we will assume all the good things one can imagine about functions f, g1, 92, ..., gk, P1, b2, -.., b like
convexity, differentiability etc.That will still not be enough though....

Given that we can write an equality h;(w) = 0 as two inequality constraints, h;(w) < 0 and h;(w) > 0,
we will keep only the inequality constraints.



Figure 1: Constrained optimization. Mary has a date with Cal; she wants to get there as soon as possible,
but she has to stop by the river first. The optimal route can be seen as follows: all the routes of cost C
(fixed) are ellipses centered in M and C; Mary should take consider the smallest ellipse tangent to the river.
Such an ellipse has the property that the tangent line (differential) in P for both the objective (route) and
the constraint (river) have the same direction, there fore the two differentials are a proportional vectors. The
proportionality constants are the Lagrangian Multipliers.
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Figure 2: Constrained optimization

3 Lagrangian multipliers

We distinguish two types of constraints:
- active : the solution will have g;(w) = 0
- inactive : the solution will have g;(w) < 0

Suppose for now (to make things easier) that we know what constraints are going to be active, and so
we can write them with equality

1agrang€ mU.]tlp].lerSfor equality constraints

let T be the feasible region T = {w]h;(w) =0 Vj}
We assign a lagrangian multiplier to every constraint. So if there are n constraints, we introduce n variables



08 = b1, P2, ..., Bn); The Lagrangian is
L(w,0) = f(w) + Y _ Bih;(w)
J

on T we have L(w,3) = f(w) and so our problem can be written as

minimize L(w, (3)

subject to hj(w) = dg, L(w, ) =0

Lagrange theorem nec[essary] and suff[icient] conditions for a point W to be an optimum (ie a solution for

the problem above) are the existence of 5 such that

dwL(w,3) =03 d5,L(w,3)=0
Example. Find the minimum of the function
flay) =@ -1+ (y—-2)°

subject to g(z,y) =2x4+y =0
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Figure 3: f constrained by g

L(z,y,0) = (z —1)* + (y — 2)? + a(2z + y)

VeoL=2(x—-1)+2a=02=—a+1

—a+4
VyL=2(y—-2)+a=0y= a;
—a+4
Vol =2r4y=0;—20+2+ O‘;’ =0;a = 8/5.

x=-3/5y=6/5

Verification : the center of the circle is at (1,2); the radius vector to the line is (1,2) - (x,y) = (2/5, 4/5) .
This vector should be perpendicular on the constraint line.

For inactive constraints, the same exact strategy apply ( they are featured in the lagrangian formula)
but their lagrangian multipliers will end up being zero ( KKT theorem)
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4 Kuhn-Tucker Saddle point conditions

saddle point

minimize f(w)
subject to g;(w) < 0 ,for all ¢

and the lagrangian function
L(w,a) = f(w) + Z a;g;(w)
(w, @) with a; > 0 is saddle point if V(w,a),a; >0

L(%,a) < L(W,d) < L(w,d)

Figure 4: Saddle
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Figure 5: Saddle, linear

5 Karush-Kun-Tucker for differentiable, convex problems

Karush Kuhn Tucker theorem

minimize f(w)
subject to g;(w) < 0 ,for all ¢
were g; are qualified constraints

define the lagrangian function

L(w,a) = f(w) + Z a;gi(w)

KKT theorem nec and suff conditions for a point w to be a solution for the optimization problem are the
existence of & such that

Vwl(W,a
VoL(W,d
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6 The dual problem

duality
k
fw) > f(W) > f(w)+ me(w)

dual maximization problem :
maximize L(w,«) = f(w) + Zle ;gi(W)
subject to a > 0 5 0w L(w,a) =0

OR

set 6(a) = infy L(w, @)
maximize 6(«)

subject to o > 0

the primal and dual problem have the same solution if the KKT gap can be vanished



7 Interior point methods



