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© Introduction
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Example: Web Search

Google

Search

Ewerything
Images
Maps
“ideos
Mews
Shopping

Maore

All results
Related t

ranking boosted dcision tree

About 1,370,000 results (0.30 seconds)

Showing results for ranking boosted decision tree
Search instead for ranking boosted dcision tree

Gradient boosting - Wikipedia, the free encyclopedia

enwikipedia. orgfwikifGradient_boosting

Gradient boosting is typically used with decision trees (especially CART .... Recently,
gradient boesting method has gained some popularity in leaming to rank ...

Large-scale Leaming to Rank using Boosted Decision Trees ...
research.microsoft com/apps/pubs/default aspx?id=148312

Large-scale Learning to Rank using Boosted Decision Trees. IKrysta b, Svore and
Christopher J.C. Burges May 2011 The ¥Web search ranking task has become ...

Learning to Rank on a Cluster using Boosted Decision Trees ...

More search tools

research.microsoft. com/apps/pubs/default aspx?id=143734

by KW Svore - Related adicles

Learning to Rank on a Cluster using Boosted Decision Trees. Krysta M. Svore and
Christopher J.C. Burges December 2010, ¥We investigate the problem of ...
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Web Search Features

Technology features of modern web search engines:

Estimation of hit counts
Can index many pagess

Very fast

Preview of data

°
°

°

@ Automatic spelling correction

°

@ Sophisticated ranking of results
°
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Web Search Features

Technology features of modern web search engines:

Estimation of hit counts
Can index many pagess

Very fast

Preview of data

°
°

°

@ Automatic spelling correction

°

@ Sophisticated ranking of results <— Topic of this talk!
°
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© Web Scale Information Retrieval
@ Ranking in IR
@ Algorithms for Ranking
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What is the

Size of the Web?
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The size of the indexed World Wide Web
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YGE

From http://www.worldwidewebsize.com/, accessed 08.1.2012

Special algorithms are needed to handle this amount of information.
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Web Scale Information Retrieval

Crawling Searchterms Ranking

The World Indexed Matching

Wide Web Pages Pages

infinite 10™9 1076 k

The “retrieval pipeline” must reduce the number of pages significantly!
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Details of a Web Search Engine: Indexing

Document data store
e Aeauition q

<html>...

Web pages

Text Transformation

Components of the Indexing part of a search engine (CROFT et al., 2010).
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Details of a Web Search Engine: Querying

Document data store

Query 9 User interaction He
#

Components of the Querying part of a search engine (CROFT et al., 2010).

The most important element in the whole querying-process is ranking.
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Model Types for Information Retrieval

Classification of model types for Information Retrieval:

@ Set-theoretic models, e.g.

@ boolean models

o extended boolean models
© Algebraic models, e.g.

@ vector space model

@ latent semantic indexing
© Probabilistic models, e.g.

@ probabilistic relevance (BM25)
@ language models

Hiko Schamoni (Universitat Heidelberg) Ranking with Boosted Decision Trees January 16, 2012 11/ 49



Relevance and Ranking

IR Models generate different values describing the relationship between a
search query and the target document, e.g. “similarity”.

This value expresses the relevance of a document w.r.t. to the query and
induces a ranking of retrieval results.

Some important measures we heard of in this seminar!:

(Normalized) term-frequency

(Normalized) term-weight

°

°

@ Inverse document frequency

@ Cosine similarity (vector model)
°

Retrieval status value (probabilistic model)

see http://kontext.fraunhofer.de/haenelt/kurs/InfoRet/
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Learning to Rank

Input space ~’«\ ,"’ Output space
%, Hypothesis space

Oy

Hypothesis F

From: L1u (2010), Learning to Rank for Information Retrieval.

Basic Idea of Machine Learning:
@ Hypothesis F transforms input object x to output object y’' = F(x).

@ L(y,y’) is the loss, i.e. the difference between the predicted y’ and
the target y.

@ “Learning” process: find the hypothesis minimizing L by tuning F.

Learning a ranking function with machine learning techniques:
Learning to Rank (LTR)
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Features for Learning

To learn a ranking function, each query-document pair is represented by a
vector of features of three categories:

© Features modelling web document, d (static features):
inbound links, PAGE rank, document length, etc.

© Features modelling query-document relationship (dynamic features):
frequency of search terms in document, cosine similarity, etc.

© Features modelling user query, g:
number of words in query, query classification, etc.

In supervised training, the ranking function is learned using vectors of
known ranking levels.
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Example: Features for AltaVista (2002)

A0 - A4
WO - W4
LO- L4
SP

FO - F4
DCLN
ER

HB
ERHB
AOWO etc.
QA

SPN

FF

ub

anchor text score per term

term weights

first occurrence location

(encodes hostname and title match)

spam index: logistic regression of 85 spam filter variables
(against relevance scores)

term occurrence frequency within document

document length (tokens)

Eigenrank

Extra-host unique inlink count

ER*HB

AO*WO0

Site factor - logistic regression of 5 site link and url count ratios
Proximity

family friendly rating

url depth

From: J. PEDERSEN (2008), The Machine Learned Ranking Story
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Algorithms for Ranking

@ Support Vector Machines (VAPNIK, 1995)

@ Very good classifier

@ Can be adapted to ranking and multiclass problems
@ Neural Nets

o RankNet (BURGES et al., 2006)
@ Tree Ensembles

@ Random Forests (BREIMAN and SCHAPIRE, 2001)
o Boosted Decision Trees

o Multiple Additive Regression Trees (FRIEDMAN, 1999)
@ LambdaMART (BURGES, 2010)
@ Used by AltaVista, Yahoo!, Bing, Yandex, ...

All top teams of the Yahoo! Learning to Rank Challenge (2010) used
combinations of Tree Ensembles!
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Yahoo! Learning to Rank Challenge

@ Yahoo! Webscope dataset (CHAPELLE and CHANG, 2011):
36,251 queries, 883 k documents, 700 features, 5 ranking levels
@ set-1:
@ 473,134 feature vectors
@ 519 features
@ 19,944 queries
@ set-2:
@ 34,815 feature vectors
@ 596 features
@ 1,266 queries

@ Winner used a combination of 12 models:

o 8 Tree Ensembles (LambdaMART)
@ 2 Tree Ensembles (Additive Regression Trees)
@ 2 Neural Nets
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© VART
@ Decision Trees
@ Boosting
® Multiple Additive Regression Trees
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Decision

Characteristics of a tree:

@ Graph based model

@ Consists of a root, nodes, and leaves
Advantages:

@ Simple to understand and interpret

@ White box model

@ Can be combined with other techniques

Decision trees are basic learners for machine learning, e.g. classification or
regression trees.

Hiko Schamoni (Universitat Heidelberg) Ranking with Boosted Decision Trees January 16, 2012 19 / 49



Learning a Regression Tree (1)

x2

A
: -
2
1 4
1 4
2
1 4
4
1 3
1 2
3
2
3
>
x1

Consider a 2-dimensional space consisting of data points of the indicated
values. We start with an empty root node (blue).
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Learning a Regression Tree (II)

\4

vl x1

The algorithm searches for split variables and split points, x; and v;, that
predict values minimizing the predicted error, e.g. > (yi — f(x;)).
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Learning a Regression Tree (lI1)

vl x1

Here we examine the right side first: find a split variable and a split value
that minimize the predicted error, i.e. xo and vs.
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Learning a Regression Tree (IV)

Now to the left side: Again, find a split variable and a split value that
minimize the predicted error, i.e. x; and vs.
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Learning a Regression Tree (V)

Once again, find a split variable and a split value that minimize the
predicted error, here x» and vq.
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Learning a Regression Tree (V)

Once again, find a split variable and a split value that minimize the
predicted error, here x and v4. The tree perfectly fits the data! Problem?

Hiko Schamoni (Universitat Heidelberg) Ranking with Boosted Decision Trees January 16, 2012 24 / 49



Formal Definition of a Decision Tree

A decision tree partitions the parameter space into disjoint regions Ry,
k € {1,...,K}, K = number of leaves. Formally, the regression model (1)
predicts a value using a constant ~y, for each region Ry:

K
T(x0)=> wl(x € Ry) (1)

k=1

© = {Ry, vk} describes the model parameters, 1(-) is the characteristic
function (1 if argument is true, 0 otherwise), and 4, = mean(y;|x; € Rx).
Optimal parameters © are found minimizing the empirical risk:

K
0= arg@min Z Z L(yi,vk) (2)

k=1 X,‘GRk

The combinatorial optimization problem (2) is usually split into two parts:
(i) finding Ry and (ii) finding i given Ry.
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Combine multiple weak learners to build a strong learner.
A weak learner is a learner with an error rate slightly better than random
guessing. A strong learner is a learner with high accuracy.

Approach:
@ Apply a weak learner to iteratively modified data
o Generate a sequence of learners
@ For classification tasks: use majority vote

@ For regression tasks: build weighted values
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Function Estimation

Find a function F*(x) that maps x to y, s.t. the expected value of some
loss function L(y, F(x)) is minimized:

F*(x) =argminE, « [L(y, F(x))]
F(x)

Boosting approximates F*(x) by an additive expansion

M
F(x) = Bmh(x;am)

where h(x;a) are simple functions of x with parameters a = {a1, a2, ..., an}
defining the function h, and 3 are expansion coefficients.
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Finding Parameters

Expansion coefficients {3m}5! and the function parameters {a,} are
iteratively fit to the training data:

© Set Fy(x) to initial guess
Q@ Foreach m=1,2.. M

N
(Bm»am) = argmin Y _ L(yi, Fn-1(x;) + Bh(x;, a)) (3)
A =1
and
Fm(x) = Fn—1(x) + Bmh(x; am) (4)
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Gradient Boosting

Gradient boosting approximately solves (3) for differentiable loss functions:

O Fit the function h(x; a) by least squares

N

a, = argamin Z [Vim — h(x;, a)]2 (5)

to the “pseudo”-residuals

- [aL(y,-,F(x,-))]
OF(xi) | Fx)=Fm 1 (x)

@ Given h(x;an), the B, are

N

Bm = arg min Z L(yi, Fm—1(xi) + Bh(xi;am)) (7)

i=1

= Gradient boosting simplifies the problem to least squares (5).
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Gradient Tree Boosting

Gradient tree boosting applies this approach on functions h(x; a)
representing K-terminal node regression trees.

K
h(x; {Rkm}1) = D V1 (x € Riam) (8)
k=1

With yim = meanycg,,,(¥im) the tree (8) predicts a constant value yin, in
region Rkm. Equation (7) becomes a prediction of a ~y,,, for each Rypm:

Ykm = argmin Z L(yi, Fm—1(xi) +7) (9)
v X,‘Gka

The approximation for F in stage m is then:

Fm(x) = Fm—1(x) + 1 Ykm1(x; € Rkm) (10)

The parameter n controls the learning rate of the procedure.
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Learning Boosted Regression Trees (1)

x2

A FO(x)
2 5
1 4 '
1 4 T
2 H 5[1-x]"2 + 4[2-x]"2
1 4 H +3[3-x1°2 + 5[4-x]"2
4 H =>x=2.471
1 3
1 2
3
2
3
A
>
x1

First, learn the most simple predictor that predicts a constant value
minimizing the error for all training data.
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Calculating Optimal Leaf Value for F

Recall the exp. coefficient: vxm = argmin, >, cp L(yi, Fm—1(xi) +7)

250

@ Quadratic loss for the leaf (red):

200

f(x):5-(1—x)2—|—4-(2—x)2 !
+3-3=x)245-(4—x)?

100
e f(x) is quadratic, convex

= Optimum at f’(x) = 0 (green) - -

0
f -
88(x) —5. (=24 2x) + 4- (4 + 2x)? .
X
+3-(-6+ 2x)2 +5-(—8+ 2X)2 00 |- -+
f(x) -
= — 84 + 34x = 32(x — 2.471) o) L. K
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Learning Boosted Regression Trees (I1)

x2

A FO(x) F1(x)
AT C<D
20 1529 |
1 -0.471 4 : Y N
-1.471 ;| 1.529 :
1471 2 ! 1.529 |
1 -0.471 4
-1.471 I 1529 4 : T T
; 1.529 &
1 3 H F(x) = FO(x) = 2.471 5[1-2.471+x)1°2  3[3-(2.471+x)]°2
1 -1.471 2 '0.529 H +4[2-(2.471+x)]°2 +3[3-(2.471-x)]"2
-1.471 .0.471 3 H => x=-1.027 => x=1.154
2 1 0.529
-0.471 ; 3 !
0.529 HEE
>
vl x1

Split root node based on least squares criterion to build a tree predicting
the “pseudo”-residuals.
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Learning Boosted Regression Trees (I11)

x2

v2

h F1(x) F2(x)
2 0.375
1 0.556 | 4 Y N Y N
0.444 i 0.375
0.444 2 ! 0.375
1 0.556 4
0.444 i 0375 4 T T
,,,,,,,,,,,,,,,, Seeeoo....0375_
1 3 F(x) = FO(x) + F1(x) 2[1-(1.444+x)]°2  3[1-(1.444+X)]"2
1 -0.444 2 1-0.625 +2[2-(1.444+x)]°2 +2[2-(1.444+x]"2
; +3[3-(3.625+x)]1°2 +5[4-(3.625+x)]"2
-0.444 0.556 3 ' => x=-0.236 => x=0.166
2 ' -0.625 2.471 2.471
0.556 i 3 1.027 +1.154
0.625 N =1.444 =3.625
>
vl x1

In the next stage, another tree is created to fit the actual
“pseudo” -residuals predicted by the first tree.
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Learning Boosted Regression Trees (V)

13 b R0 = FOG) + F1(x) + F2(x) @
1 0.089 2 0270 :

0.089 :-0.911 300 2471, 2471 Y N
2 ' 0.270 -1.027+0.166+1.154+0.166
: H 0.270 y 2471 1 2471
v vl 7X1 -1.027-0.2371+1.154-0.237
=1.207 =3.388

This is iteratively continued: in each stage, the algorithm builds a new tree
based on the “pseudo”-residuals predicted by the previous tree ensemble.
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Multiple Additive Regression Trees (MART)

Algorithm 1 Multiple Additive Regression Trees.

1: Initialize Fo(x) = argmin,, SN (i)
2. form=1,.... M do

3 fori=1,....N do
. o _ | 9Ly F(xi)
& Yim = [ IF(xi) ]F(x):Fm_l(x)
5: end for
6: {Rkm}&_, // Fit a regression tree to targets Jim
7: for k=1,....K,, do
8: Ykm = arg min, ine&m L(yi, Fm—1(xi) +7)
9: end for
10: Fm(x) = Fm_l(x) + T]Zngl ’ykml(x,- S ka)
11: end for

12: Return Fp(x)
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O LambdaMART
@ RankNet
@ LambdaRank
® LambdaMART Algorithm
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RankNet Model

@ Differentiable function of the model parameters, typically neural nets
@ RankNet maps a feature vector x to a value f(x; w)

@ Learned probabilities URL U; = U; modelled via a sigmoid function

1

P; = P(U; ~ Uj)Em

with s; = f(X,'), Sj = f(Xj)
@ Cost function calculates cross entropy:

C = —Pjlog P — (1 — Pj)log(1 — Py)

Pjj is the model probability, I_D,-J- is the known probability from training.
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RankNet Algorithm

Algorithm 2 RankNet Training.

. Initialize Fo(x) = arg min,, Zf\lzl L(yi, )
. for each query g € Q do
for each pair of URLs U;, U; with different label do
si=f(xi), sj = f(x))
Estimate cost C
Update model scores wy — wy — ng—vfk
end for
end for
: Return w

o Na s bR

Hiko Schamoni (Universitat Heidelberg) Ranking with Boosted Decision Trees January 16, 2012



RankNet \'s

The crucial part is the update:

oC 0C 0s;  0C Os; <85,- Js; >
L= ) 9o

8—Wk_(9_s,-8wk 8_sjc9wk_ (9—Wk_8wk

@ )\ describes the desired change of scores for the pair U; and U;

@ The sum over all \ji's and Aji's of a given query-document vector Xx;
w.r.t. all other differently labelled documents is

A= > A= > A

j{ijyel ki{k,i}el

@ )\; is (kind of) a gradient of the pairwise loss of vector x;.
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RankNet Example

(a) (b) (c)

(a) is the perfect ranking, (b) is a ranking with 10 pairwise errors, (c) is a ranking with
8 pairwise errors. Each blue arrow represents the \; for each query-document vector x;.

From: BURGES (2010), From RankNet to LambdaRank to LambdaMART: An Overview.
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LambdaRank Example

(a) (b) (c)

Problem: RankNet is based on pairwise error, while modern IR measures emphasize
higher ranking positions. Red arrows show better A's for modern IR measures.

From: BURGES (2010), From RankNet to LambdaRank to LambdaMART: An Overview.

Hiko Schamoni (Universitat Heidelberg) Ranking with Boosted Decision Trees January 16, 2012 42 / 49



From RankNet to LambdaRank to LambdaMART

From RankNet to LambdaRank:

@ Multiply X's with |[AZ], i.e. the difference of an IR measure when U;
and U; are swapped
@ E.g. [ANDCG| is the change in NDCG when swapping U; and U;:
aC(S,' — Sj)

Ajj = = ANDCG
] 85,‘ 1_|_ea(s, s) | |

From LambdaRank to LambdaMART:

@ LambdaRank models gradients
@ MART works on gradients

@ Combine both to get LambdaMART:
= MART with specified gradients and Newton step
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LambdaMART Algorithm

Algorithm 3 LambdaMART.

1: for i =0,...,N do

2 Fo(xj) = BaseModel(x;) // Set to 0 for empty BaseModel
3: end for

4 form=1,...,. M do

5: for i=0,....,N do

6 yi=Ai // Calculate A-gradient

7 w; = %}1’(”) // Calculate derivative of gradient for x;

8 end for

9 {Rm } // Create K-leaf tree on {x;,yi}

Zx-eR mYi
10: = kT
0 ’Ykm Zx,-Eka wi

11: Fm(x,-) = Fm_l(x,-) + nZk ’ykml(x,- ianm)
12: end for

// Assign leaf values
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© Using Multiple Rankers
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Optimally combine Rankers

Ranker R Ranker R' . .
@ Linearly combine rankers:

(1 - a)R(x/) + aR'(x)
@ Let o go from 0 to 1:
@ Score changes only at the
intersections
o Enumerate all a for which
pairs swap position

o Calculate desired IR measure
SR'(i) (e.g. NDCG)

@ Select the « giving best scores

sR'(k)

sR'(j)
sR(i)

sR(j)

sR(k)

3
>
a=0 a=

1 Solution can be found analytically,
From: WU et al. (2008),Ranking, Boosting, or approximated by Boosting or a
and Model Adaptation. LambdaRank approach
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