
CS838-1 Advanced NLP:

Conditional Random Fields

Xiaojin Zhu

2007
Send comments to jerryzhu@cs.wisc.edu

1 Information Extraction

Current NLP techniques cannot fully understand general natural language ar-
ticles. However, they can still be useful on restricted tasks. One example is
Information Extraction. For example, one might want to extract the title, au-
thors, year, and conference names from a researcher’s Web page. Or one might
want to identify person, location, organization names from news articles (NER,
named entity recognition). These are useful to automatically turn free text on
the Web into knowledge databases, and form the basis of many Web services.

The basic Information Extraction technique is to treat the problem as a
text sequence tagging problem. The tag sets can be {title, author, year, confer-
ence, other}, or {person, location, organization, other}, for instance. Therefore
HMMs has been naturally and successfully applied to Information Extraction.

However, HMMs have difficulty modeling overlapping, non-independent fea-
tures of the output. For example, an HMM might specify which words are likely
for a given state (tag) via p(x|z). But often the part-of-speech of the word, as
well as that of the surrounding words, character n-grams, capitalization patterns
all carry important information. HMMs cannot easily model these, because the
generative story limits what can be generated by a state variable.

Conditional Random Field (CRF) can model these overlapping, non-independent
features. A special case, linear chain CRF, can be thought of as the undirected
graphical model version of HMM. It is as efficient as HMMs, where the sum-
product algorithm and max-product algorithm still apply.

2 The CRF Model

Let x1:N be the observations (e.g., words in a document), and z1:N the hidden
labels (e.g., tags). A linear chain Conditional Random Field defines a conditional

1



probability (whereas HMM defines the joint)

p(z1:N |x1:N ) =
1
Z

exp

(
N∑

n=1

F∑
i=1

λifi(zn−1, zn, x1:N , n)

)
. (1)

Let us walk through the model in detail. The scalar Z is the normalization
factor, or partition function, to make it a valid probability. Z is defined as the
sum of exponential number of sequences,

Z =
∑
z1:N

exp

(
N∑

n=1

F∑
i=1

λifi(zn−1, zn, x1:N , n)

)
, (2)

therefore is difficult to compute in general. Note Z implicitly depends on x1:N

and the parameters λ.
The big exp() function is there for historical reasons, with connection to the

exponential family distribution. For now, it is sufficient to note that λ and f()
can take arbitrary real values, and the whole exp function will be non-negative.

Within the exp() function, we sum over n = 1, . . . , N word positions in the
sequence. For each position, we sum over i = 1, . . . , F weighted features. The
scalar λi is the weight for feature fi(). The λi’s are the parameters of the CRF
model, and must be learned, similar to θ = {π, φ,A} in HMMs.

3 Feature Functions

The feature functions are the key components of CRF. In our special case of
linear-chain CRF, the general form of a feature function is fi(zn−1, zn, x1:N , n),
which looks at a pair of adjacent states zn−1, zn, the whole input sequence
x1:N , and where we are in the sequence (n). These are arbitrary functions that
produce a real value.

For example, we can define a simple feature function which produces binary
values: it is 1 if the current word is John, and if the current state zn is PERSON:

f1(zn−1, zn, x1:N , n) =
{

1 if zn = PERSON and xn = John
0 otherwise (3)

How is this feature used? It depends on its corresponding weight λ1. If λ1 > 0,
whenever f1 is active (i.e. we see the word John in the sentence and we assign
it tag PERSON), it increases the probability of the tag sequence z1:N . This
is another way of saying the CRF model should prefer the tag PERSON for
the word John. If on the other hand λ1 < 0, the CRF model will try to
avoid the tag PERSON for John. Which way is correct? One may set λ1 by
domain knowledge (we know it should probably be positive), or learn λ1 from
corpus (let the data tell us), or both (treating domain knowledge as prior on
λ1). Note λ1, f1() together is equivalent to (the log of) HMM’s φ parameter
p(x = John|z = PERSON).

2



As another example, consider

f2(zn−1, zn, x1:N , n) =
{

1 if zn = PERSON and xn+1 = said
0 otherwise (4)

This feature is active if the current tag is PERSON and the next word is ‘said’.
One would therefore expect a positive λ2 to go with the feature. Furthermore,
note f1 and f2 can be both active for a sentence like “John said so.” and
z1 = PERSON. This is an example of overlapping features. It boosts up the
belief of z1 = PERSON to λ1 +λ2. This is something HMMs cannot do: HMMs
cannot look at the next word, nor can they use overlapping features.

The next feature example is rather like the transition matrix A in HMMs.
We can define

f3(zn−1, zn, x1:N , n) =
{

1 if zn−1 = OTHER and zn = PERSON
0 otherwise (5)

This feature is active if we see the particular tag transition (OTHER, PER-
SON). Note it is the value of λ3 that actually specifies the equivalent of (log)
transition probability from OTHER to PERSON, or AOTHER, PERSON in
HMM notation. In a similar fashion, we can define all K2 transition features,
where K is the size of tag set.

Of course the features are not limited to binary functions. Any real-valued
function is allowed.

4 Undirected Graphical Models (Markov Ran-
dom Fields)

CRF is a special case of undirected graphical models, also known as Markov
Random Fields. A clique is a subset of nodes in the graph that are fully con-
nected (having an edge between any two nodes). A maximum clique is a clique
that is not a subset of any other clique. Let Xc be the set of nodes involved
in a maximum clique c. Let ψ(Xc) be an arbitrary non-negative real-valued
function, called the potential function. In particular ψ(Xc) does not need to be
normalized. The Markov Random Field defines a probability distribution over
the node states as the normalized product of potential functions of all maximum
cliques in the graph:

p(X) =
1
Z

∏
c

ψ(Xc), (6)

where Z is the normalization factor. In the special case of linear-chain CRFs,
the cliques correspond to a pair of states zn−1, zn as well as the corresponding
x nodes, with

ψ = exp (λf) . (7)

3



This is indeed the direct connection to factor graph representation as well.
Each clique can be represented by a factor node with the factor ψ(Xc), and the
factor node connects to every node in Xc. There is one addition special factor
node which represents Z.

A welcome consequence is that the sum-product algorithm and max-sum al-
gorithm immediately apply to Markov Random Fields (and CRFs in particular).
The factor corresponding to Z can be ignored during message passing.

5 CRF training

Training involves finding the λ parameters. For this we need fully labeled data
sequences {(x(1), z(1)), . . . , (x(m), z(m))}, where x(1) = x

(1)
1:N1

the first observa-
tion sequence, and so on1. Since CRFs define the conditional probability p(z|x),
the appropriate objective for parameter learning is to maximize the conditional
likelihood of the training data

m∑
j=1

log p(z(j)|x(j)). (8)

Often one can also put a Gaussian prior on the λ’s to regularize the training
(i.e., smoothing). If λ ∼ N(0, σ2), the objective becomes

m∑
j=1

log p(z(j)|x(j))−
F∑
i

λ2
i

2σ2
. (9)

The good news is that the objective is concave, so the λ’s have a unique set of
optimal values. The bad news is that there is no closed form solution2.

The standard parameter learning approach is to compute the gradient of
the objective function, and use the gradient in an optimization algorithm like
L-BFGS. The gradient of the objective function is computed as follows:

∂

∂λk

m∑
j=1

log p(z(j)|x(j))−
F∑
i

λ2
i

2σ2
(10)

=
∂

∂λk

m∑
j=1

(∑
n

∑
i

λifi(z
(j)
n−1, z

(j)
n ,x(j), n)− logZ(j)

)
−

F∑
i

λ2
i

2σ2
(11)

=
m∑

j=1

∑
n

fk(z(j)
n−1, z

(j)
n ,x(j), n)

−
m∑

j=1

∑
n

Ez′n−1,z′n
[fk(z′n−1, z

′
n,x

(j), n)]− λk

σ2
, (12)

1Unlike HMMs which can use the Baum-Welch (EM) algorithm to train on unlabeled data
x only, CRFs training on unlabeled data is difficult

2If this reminds you of logistic regression, you are right: logistic regression is a special case
of CRF where there is no edges among hidden states. In contrast, HMMs when trained on
fully labeled data have simple and intuitive closed form solutions.

4



where we used the fact

∂

∂λk
logZ = Ez′ [

∑
n

fk(z′n−1, z
′
n,x, n)] (13)

=
∑

n

Ez′n−1,z′n
[fk(z′n−1, z

′
n,x, n)] (14)

=
∑

n

∑
z′n−1,z′n

p(z′n−1, z
′
n|x)fk(z′n−1, z

′
n,x, n). (15)

Note the edge marginal probability p(z′n−1, z
′
n|x) is under the current parame-

ters, and this is exactly what the sum-product algorithm can compute.
The partial derivative in (12) has an intuitive explanation. Let us ignore

the term λk/σ
2 from the prior. The derivative has the form of (observed counts

of feature fk) minus (expected counts of feature fk). When the two are the
same, the derivative is zero, and there is no longer an incentive to change λk.
Therefore we see that training can be thought of as finding λ’s that match the
two counts.

6 Feature Selection

A common practice in NLP is to define a very large number of candidate features,
and let the data select a small subset to use in the final CRF model in a process
known as feature selection. Often the candidate features are proposed in two
stages:

1. Atomic candidate features. These are usually a simple test on a specific
combination of words and tags, e.g.(x =John, z =PERSON), (x =John,
z =LOCATION), (x =John, z =ORGANIZATION), etc. There are V K
such “word identity” candidate features, which is obviously a large num-
ber. Although it is called the word identity test, it should be understood
as in combination with each tag value. Similarly one can test whether
the word is capitalized, the identity of the neighboring words, the part-
of-speech of the word, and so on. The state transition features are also
atomic.

From the large number of atomic candidate features, a small number of
features are selected by how much they improve the CRF model (e.g.,
increase in the training set likelihood).

2. “Grow” candidate features. It is natural to combine features to form
more complex features. For example, one can test for current word being
capitalized, the next word being “Inc.”, and both tags being ORGANI-
ZATION. However, the number of complex features grows exponentially.
A compromise is to only grow candidate features on selected features so
far, by extending them with one atomic additions, or other simple boolean
operations.

5



Often any remaining atomic candidate features are added to the grown
set. A small number of features are selected, and added to the existing
feature set. This stage is repeated until enough features have been added.

6


