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VC-dimension for 
Characterizing 

Classifiers 
Ronald J. Williams

CSG220
Fall 2004

A slightly modified version of
the Andrew Moore tutorial

with this same title

Note to other teachers and users of 
these slides. Andrew would be delighted 
if you found this source material useful in 
giving your own lectures. Feel free to use 
these slides verbatim, or to modify them 
to fit your own needs. PowerPoint 
originals are available. If you make use 
of a significant portion of these slides in 
your own lecture, please include this 
message, or the following link to the 
source repository of Andrew’s tutorials: 
http://www.cs.cmu.edu/~awm/tutorials . 
Comments and corrections gratefully 
received. 
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A learning machine
• A learning machine f takes an input x and 

transforms it, somehow using weights α, into a 
predicted output yest = +/- 1

f x

α

yest

α is some vector of 
adjustable parameters
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Examples
f x

α

yest

f(x,b) = sgn(x•x – b)
denotes +1

denotes -1
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Examples
f x

α

yest

denotes +1

denotes -1

f(x,w) = sgn(w•x)
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Examples
f x

α

yest

f(x,w,b) = sgn(w•x+b)
denotes +1

denotes -1
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How do we characterize “power”?
• Different machines have different amounts of 

“power”.
• Tradeoff between:

• More power: Can model more complex 
classifiers but might overfit.

• Less power: Not going to overfit, but restricted in 
what it can model.

• How do we characterize the amount of power?
• In the literature: “power” often called capacity.
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Some definitions
• Given some machine f
• And under the assumption that all training points (xk,yk) were drawn i.i.d 

from some distribution.
• And under the assumption that future test points will be drawn from the 

same distribution
• Define

icationMisclassif
ofy Probabilit

),(
2
1)(TESTERR)( =»¼

º
«¬
ª −== ααα xfyER

Official terminology: 
(Actual) Risk

Terminology we’ll use
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Some definitions
• Given some machine f
• And under the assumption that all training points (xk,yk) were drawn i.i.d 

from some distribution.
• And under the assumption that future test points will be drawn from the 

same distribution
• Define

icationMisclassif
ofy Probabilit
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Official terminology: 
Empirical Risk Terminology we’ll use

iedmisclassifSet 
TrainingFraction 

),(
2
11)(TRAINERR)(

1
=−== ∑

=

R

k
kk

emp xfy
R

R ααα

R = #training set 
data points
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Vapnik-Chervonenkis dimension

• Given some machine f, let h be its VC dimension.
• h is a measure of f’s power (h does not depend on the choice of training set)

• Vapnik showed that with probability ≥ 1-δ

»¼
º
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R
hRh )4/ln()1)/2(ln()(TRAINERR)(TESTERR δαα −+

+≤

This gives us a way to estimate the error on 
future data based only on the training error 
and the VC-dimension of f
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Vapnik-Chervonenkis dimension

• Given some machine f, let h be its VC dimension.
• h is a measure of f’s power (h does not depend on the choice of training set)

• Vapnik showed that with probability 1-δ
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This gives us a way to estimate the error on 
future data based only on the training error 
and the VC-dimension of f

But given machine f, 

how do we define 

and compute h?
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Shattering
• Machine f can shatter a set of points x1, x2 .. xr if and only if…

For every possible training set of the form (x1,y1) , (x2,y2) ,… (xr ,yr)
…There exists some value of α that gets zero training error.

There are 2r such training sets 
to consider, each with a 

different combination of +1’s 
and –1’s for the y’s
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Shattering
• Machine f can shatter a set of points x1, x2 .. xr if and only if…

For every possible training set of the form (x1,y1) , (x2,y2) ,… (xr ,yr)
…There exists some value of α that gets zero training error.

• Question: Can the following f shatter the following points?

f(x,w) = sgn(w•x)
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Shattering
• Machine f can shatter a set of points x1, x2 .. xr if and only if…

For every possible training set of the form (x1,y1) , (x2,y2) ,… (xr ,yr)
…There exists some value of α that gets zero training error.

• Question: Can the following f shatter the following points?

f(x,w) = sgn(w•x)

• Answer: No problem. There are four training sets to consider

w=(0,1) w=(0,-1)w=(2,-3)w=(-2,3)
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Shattering
• Machine f can shatter a set of points x1, x2 .. xr if and only if…

For every possible training set of the form (x1,y1) , (x2,y2) ,… (xr ,yr)
…There exists some value of α that gets zero training error.

• Question: Can the following f shatter the following points?

f(x,b) = sgn(x•x-b)
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Shattering
• Machine f can shatter a set of points x1, x2 .. xr if and only if…

For every possible training set of the form (x1,y1) , (x2,y2) ,… (xr ,yr)
…There exists some value of α that gets zero training error.

• Question: Can the following f shatter the following points?

f(x,b) = sgn(x•x-b)

• Answer: No way my friend. 
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Definition of VC dimension
Given machine f, the VC-dimension h is

The maximum number of points that can be 
arranged so that f shatters them.
If any number of points can be shattered by f,
VC-dimension = +∞.
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Definition of VC dimension
Given machine f, the VC-dimension h is

The maximum number of points that can be 
arranged so that f shatters them. 

Example: What’s VC dimension of f(x,b) = sgn(x•x-b)
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VC dim of trivial circle
Given machine f, the VC-dimension h is

The maximum number of points that can be 
arranged so that f shatters them. 

Example: What’s VC dimension of f(x,b) = sgn(x•x-b)
Answer = 1: we can’t even shatter two points! (but it’s 
clear we can shatter 1)
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Reformulated circle
Given machine f, the VC-dimension h is

The maximum number of points that can be 
arranged so that f shatters them. 

Example: For 2-d inputs, what’s VC dimension of f(x,q,b) = 
sgn(qx•x-b)
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Reformulated circle
Given machine f, the VC-dimension h is

The maximum number of points that can be 
arranged so that f shatters them. 

Example: What’s VC dimension of f(x,q,b) = sgn(qx•x-b)

• Answer = 2

q,b are -ve
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Reformulated circle
Given machine f, the VC-dimension h is

The maximum number of points that can be 
arranged so that f shatters them. 

Example: What’s VC dimension of f(x,q,b) = sgn(qx•x-b)

• Answer = 2 (clearly can’t do 3)

q,b are -ve
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VC dim of separating line
Given machine f, the VC-dimension h is

The maximum number of points that can be 
arranged so that f shatters them. 

Example: For 2-d inputs, what’s VC-dim of f(x,w,b) = sgn(w•x+b)?
Well, can f shatter these three points?
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VC dim of line machine
Given machine f, the VC-dimension h is

The maximum number of points that can be 
arranged so that f shatters them. 

Example: For 2-d inputs, what’s VC-dim of f(x,w,b) = sgn(w•x+b)?
Well, can f shatter these three points?

Yes, of course.

All -ve or all +ve is trivial

One +ve can be picked off by a line

One -ve can be picked off too. 

Originals © 2001, Andrew W. Moore, Modifications © 2003, Ronald J. Williams VC-dimension: Slide 24

VC dim of line machine
Given machine f, the VC-dimension h is

The maximum number of points that can be 
arranged so that f shatters them. 

Example: For 2-d inputs, what’s VC-dim of f(x,w,b) = sgn(w•x+b)?
Well, can we find four points that f can shatter?
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VC dim of line machine
Given machine f, the VC-dimension h is

The maximum number of points that can be 
arranged so that f shatters them. 

Example: For 2-d inputs, what’s VC-dim of f(x,w,b) = sgn(w•x+b)?
Well, can we find four points that f can shatter?

Can always draw six lines between pairs of four 
points.
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VC dim of line machine
Given machine f, the VC-dimension h is

The maximum number of points that can be 
arranged so that f shatters them. 

Example: For 2-d inputs, what’s VC-dim of f(x,w,b) = sgn(w•x+b)?
Well, can we find four points that f can shatter?

Can always draw six lines between pairs of four 
points.

Two of those lines will cross.
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VC dim of line machine
Given machine f, the VC-dimension h is

The maximum number of points that can be 
arranged so that f shatters them. 

Example: For 2-d inputs, what’s VC-dim of f(x,w,b) = sgn(w•x+b)?
Well, can we find four points that f can shatter?

Can always draw six lines between pairs of four 
points.

Two of those lines will cross.

If we put points linked by the crossing lines in the 
same class they can’t be linearly separated

So a line can shatter 3 points but not 4

So VC-dim of Line Machine is 3
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VC dim of linear classifiers in m dimensions
If input space is m-dimensional and if f is sgn(w•x-b), what is 

the VC-dimension?
Proof that h >= m+1: Show that there is a set of m+1 points 

that can be shattered.
Can you guess how to construct such a set?
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VC dim of linear classifiers in m dimensions
If input space is m-dimensional and if f is sgn(w•x-b), what is 

the VC-dimension?
Proof that h >= m+1: Show that there is a set of m+1 points 

that can be shattered.  Define m+1 input points thus:
x0 = (0,0,0,…,0) 
x1 = (1,0,0,…,0)
x2 = (0,1,0,…,0)
:
xm = (0,0,0,…,1)       So xk[j] = 1 if k=j  and 0 otherwise

Let y0, y1, y2,… ym , be any one of the 2m+1 combinations of 
class labels (±1)

Guess how we can define w1, w2,… wm and b to ensure 
sgn(w•xk + b) = yk for all k.      Note:

¸̧
¹

·
¨̈
©

§
+=+⋅ ∑

=

m

1j
][sgn)(sgn jxwbb kjkxw
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VC dim of linear classifiers in m dimensions
If input space is m-dimensional and if f is sgn(w•x-b), what is 

the VC-dimension?
Proof that h >= m+1: Show that there is a set of m+1 points 

that can be shattered.  Define m+1 input points thus:
x0 = (0,0,0,…,0)
x1 = (1,0,0,…,0)
x2 = (0,1,0,…,0)
:
xm = (0,0,0,…,1)       So xk[j] = 1 if k=j  and 0 otherwise

Let y0, y1, y2,… ym , be any one of the 2m+1 combinations of 
class labels (±1)

Guess how we can define w1, w2,… wm and b to ensure 
sgn(w•xk + b) = yk for all k.      Note:

Answer: b=y0/2 and wk = yk for all k. ¸̧
¹

·
¨̈
©

§
+=+⋅ ∑

=

m

1j
][sgn)(sgn jxwbb kjkxw
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VC dim of linear classifiers in m dimensions
If input space is m-dimensional and if f is sgn(w•x-b), what is 

the VC-dimension?
Proof that h >= m+1: Show that there is a set of m+1 points 

that can be shattered.  Define m+1 input points thus:
x0 = (0,0,0,…,0)
x1 = (1,0,0,…,0)
x2 = (0,1,0,…,0)
:
xm = (0,0,0,…,1)       So xk[j] = 1 if k=j  and 0 otherwise

Let y0, y1, y2,… ym , be any one of the 2m+1 combinations of 
class labels (±1)

Guess how we can define w1, w2,… wm and b to ensure 
sgn(w•xk + b) = yk for all k.

Another answer: b=y0 and wk = yk -y0 for all k.
This is solution to the system 
of m+1 linear equations in 
m+1 unknowns obtained by 
dropping the sgn function.
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VC dim of linear classifiers in m dimensions
If input space is m-dimensional and if f is sgn(w•x-b), what is 

the VC-dimension?
• Now we know that h >= m+1
• In fact, h = m+1
• Proof that h < m+2 is a little more difficult

• requires showing that no set of m+2 points can be shattered
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Finite Hypothesis Spaces
• What’s the relation to our earlier TESTERR 

analysis for finite hypothesis spaces?
• Suppose there are H hypotheses.
• There are 2n different labellings of n points.
• Thus if VC-dim = h, there must be at least 2h

different hypotheses in the hypothesis space.
• Thus 2h ≤ H.
• Therefore VC-dimension satisfies

h ≤ log2 H
for any hypothesis space of size H.

• Can plug this into TESTERR bound formulas 
where appropriate.
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What does VC-dim measure?
• Is it the number of parameters?

Related but not really the same.
• I can create a machine with one numeric 

parameter that really encodes 7 parameters 
(How?)

• And I can create a machine with 7 parameters 
which has a VC-dim of 1 (How?)

• Andrew’s private opinion: it often is the number of parameters that counts.
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Structural Risk Minimization
• Let φ(f) = the set of functions representable by f.
• Suppose 
• Then                                                  (Hey, can you formally prove this?)
• We’re trying to decide which machine to use.
• We train each machine and make a table…

f44
f55
f66

⌦f33
f22
f11

ChoiceProbable upper bound 
on TESTERR

VC-ConfidenceTRAINERRfii

R
hRh )4/ln()1)/2(ln()(TRAINERR)(TESTERR δαα −+

+≤

)()()( 21 nfφfφfφ L⊆⊆
)()()( 21 nfhfhfh L≤≤
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Using VC-dimensionality
That’s what VC-dimensionality is about
People have worked hard to find VC-dimension for..

• Decision Trees
• Perceptrons
• Neural Nets
• Decision Lists
• Support Vector Machines
• And many many more

All with the goals of
1. Understanding which learning machines are more or 

less powerful under which circumstances
2. Using Structural Risk Minimization to choose the best 

learning machine
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Alternatives to VC-dim-based model selection
• What could we do instead?

1. Cross-validation

f44
f55
f66

⌦f33
f22
f11

Choice10-FOLD-CV-ERRTRAINERRfii
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Alternatives to VC-dim-based model selection

⌦f44
f55
f66

f33
f22
f11

ChoiceAIC#parametersLOGLIKE(TRAINERR)fii

)parameters #()params MLE|(AICSCORE −= DataLL

• What could we do instead?
1. Cross-validation
2. AIC (Akaike Information Criterion)

As the amount of data 
goes to infinity, AIC 
promises* to select the 
model that’ll have the 
best likelihood for future 
data
*Subject to about a million 
caveats



20

Originals © 2001, Andrew W. Moore, Modifications © 2003, Ronald J. Williams VC-dimension: Slide 39

Alternatives to VC-dim-based model selection

f44
f55
f66

⌦f33
f22
f11

ChoiceBIC#parametersLOGLIKE(TRAINERR)fii

• What could we do instead?
1. Cross-validation
2. AIC (Akaike Information Criterion)
3. BIC (Bayesian Information Criterion)

As the amount of data 
goes to infinity, BIC 
promises* to select the 
model that the data was 
generated from. More 
conservative than AIC.

*Another million caveats
RDataLL log

2
params #)params MLE|(BICSCORE −=
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Which model selection method is best?
1. (CV) Cross-validation
2. AIC (Akaike Information Criterion)
3. BIC (Bayesian Information Criterion)
4. (SRMVC) Structural Risk Minimization with VC-

dimension
• AIC, BIC and SRMVC have the advantage that you only need the 

training error.
• CV error might have more variance
• SRMVC is wildly conservative
• Asymptotically AIC and Leave-one-out CV should be the same
• Asymptotically BIC and a carefully chosen k-fold should be the same
• BIC is what you want if you want the best structure instead of the best 

predictor (e.g. for clustering or Bayes Net structure finding)
• Many alternatives to the above including proper Bayesian approaches.
• It’s an emotional issue.
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Extra Comments
• Beware: that second “VC-confidence” term is 

usually very very conservative (at least hundreds 
of times larger than the empirical overfitting effect).
Why? 

• Because the analysis is distribution-free
• Because the analysis considers other worst-case 

aspects that easily may not apply to the particular 
hypothesis we’ve learned

• An excellent tutorial on VC-dimension and
Support Vector Machines:

C.J.C. Burges. A tutorial on support vector machines 
for pattern recognition. Data Mining and Knowledge 
Discovery, 2(2):955-974, 1998. 
http://citeseer.nj.nec.com/burges98tutorial.html 

Originals © 2001, Andrew W. Moore, Modifications © 2003, Ronald J. Williams VC-dimension: Slide 42

Extra Comments
• Beware: that second “VC-confidence” term is 

usually very very conservative (at least hundreds 
of times larger than the empirical overfitting effect).
Why? 

• Because the analysis is distribution-free
• Because the analysis considers other worst-case 

aspects that easily may not apply to the particular 
hypothesis we’ve learned

• An excellent tutorial on VC-dimension and
Support Vector Machines:

C.J.C. Burges. A tutorial on support vector machines 
for pattern recognition. Data Mining and Knowledge 
Discovery, 2(2):955-974, 1998. 
http://citeseer.nj.nec.com/burges98tutorial.html 

Coming 

Attraction
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What you should know
• The definition of a learning machine: f(x,α) 
• The definition of shattering
• Be able to work through simple examples of 

shattering
• The definition of VC-dimension
• Be able to work through simple examples of VC-

dimension
• Structural Risk Minimization for model selection


