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The Goal

• You have some observed data

• You have a probabilistic model 
that “generated” your data

• What are the most likely 
parameters of your model?

• Let’s find parameters that 
maximize the expected log 
likelihood of your data

• Why is this hard?  Complex 
models, lots of parameters, and 
hidden data.
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• We let n children each choose 
one of four toys, and keep a 
histogram y of their choices:

• Let’s pick a Multinomial model 
with toy probabilities:

• Our model probability for any 
particular histogram is:

Toys:
    a random experiment

~y = [y1, y2, y3, y4];
X4

i=1
yi = n

~p = [p1, p2, p3, p4];
X4

i=1
pi = 1

p(~y|~p, n) ⇠ Mu(~y|n, ~p)

=
n!

Q4
i=1 yi!

Y4

i=1
pyi
i
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    1. Guess initial parameter values

• For toys, our only parameter is " , on which all our probabilities depend

• Making a good guess doesn’t matter for this simple example

• It matters a lot in more complex cases – EM will find the nearest local 
maximum to your initial guess

• We will try several initial values to see what happens
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• With everything we’ve learned, we can simplify our objective function:

• We’re done!  To find the value of "  that maximizes the expected log 
probability of Y, just run that single equation until it converges.
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Python implementationEM for Toys 

  def run(self):

    # Initialize the observed histogram y and the first guess theta
    y = self.y
    theta = self.theta
    print ("Initial theta: {:0.6f}".format(theta))

    # Run up to some maximum number of rounds
    for round in range(1, self.max_rounds + 1):

      # Calculate the new parameter estimate for this round
      new_theta = (((theta / (2 + theta)) * y[0] + y[3]) / 
                   ((theta / (2 + theta)) * y[0] + y[3] + y[2] + y[1]))
      delta = new_theta - theta
      theta = new_theta

      # Print our status and check for convergence
      print ("Round {} theta: {:0.9f} diff: {:0.3e}".format(round, theta, delta))
      if abs(delta) < 1e-12:
        print("Converged!")
        return



"  = 0.75; n = 1,000; Guess = 0.3Example EM Output

Initial theta: 0.300000
Round 1 theta: 0.726310044 diff: 4.263e-01
Round 2 theta: 0.778614638 diff: 5.230e-02
Round 3 theta: 0.782829617 diff: 4.215e-03
Round 4 theta: 0.783155558 diff: 3.259e-04
Round 5 theta: 0.783180681 diff: 2.512e-05
Round 6 theta: 0.783182617 diff: 1.936e-06
Round 7 theta: 0.783182766 diff: 1.492e-07
Round 8 theta: 0.783182777 diff: 1.150e-08
Round 9 theta: 0.783182778 diff: 8.858e-10
Round 10 theta: 0.783182778 diff: 6.826e-11
Round 11 theta: 0.783182778 diff: 5.260e-12
Round 12 theta: 0.783182778 diff: 4.053e-13
Converged!
Theta: 0.7832
Predicted toy probs: [0.6958, 0.0542, 0.0542, 0.1958]
Empirical toy probs: [0.6920, 0.0430, 0.0660, 0.1990]
Y: [692, 43, 66, 199]
E[X]: [497.27, 194.73, 43, 66, 199]
KL(empirical||predicted): 0.002483



"  = 0.75; n = 1,000; Guess = 0.75Example EM Output

Initial theta: 0.750000
Round 1 theta: 0.780563690 diff: 3.056e-02
Round 2 theta: 0.782980580 diff: 2.417e-03
Round 3 theta: 0.783167195 diff: 1.866e-04
Round 4 theta: 0.783181577 diff: 1.438e-05
Round 5 theta: 0.783182686 diff: 1.108e-06
Round 6 theta: 0.783182771 diff: 8.540e-08
Round 7 theta: 0.783182778 diff: 6.581e-09
Round 8 theta: 0.783182778 diff: 5.071e-10
Round 9 theta: 0.783182778 diff: 3.908e-11
Round 10 theta: 0.783182778 diff: 3.011e-12
Round 11 theta: 0.783182778 diff: 2.320e-13
Converged!
Theta: 0.7832
Predicted toy probs: [0.6958, 0.0542, 0.0542, 0.1958]
Empirical toy probs: [0.6920, 0.0430, 0.0660, 0.1990]
Y: [692, 43, 66, 199]
E[X]: [497.27, 194.73, 43, 66, 199]
KL(empirical||predicted): 0.002483



uniform; n = 1,000; Guess = 0.25Example EM Output

Initial theta: 0.250000
Round 1 theta: 0.331221198 diff: 8.122e-02
Round 2 theta: 0.338049688 diff: 6.828e-03
Round 3 theta: 0.338596066 diff: 5.464e-04
Round 4 theta: 0.338639608 diff: 4.354e-05
Round 5 theta: 0.338643076 diff: 3.469e-06
Round 6 theta: 0.338643353 diff: 2.763e-07
Round 7 theta: 0.338643375 diff: 2.201e-08
Round 8 theta: 0.338643377 diff: 1.754e-09
Round 9 theta: 0.338643377 diff: 1.397e-10
Round 10 theta: 0.338643377 diff: 1.113e-11
Round 11 theta: 0.338643377 diff: 8.866e-13
Converged!
Theta: 0.3386
Predicted toy probs: [0.5847, 0.1653, 0.1653, 0.0847]
Empirical toy probs: [0.2570, 0.2330, 0.2830, 0.2270]
Y: [257, 233, 283, 227]
E[X]: [219.79, 37.21, 233, 283, 227]
KL(empirical||predicted): 0.244673
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What is the data telling us?

• EM is finding the local maximum closest to the initialization point

• If we initialize to the “right answer,” it will move away from that to the 
maximum for the observed data

• EM can’t fix a bad model: if your modeling assumptions are bad, it will find 
the best answer consistent with those assumptions

• As you’d expect, EM is also sensitive to the amount of data you give it
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So what?



The EM Algorithm:
    a second look

Let’s think about how to do this in general.
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3. Calculate the expected log probability for the data

4. Choose new parameter values to maximize 

5. Repeat steps 2-4 until convergence
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The EM Algorithm:
    the tricky part

Z

x:p(x|y,✓)>0
xp(X = x|y, ✓)dx

X

x2X

xp(X = x|y, ✓)

• How do we maximize this?

• It depends on what’s hiding inside your model 

• Toys has a discrete model; we solved it algebraically

• You typically differentiate, set it to zero, and solve
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That’s all for now!

Coming up:
• Proof of convergence

• Actually useful models

• An information theoretical look

• 100% fewer birds


