HAAR-like features for
Images

. digit iImages are
scanned hand written
digits

Digit scan dataset

. 60,000 scans

. 10 classes : 0,1,2,...9
- roughly uniform distributed

. each scanned image 28x238 pixels square

. comes split into (train, test)
- Nno cross validation

. very learnable: most algorithms score 5% or
less error

. http://yann.lecun.com/exdb/mnist/

http://yann.lecun.com/exdb/mnist/

Rectangle black level

. rectangle ABCD can act like
an image "mask’ : it
selects/cuts that rectangle
out of an image

- or of any image

Rectangle black level

. a given set S of rectangles
cuts S different masks for
an iImage

Rectangle black level

O

. for each rectangle r=ABCD
on Image X we can
compute a black value”

- blacks(X) = number of
black pixels in the mask cut
by r in image X

. We can compute
black: (X)efficiently, if we
compute In the right order!

- dynamic programing

Vertical, horizontal features for a rectangle

. horizontal feature
A (X) = black.r() - blacki-ight(X)
= blackAMCN(X) - blackMBND(X)

. vertical feature
An(X) = blackop0) - black-pottom(X)
= blackagy(X) - blackyycp(X)

. |S| rectangles, 2 features each = 2|S|

features extracted (from each image)

- if we also store the black(X) value, thats 3
features/rectangle (black,(X), A, (X), An(X)) for
3|S| features extracted.

How to compute black.(X) efficiently

. first compute it for all
rectangles cornered in O
(A=0) fix image corner.

- That is compute black:(X)
for each pixel D

° T . then every rectangle
: : =ABCD can be computed
A In constant time from O-

cornered rectangles

« black(rectangle ABCD) =
¢ black(OTYD) - black(OTXB) -
black(0ZYC) + black(0ZXA)

O-corner rectangles computation

@)

B

. r=0OBCD determined by D

. naively one can compute
all black(X) = blackp(X)
for all rectangles as

® for 1=1:n

® for j=1:n
— D=D17j pixel

— blackpij(X) = count of
black pixels in OBCD

. total O(n*) running time

- n = size of the square
Image

O-corner rectangles . dynamic programing

. =OBCD determined by D

. dynamic programing computes a
rectangle from the rectangle
computed already

® for i=1l:n

® for j=1:n
— D=D1i]j pixel
black D;;(X) =
black D; 41 (X) +
black D; 1 s (X)
black Dj_q, 41 (X)+
black(pixel D;; X)

2 o
. total O(n") running time
- much better

