
Naive Bayes







Density Estimation Problem

• P(y|x) = P(y|x1,x2,…,xd) joint (d+1)-dim distribution 
• … actually we cannot estimate this joint  
• if each feature has 10 buckets, and we have 

100 features (very reasonable assumptions) 
• then the joint distribution has 10100 cells - 

impossible



how to get around estimating the joint P(x1,x2,…,xd|y) ?

• SOLUTION : assume feature independence  
- then P(x1,x2,…,xd|y) = P(x1|y)*P(x2|y)*…P(xd|y) 
- estimate each feature density, usually easy 
- the independence assumption rarely holds perfectly, 

but the model kind-of-works if it approx. holds 
!

• it is called NAIVE BAYES 
- very easy to implement 
- smoothing often necessary 
- very popular



Naive Bayes

- P(x1,x2,…,xd|y) = P(x1|y)*P(x2|y)*…P(xd|y) 
- d+1 joint distribution problem => d problems of 

simple conditional distributions 
- each P(xj|y) estimated separately, independent 

of the other features 
- assumes features are independent 
- assumption doesn't really hold, but Naive Bayes 

still works in many cases



how to estimate the simple distributions

- want to estimate P(xj|y) = density of feature j 
values for class y 
- usually easy, since xj is unidimensional 
!

- OPTION1-MODEL: apply an imposed model, 
calculate Max-Likelihood parameters for the 
model 
- gaussian (normal), bernoulli, binomial, exponential etc 
- mixture of distributions 
- for many models, there are closed form equation 

stat give the max-likelihood params



how to estimate the simple distributions

- want to estimate P(xj|y) = density of feature j 
values for class y 
- usually easy, since xj is unidimensional 
!

- OPTION1-MODEL: apply an imposed model, 
calculate Max-Likelihood parameters for the 
model 
!

!
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how to estimate the simple distributions

- want to estimate P(xj|y) = density of feature j 
values for class y 
- usually easy, since xj is unidimensional 
!

- OPTION2-HISTOGRAM:  bucket/cluster/bin and 
count feature value in each bucket/bin
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Naive Bayes problem 1: constant feature

- if xj is constant, some estimates could be unusable 
- example: the variance of the gaussian fit is 0, and the 

probability of a single value is 1 
!

- solution: CONTROL THE PARAMETERS (like 
variance) to not allow values close to zero 
- if Σ<ε then Σ=ε 

!

- solution : SMOOTHING 
- generally a good idea for all probability estimates 
!

- solution: FEATURE SELECTION 
- discussed later in the course



Naive Bayes Problem 2: “zero probability”  

- in the case of histograms (bins), estimate of zero 
probability is quite possible 
- when there are many bins, and not so many data 

points  
!

- especially true for text documents, when features 
are word occurrences 
- there are many words, and most of them do not 

appear in most documents 
- probability estimate by count often gives 0 probability 

!

- solution : SMOOTHING the estimate



Smoothing: Laplace

- N possibilities / cases 
- t1, t2, t3, … , tN observed counts for each case 
- M = t1 + t2 + t3 + … + tN number of observations 
- direct estimate P(i) = ti / M 
- Laplace estimate P(i) = (ti + 1) / (M+N) 
- note that Laplace P(i) still sum to 1



Smoothing: Foreground and Background

- N possibilities / cases 
- t1, t2, t3, … , tN observed counts for each case 
- M = t1 + t2 + t3 + … + tN number of observations 
- direct (foreground) estimate P(i) = ti / M 

!

- Background estimate in a larger setting 
- each experiment j has Nj, Mj, tij etc 

- Q(i) = (Σj tij ) / (Σj Mj ) background probability 
- note that Laplace P(i) still sum to 1 

!

- smoothed estimate Prob(i) = λP(i) + (1-λ)Q(i) 
- note that smoothed estimates still sum to 1



Naive Bayes overview

- Training 
- P(x|y) = P(x1,x2,…,xd|y) = P(x1|y)*P(x2|y)*…P(xd|y) 
- estimate separately each P(xj|y) from training  
- store the model 
!

- Testing 
- for datapoint x apply the estimates to compute   

P(x|y) = P(x1,x2,…,xd|y) = P(x1|y)*P(x2|y)*…P(xd|y) 
- use Bayes Rule P(y|x) = P(x|y)* P(y) / P(x) 
- predict y that maximizes P(x|y)* P(y)








