3.8.1 Principal Component Analysis (PCA)

We begin by considering the problem of representing all of the vectors in a set of n d-dimensional samples $\mathbf{x}_1, \ldots, \mathbf{x}_n$ by a single vector \mathbf{x}_0 . To be more specific, suppose that we want to find a vector \mathbf{x}_0 such that the sum of the squared distances between \mathbf{x}_0 and the various \mathbf{x}_k is as small as possible. We define the squared-error criterion function $J_0(\mathbf{x}_0)$ by

$$J_0(\mathbf{x}_0) = \sum_{k=1}^n ||\mathbf{x}_0 - \mathbf{x}_k||^2, \tag{78}$$

and seek the value of \mathbf{x}_0 that minimizes J_0 . It is simple to show that the solution to this problem is given by $\mathbf{x}_0 = \mathbf{m}$, where \mathbf{m} is the sample mean,

$$\mathbf{m} = \frac{1}{n} \sum_{k=1}^{n} \mathbf{x}_k. \tag{79}$$

This can be easily verified by writing

$$J_{0}(\mathbf{x}_{0}) = \sum_{k=1}^{n} ||(\mathbf{x}_{0} - \mathbf{m}) - (\mathbf{x}_{k} - \mathbf{m})||^{2}$$

$$= \sum_{k=1}^{n} ||\mathbf{x}_{0} - \mathbf{m}||^{2} - 2 \sum_{k=1}^{n} (\mathbf{x}_{0} - \mathbf{m})^{t} (\mathbf{x}_{k} - \mathbf{m}) + \sum_{k=1}^{n} ||\mathbf{x}_{k} - \mathbf{m}||^{2}$$

$$= \sum_{k=1}^{n} ||\mathbf{x}_{0} - \mathbf{m}||^{2} - 2(\mathbf{x}_{0} - \mathbf{m})^{t} \sum_{k=1}^{n} (\mathbf{x}_{k} - \mathbf{m}) + \sum_{k=1}^{n} ||\mathbf{x}_{k} - \mathbf{m}||^{2}$$

$$= \sum_{k=1}^{n} ||\mathbf{x}_{0} - \mathbf{m}||^{2} + \sum_{k=1}^{n} ||\mathbf{x}_{k} - \mathbf{m}||^{2}.$$
(80)

Since the second sum is independent of \mathbf{x}_0 , this expression is obviously minimized by the choice $\mathbf{x}_0 = \mathbf{m}$.

The sample mean is a zero-dimensional representation of the data set. It is simple, but it does not reveal any of the variability in the data. We can obtain a more interesting, one-dimensional representation by projecting the data onto a line running through the sample mean. Let e be a unit vector in the direction of the line. Then the equation of the line can be written as

$$\mathbf{x} = \mathbf{m} + a\mathbf{e},\tag{81}$$

where the scalar a (which takes on any real value) corresponds to the distance of any point \mathbf{x} from the mean \mathbf{m} . If we represent \mathbf{x}_k by $\mathbf{m} + a_k \mathbf{e}$, we can find an "optimal" set of coefficients a_k by minimizing the squared-error criterion function

$$J_{1}(a_{1},...,a_{n},\mathbf{e}) = \sum_{k=1}^{n} ||(\mathbf{m} + a_{k}\mathbf{e}) - \mathbf{x}_{k}||^{2} = \sum_{k=1}^{n} ||a_{k}\mathbf{e} - (\mathbf{x}_{k} - \mathbf{m})||^{2}$$
$$= \sum_{k=1}^{n} a_{k}^{2} ||\mathbf{e}||^{2} - 2\sum_{k=1}^{n} a_{k}\mathbf{e}^{t}(\mathbf{x}_{k} - \mathbf{m}) + \sum_{k=1}^{n} ||\mathbf{x}_{k} - \mathbf{m}||^{2}.$$
(82)

Recognizing that $||\mathbf{e}|| = 1$, partially differentiating with respect to a_k , and setting that derivative to zero, we obtain

$$a_k = \mathbf{e}^t (\mathbf{x}_k - \mathbf{m}).$$

Geometrically, this result merely says that we obtain a least-squares solution by properties the vector \mathbf{x}_k onto the line in the direction of \mathbf{e} that passes through the sample mean.

SCATTER MATRIX

mean. This brings us to the more interesting problem of finding the best direction e_{f_0} the line. The solution to this problem involves the so-called scatter matrix $S_{def_{[n]}}$ by

$$\mathbf{S} = \sum_{k=1}^{n} (\mathbf{x}_k - \mathbf{m}) (\mathbf{x}_k - \mathbf{m})^t.$$
 (84)

The scatter matrix should look familiar—it is merely n-1 times the sample c_0 variance matrix. It arises here when we substitute a_k found in Eq. 83 into Eq. 82 to obtain

$$J_{1}(\mathbf{e}) = \sum_{k=1}^{n} a_{k}^{2} - 2 \sum_{k=1}^{n} a_{k}^{2} + \sum_{k=1}^{n} ||\mathbf{x}_{k} - \mathbf{m}||^{2}$$

$$= -\sum_{k=1}^{n} [\mathbf{e}^{t} (\mathbf{x}_{k} - \mathbf{m})]^{2} + \sum_{k=1}^{n} ||\mathbf{x}_{k} - \mathbf{m}||^{2}$$

$$= -\sum_{k=1}^{n} \mathbf{e}^{t} (\mathbf{x}_{k} - \mathbf{m}) (\mathbf{x}_{k} - \mathbf{m})^{t} \mathbf{e} + \sum_{k=1}^{n} ||\mathbf{x}_{k} - \mathbf{m}||^{2}$$

$$= -\mathbf{e}^{t} \mathbf{S} \mathbf{e} + \sum_{k=1}^{n} ||\mathbf{x}_{k} - \mathbf{m}||^{2}.$$
(85)

Clearly, the vector \mathbf{e} that minimizes J_1 also maximizes $\mathbf{e}^t \mathbf{S} \mathbf{e}$. We use the method of Lagrange multipliers (described in Section A.3 of the Appendix) to maximize $\mathbf{e}^t \mathbf{S} \mathbf{e}$ subject to the constraint that $||\mathbf{e}|| = 1$. Letting λ be the undetermined multiplier, we differentiate

$$u = \mathbf{e}^t \mathbf{S} \mathbf{e} - \lambda (\mathbf{e}^t \mathbf{e} - 1) \tag{86}$$

with respect to e to obtain

$$\frac{\partial u}{\partial \mathbf{e}} = 2\mathbf{S}\mathbf{e} - 2\lambda\mathbf{e}.\tag{87}$$

Setting this gradient vector equal to zero, we see that e must be an eigenvector of the scatter matrix:

$$\mathbf{Se} = \lambda \mathbf{e}. \tag{88}$$

In particular, because $e^t Se = \lambda e^t e = \lambda$, it follows that to maximize $e^t Se$, we want to other words, to find the best one-dimensional projection of the data (best in the least