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‘ 3.8.1 Principal Component Analysis (PCA)

We begin by considering the problem of representing all of the vectors inasetofnd-
dimensional samples X, . .., X, by a single vector xo. To be more specific, suppose
that we want to find a vector xo such that the sum of the squared distances bgtwc?en
Xo and the various x; is as small as possible. We define the squared-error criterion
function Jy(xg) by

Jo(xo) =Y _ IIxo — xell’, (78)
k=1

and seek the value of xo that minimizes Jy. It is simple to show that the solution to
this problem is given by xo = m, where m is the sample mean,

m=13x. (79)
k=1

n

This can be easily verified by writing

Jo(x0) =) |I(Xo — m) — (x, — m)||?
k=1
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= lixo—ml® —2(xo—m)' Y (x; —m) + »_ ||x¢ — m]|’
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=Y lixo—m|>+ ) llx — m*. (80)
k=1 k=1

independent of Xo

Since the second sum is independent of X, this expression is obviously minimized
by the choice xo = m.

The sample mean is a zero-dimensional representation of the data set. It is sim-
ple, but it does not reveal any of the variability in the data. We can obtain a more
interesting, one-dimensional representation by projecting the data onto a line run-
ning through the sample mean. Let e be a unit vector in the direction of the line.
Then the equation of the line can be written as

X = m + ae, 81)
where the scalar a (which takes on any real value) corresponds to the distance of any

point x from the mean m. If we represent x; by m + a;e, we can find an “optimal”
set of coefficients a; by minimizing the squared-error criterion function

n n
L@, an® = Y llm+ae) =Xl = llare — (x — m))?
k=1 k=1

=Y alelF —2)_ae' (e —m)+ ) [Ix, —m|]>. (82)
k=1 k=1 k=1
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This brings us to the more interesting problem of finding the pey, directio,

¢
the line. The solution to this problem involves the so-called scatter matriy g deg nf;
by
$=) (% —m)(x; —m)". "
k=1
The scatter matrix should look familiar—it is merely n — 1 times the sample

variance matrix. It arises here when we substitute a, found in Eq.

x 3
83 into Eq.8y,,
obtain
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Clearly, the vector e that minimizes J; also maximizes e Se. We use the method of
Lagrange multipliers (described in Section

A.3 of the Appendix) to maximize ¢S

subject to the constraint ng A be the undetermined multiplier, v

differentiate

that [le|| = 1. Lett

u=e8e— (e — 1) )
with respect to e to obtain
-g% =28e - 2)e 4
Setting this gradlent vector equal tg ZE10, we see that € must be an eigenvector of
scatter matrix:
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