g new feature

A feature selecti ;
tion algorithm can be seen as the combination of a search technique for proposin : .
st algorithm 18

SUDS g 1 B
[Ot:;::se*alcl}?‘;i ::l'g;ea“ t;)\(alU<1F19n measure which scores the different feature subsets. Thc'si‘mple .
tiichiol hemas 'bud 53‘ of featurles ﬁndu}g the one which minimises the error rate. This 1s an exha}lstlv:
— pff ’ ‘}"_ lS.COmputatlonally intractable for all but the smallest of feature §ets. .Tl}e chqce o
ation metric heavily influences the algorithm, and it is these evaluation metrics which distinguish between
(1]

the three'msxin categories Tf feature selection algorithms: wrappers, filters and embedded methods.
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W"?Pmethods use a predictive model to score feature subsets. Each new subset is used to train a model,
which is tested on a hold-out set. Counting the number of mistakes made on that hold-out set (the error rate of

e model) gives the score for that subset. As wrapper methods train a new model for each subset, they are very
mputationally intensive, but usually provide the best performing feature set for that particular type of model.

ture subset. This measure is chosen to
Common measures include the mutual

ent, inter/intra

Filter methods use a proxy measure instead of the error rate to score a fea

be fast to compute, whilst still capturing the usefulness of the feature set.
(2] pearson product-moment correlation coeffici

Q information !!! the pointwise mutual information,
mbinations.[213] Filters are usually less

class distance or the scores of significance tests for each class/feature co
computationally intensive than wrappers, but they produce a feature set which is not tuned to a specific type of

predictive model. Many filters provide a feature ranking rather than an explicit best feature subset, and the cut
off point in the ranking is chosen via cross-validation. Filter methods have also been used as a preprocessing

step for wrapper methods, allowing a wrapper to be used on larger problems.

Embedded methods are a catch-all group of techniques which perform feature selection as part of the model
nstruction process. The exemplar of this approach is the LASSO method for constructing a linear model,

0
@nich penalises the regression coefficients, shrinking many of them to zero. Any features which have non-zero
gression coefficients are 'selected' by the LASSO algorithm. One other popular approach is the Recursive

Feature Elimination algorithm, commonly used with Support Vector Machines to repeatedly construct a model
and remove features with low weights. These approaches tend to be between filters and wrappers in terms of
computational complexity.

tion is stepwise regression. It is a greedy algorithm that adds

the best feature (or deletes the worst feature) at each round. The main control issue is deciding when to stop the
algorithm. In machine learning, this is typically done by cross-validation. In statistics, some criteria are
optimized. This leads to the inherent problem of nesting. More robust methods have been explored, such as

branch and bound and piecewise linear network.

In statistics, the most popular form of feature selec

Subset selection

Subset selection evaluates a subset of features as a group for suitability. Subset selection algorithms can be
broken up into Wrappers, Filters and Embedded. Wrappers use a search algorithm to search through the space of
possible features and evaluate each subset by running a model on the subset. Wrappers can be computationally
expensive and have a risk of over fitting to the model. Filters are similar to Wrappers in the search approach, but
instead of evaluating against a model, a simpler filter is evaluated. Embedded techniques are embedded in and

specific to a model.

Many popular search approaches use greedy hill climbing, which iteratively evaluates a candidate subset of
features, then modifies the subset and evaluates if the new subset is an improvement over the old. Evaluation of
the subsets requires a scoring metric that grades a subset of features. Exhaustive search is generally impractical,



Model Sparsity and Feature Selection

1 The “Bet on Sparsity” Principle

book: Elements, 16.2.2
book: Statistics for high dimensional data, introduction
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Roughly speaking, for High-dimensional statistical inference to achieve reason-
able accuracy or asymptotic consistency, we need

log(p) (sparsity(8)) << n

2 Forward Selection

Forward selection starts with no feature(variable) in the model, and adds fea-
tures to the model one at a time. At each step, the feature that can contribute
most to the model is added. The procedure is repeated until one new feature

can improve the model significantly(defined by some statistical test threshold).
For a complete survey of feature selection methods, see [3].

3 Regularized Linear Models -

3.1 Regularized Linear Regression )@\'— 4: &‘“’ﬁi\’ %\\
Consider the linear regression model g&"

Y=8+z"8 3
Suppose we have N data points, and p features. Each feature is standardized to 'y \'?‘Q\

have mean 0 an variance 1. Regularized Linear Regression solves the following
problem:

A= L
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where Zf’ (Wi — Bo — zTB)? is the square loss term, P(S)

is a penalty term,
and A controls the strength of the penalty. g



There are three kinds of commonly used penalties in linear regression:
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elastic-net penalty. The € denalty is a comproml
ridge-regression penalty adthe lasso penalty.
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Ridge Regression shrinks the size the regression coefficients. In linear regression, Yol % (v

if there are two correlated features, there coefficients can be poorly determined
and have high variance. One of them can have a very large positive coefficient,
and the other correlated feature can have a very large _gggggi_yg,gggﬁicie,,r_l,t . They
cancel each other. By adding the ridge penalty, the problem is alleviated, as it
shrinks the coefficients towards 0. In the extreme case of k identical features,
they each get small identical coefficients. So ridge penalty encourages features
to borrow strength from each other. From a Bayesian point of view, the ridge
regression estimation assumes that 3; has a Gaussian distribution with 0 mean
as its prior distribution. And the solution to ridge regression is the mean (or
mode) of the posterior distribution.

Lasso behaves differently than Ridge. If there are several correlated features,
Lasso tends to pick one and ignore the rest. That is, some features will have
coefficients exactly 0. So Lasso can be used to perform continuous feature
selection. From a Bayesian point of view, the Lasso penalty corresponds to a

Laplace prior.
To illustrate the behaviors of Ridge and Lasso, we write them as constrained

optimization problems.
Ridge regression can be equivalently formulated as
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Q/ There is a one-to-one correspondence between A and t.
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Similarly, there is a one-to-one correspondence between A and ¢.
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FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression
NM‘ (right). Shown are contours of the ervor and constraint functions. The solid blue M‘
. \\‘ﬁ- areas are the constraint regions |B1| + |2 < t and B} + B3 <, tively,
while the red ellipses are the contours of the least squares ervor function.

> Figure 1: Source: Figure 3.11 of [4]

Figure 1 shows the difference between lasso and ridge regression estimations
when there are only two features. The square loss has elliptical contours. Ridge
regression has a disk constraint region, while lasso has a diamond constraint
region. In both constrained optimization problems, the optimal solution is the
first point where the elliptical contours hit the constraint region. In Lasso
regression, if the solution occurs at a corner, then it has one parameter 3; equal

to zero. When p is large, there are many corners so that many parameters are
likely to become zero.

3.2 Regularized Logistic Regression
The regularized Logistic Regression has the form

N
max{~- > lilog(Ply = 1120) + (1 - y)log(Ply = 0[z:) ~ \Pa(6)}
it =1

If we use RIDGE penalty, we ge following;:

@NZ[‘% (log(P(y = 1]a:)) + (1 — yi)log(P(y = 0|z,)) 2NZ/32}




