
Feature Selection, Sparsity, Regression

Regularization

1 Feature Selection Introduction

from Wikipedia

A feature selection algorithm can be seen as the combination of a search
technique for proposing new feature subsets, along with an evaluation measure
which scores the di↵erent feature subsets. The simplest algorithm is to test
each possible subset of features finding the one which minimizes the error rate.
This is an exhaustive search of the space, and is computationally intractable
for all but the smallest of feature sets. The choice of evaluation metric heavily
influences the algorithm, and it is these evaluation metrics which distinguish
between the three main categories of feature selection algorithms: wrappers,
filters and embedded methods.

Task Independent, Model independent. Assess correlation/dependency
between feature irrespective of the task and the predictive model. See PCA.

Filter methods (Task dependent, Model independent) use a proxy
measure instead of the error rate to score a feature subset. This measure is
chosen to be fast to compute, whilst still capturing the usefulness of the feature
set. Common measures include the mutual information, the pointwise mutual
information, Pearson product-moment correlation coe�cient, inter/intra class
distance or the scores of significance tests for each class/feature combinations.
Filters are usually less computationally intensive than wrappers, but they pro-
duce a feature set which is not tuned to a specific type of predictive model. Many
filters provide a feature ranking rather than an explicit best feature subset, and
the cut o↵ point in the ranking is chosen via cross-validation. Filter methods
have also been used as a preprocessing step for wrapper methods, allowing a
wrapper to be used on larger problems.

Wrapper methods (Task dependent, Model dependent) use a pre-
dictive model to score feature subsets. Each new subset is used to train a model,
which is tested on a hold-out set. Counting the number of mistakes made on
that hold-out set (the error rate of the model) gives the score for that subset.
As wrapper methods train a new model for each subset, they are very computa-
tionally intensive, but usually provide the best performing feature set for that
particular type of model.

Forward selection (Task dependent, Model dependent) starts with

1

no feature(variable) in the model, and adds features to the model one at a
time. At each step, the feature that can contribute most to the model is added.
The procedure is repeated until one new feature can improve the model signifi-
cantly(defined by some statistical test threshold).

set of features initial empty, S = ;
repeat while improvement > ✏

for each feature f /2 S

performance (S [{f}) = performance(model, trained on S [{f})
end for
f

new

= argmax
f

performance(S [{f})
improvement = performance (S [{f

new

}) - performance (S)
S = S [{f

new

}
end repeat

Backward selection in contrast to Forward Selection, starts with all fea-
ture(variable) in the model, and eliminates features from the model one at a
time. At each step, the feature that can contribute least to the model is elimi-
nated. The procedure is repeated while there is no decrease in performance.

Embedded methods(Task dependent, blended with Model) are a
catch-all group of techniques which perform feature selection as part of the
model construction process. The exemplar of this approach is the LASSO
method for constructing a linear model, which penalizes the regression coef-
ficients, shrinking many of them to zero. Any features which have non-zero
regression coe�cients are “selected” by the LASSO algorithm. One other pop-
ular approach is the Recursive Feature Elimination algorithm, commonly used
with Support Vector Machines to repeatedly construct a model and remove
features with low weights. These approaches tend to be between filters and
wrappers in terms of computational complexity.

In statistics, the most popular form of feature selection is stepwise regression.
It is a greedy algorithm that adds the best feature (or deletes the worst feature)
at each round. The main control issue is deciding when to stop the algorithm. In
machine learning, this is typically done by cross-validation. In statistics, some
criteria are optimized. This leads to the inherent problem of nesting. More
robust methods have been explored, such as branch and bound and piecewise
linear network.

Many popular search approaches use greedy hill climbing, which iteratively
evaluates a candidate subset of features, then modifies the subset and evaluates
if the new subset is an improvement over the old. Evaluation of the subsets
requires a scoring metric that grades a subset of features. Exhaustive search is
generally impractical, so at some implementor (or operator) defined stopping
point, the subset of features with the highest score discovered up to that point is
selected as the satisfactory feature subset. The stopping criterion varies by algo-
rithm; possible criteria include: a subset score exceeds a threshold, a program’s
maximum allowed run time has been surpassed, etc.

2

Alternative search-based techniques are based on targeted projection pursuit
which finds low-dimensional projections of the data that score highly: the fea-
tures that have the largest projections in the lower-dimensional space are then
selected. For a complete survey of feature selection methods, see [3].

2 The “Bet on Sparsity” Principle

book: Elements, 16.2.2
book: Statistics for high dimensional data, introduction

Y

i

= µ+
dX

j=1

w

j

X

j

i

+ ✏

i

Roughly speaking, for High-dimensional statistical inference to achieve reason-
able accuracy or asymptotic consistency, we need

log(d)(sparsity(w)) << n

3 Regularized Linear Models

3.1 Regularized Linear Regression

Consider the linear regression model with parameters w = (w1
, w

2
, ..., w

d)

h

w

(x) = w

0 + x

T

w = w

0 +
X

j

x

j

w

j

Suppose we have N data points, and d features. Each feature is standardized to
have mean 0 an variance 1. Regularized Linear Regression solves the following
problem:

min
(w0,w)2Rd+1

⇥ 1

2N

NX

i=1

(y
i

� w0 � x

T

i

w)2 +
�

N

R(w)
⇤

where
P

N

i=1(yi � w0 � x

T

i

w)2 is the square loss term, R(w) is a penalty term
due to complexity of the model, and � controls the strength of the R penalty:

• small � means that complexity penalty is negligible, so the optimization
is essentially solving a simple regression problem without regularization.

• large � means that complexity penalty overwhelms the error, thus leading
to small/low complexity w but large square error

There are three kinds of commonly used penalties in linear regression:

• an L2 norm R(w) = 1
2 ||w||

2
2 = 1

2

P
d

j=1 w
j2 is called the RIDGE-regression

penalty.

3

• an L1 norm R(w) = ||w||1 =
P

d

j=1 |wj | is called the LASSO penalty.

• a mixture R

�

(w) = (1� �) 12 ||w||
2
2 + �||w||1 =

P
d

j=1[
1
2 (1� �)wj2 + �|wj |]

is called the elastic-net penalty. The elastic-net penalty is a compromise
between the ridge-regression penalty and the lasso penalty.

Ridge Regression shrinks the size the regression coe�cients. In linear regression,
if there are two correlated features, there coe�cients can be poorly determined
and have high variance. One of them can have a very large positive coe�cient,
and the other correlated feature can have a very large negative coe�cient. They
cancel each other. By adding the ridge penalty, the problem is alleviated, as it
shrinks the coe�cients towards 0. In the extreme case of k identical features,
they each get small identical coe�cients. So ridge penalty encourages features
to borrow strength from each other. From a Bayesian point of view, the ridge
regression estimation assumes that w

j

has a Gaussian distribution with 0 mean
as its prior distribution. And the solution to ridge regression is the mean (or
mode) of the posterior distribution.

Lasso behaves di↵erently than Ridge. If there are several correlated features,
Lasso tends to pick one and ignore the rest. That is, some features will have
coe�cients exactly 0. So Lasso can be used to perform continuous feature
selection. From a Bayesian point of view, the Lasso penalty corresponds to a
Laplace prior.

To illustrate the behaviors of Ridge and Lasso, we write them as constrained
optimization problems.

Ridge regression can be equivalently formulated as

ŵ

ridge = argmin
w

NX

i=1

(y
i

� w

0 �
dX

j=1

x

j

i

w

j)2

subject to
dX

j=1

w

j2  t

There is a one-to-one correspondence between � and t.
Lasso regression can be equivalently formulated as

ŵ

lasso = argmin
w

NX

i=1

(y
i

� w

0 �
dX

j=1

x

j

i

w

j)2

subject to
dX

j=1

|wj |  t

Similarly, there is a one-to-one correspondence between � and t.
Figure 1 shows the di↵erence between lasso and ridge regression estimations

when there are only two features. The square loss has elliptical contours. Ridge
regression has a disk constraint region, while lasso has a diamond constraint
region. In both constrained optimization problems, the optimal solution is the

4

Figure 1: Source: Figure 3.11 of [4] Estimation picture for LASSO (left) and
RIDGE (right). Solid areas are for regions of constraints |w1|+|w2|  t (LASSO,
left) and (w1)2+(w2)2  t (RIDGE, right). Red ellipses are the contours of the
objective, here the least square function.

first point where the elliptical contours hit the constraint region. In Lasso
regression, if the solution occurs at a corner, then it has one parameter w

j

equal to zero. When d is large, there are many corners so that many parameters
are likely to become zero.

For Ridge, the constraint region is a multidimensional sphere, so the elliptical
contours can hit anywhere for a solution. We wont likely have zero w parameters,
but likely none of them is large.

3.2 RIDGE-Regularized Logistic Regression

The regularized Logistic Regression has a maximum likelihood objective, thus
the form

max
w0,w

1

N

NX

i=1

⇥
y

i

log(P (y = 1|x
i

) + (1� y

i

) log(P (y = 0|x
i

)
⇤
� �

N

R(w)

If we use RIDGE penalty for R(w), and the logistic predictor h

w

(x) as
probability P (y = 1|x

i

), we get J(w) as following:

max
w0,w

1

N

NX

i=1

⇥
y

i

log h
w

(x) + (1� y

i

) log(1� h

w

(x))
⇤
� �

2N

dX

j=1

w

j2

Di↵erentiating J(w) by w components we get a gradient that is as before
(see Logistic Regression), except now there is an extra term due to the RIDGE

5

penalty:

�J

�w

j

=
1

N

NX

i=1

(y
i

� h

w

(x
i

))xj

i

+
�

N

w

j

for any j = 1:d

This gives the Gradient Descent update rule for regularized Logistic Regres-
sion:

w

0 := w

0 � ↵

1

N

NX

i=1

(h
w

(x
i

)� y

i

)x0
i

w

j := w

j � ↵

⇥ 1
N

NX

i=1

(h
w

(x
i

)� y

i

)xj

i

+
�

N

w

j

⇤
for any j = 1:d

where ↵ is the learning rate.

3.3 Solving Regularized Linear Models

packages:

• Liblinear[1]

• glmnet[2]

• sklearn[5]

6

References

[1] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-
Jen Lin. Liblinear: A library for large linear classification. The Journal of

Machine Learning Research, 9:1871–1874, 2008.

[2] Jerome Friedman, Trevor Hastie, and Rob Tibshirani. Regularization paths
for generalized linear models via coordinate descent. Journal of statistical

software, 33(1):1, 2010.

[3] Isabelle Guyon and André Elissee↵. An introduction to variable and feature
selection. The Journal of Machine Learning Research, 3:1157–1182, 2003.

[4] Trevor Hastie, Robert Tibshirani, Jerome Friedman, T Hastie, J Friedman,
and R Tibshirani. The elements of statistical learning, volume 2. Springer,
2009.

[5] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-
learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

7

	Feature Selection Introduction
	The ``Bet on Sparsity'' Principle
	Regularized Linear Models
	Regularized Linear Regression
	RIDGE-Regularized Logistic Regression
	Solving Regularized Linear Models

