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The Goal

* You have some observed data

Data
* You have a probabilistic model l

that “generated” your data

- What are the most likely arg LHax {: [lOg p(ﬂf ‘ Q)]

parameters of your model? 0 T

Model
 Let’s find parameters that

maximize the expected log
likelihood of your data Parameters

« Why is this hard? Complex
models, lots of parameters, and
hidden data.
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Toys:
a random experiment

 We let n children each choose
one of four toys, and keep a

histogram y of their choices:
4

g: [yla 7937?;/4]521,:1%:%

» Let’s pick a Multinomial model

with toy probabillities:

4
ﬁ: [p17 7]937]94]527;:1]?@':1

« Our model probability for any
particular histogram is:

p(y|p,n) ~ Mu(y|n,p)
nl 4 |
- H4 Hz‘:1 p;

i=1 yi!
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- Suppose we think the toy probabilities are related to some parameter [:

L6108
Po — 9 47 ) A 74
» We also think that the kids really choose based on being in one of five hidden

states of mind, and we want to count up how many kids are in each:

T ~ MU(TL,Q_’Q),y_)é [.731 —|—Q§'2, 73347374]
YRRy
do — 2747 ) A 74

 This gives us a new model based on the hidden X rather than the observed Y-

} n! 1\ /9N (1—9\ """
o=y () () ()

+ All we need is to find a value of I and values for X that fit our assumptions:

arg max E|log p(Z]0)]
0
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The EM algorithm

E-step

EM finds the values of the parameters [l and hidden data X that maximize the
likelihood of the observed data Y.

- M-step

1. Guess initial parameter values (=Y

" 2. Calculate the distribution over the data p(z|g, ™)

3. Calculate the expected log probability for the data
Q(016™)) £ E[log p(716)]

=) log p(|0)p(&]7, 0"

" 4. Choose new parameter values to maximize Q(6|6™)

arg max E[log p(#]6)] = arg max Q(9]6™)
0 0

5. Repeat steps 2-4 until convergence
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—M for Toys:
1. Guess Initial parameter values

 For toys, our only parameter is I, on which all our probabilities depend
L |16 -0 46
do — 27 47 ) A ’ A

» Making a good guess doesn’t matter for this simple example

- It matters a /ot in more complex cases — EM will find the nearest local
maximum to your initial guess

« We will try several initial values to see what happens
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2. Calculate a distribution over the data

- We already know how to calculate the probability of seeing a particular X:

} n! 1\ /9N (1—0\ "™
o=t ) (1) ()
[Iizy 24!

 This is a great time to wonder what happened to Y — our actual observations

?jé [xl+$27 73347375]

- We will need our observations very soon, but bear with me a little longer
 Let’s get ready for a little math

R
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» Working through the calculation:
Q(010'™)) = E(log p(]0)]
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5
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» Working through the calculation:
Q(010'™) = Eflog p(0)

e : n)! 1 T1 Q To+Is 1—6 +I4
— =E|y,00m) Og H?:1 ZEZ' 9 A A

5
= Ez/7.00m [log n! — Zi:l logx;! — x1log2 + (xo + x5) log 0

— (CUQ -+ 5135) 10g4 —+ ( -+ 564) 10g(1 — 9) — ( -+ 5174) 10g 4]

- BUT we only want to find [0 to maximize this expectation, not to calculate the
maximum value. Let’s take out everything that doesn’t depend on [I.

arg max Q(6]0'™)) = arg max E[log p(Z|6)]
0e(0,1) 6e(0,1)

= arg max ]thj’g(m) (ZE2 -+ x5) log 0 + ( + 334) lOg(]. o 0)]
0c(0,1)

— agg({)nfb)x{(E[azg] + Elzs])logd + (E[r] + E[x4]) log(1 — 0)}



N

g >0
.

| think we’ve earned a break.
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« Remember the observed data?

y_’é [x1+x27 73347335]

* In order to get the expectations and tie us back to reality, we need to model
the hidden data X in terms of the observed data Y. If we say the first two
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3. Calculate the expected log probabillity (cont.)

+ Our goal: arg max UE[z2] + Elzs]) log 0 + (E[13] + Elz4]) log(1 — 0)}

« Remember the observed data?

gé [£C1—|—CCQ, 73347335]

* In order to get the expectations and tie us back to reality, we need to model
the hidden data X in terms of the observed data Y. If we say the first two
members of X are binomially distributed, given Y, then we have:

s yp! 2 \" o \" 5
p(Z]y, 0) P (2+9) <2+9> (1 + 2o = 1] | Ii:3 [2; = yi_1]

* Now we can get the expected values using the binomial mean:

2 0
21607210

Ezg,017] = [ Y1, 7y37y4]
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4. Choose new parameters

- With everything we’ve learned, we can simplify our objective function:
arg max {(E|zo] + E[zs])log 0 + (E[1] + E|z4]) log(1 — 6)}

6c(0,1)
0
= arg max { <2 Y1 T y4) log 0 + (12 + y3) log(1 — 9)}
0e(0,1) +
p(m)

— " g(m)
S ot YL+ U+ Us + Y




—M for Toys:
4. Choose new parameters

- With everything we’ve learned, we can simplify our objective function:

a;’g(?gx{(E[@] + Elzs]) log0 + (E[r5] + E[24]) log(1 — 0)§

0
ZargmaX{< Y1 +y4> log 0 + ( +y3)10g(1—9)}
0€(0,1) 240

p(m)

— " g(m)
S ot YL+ U+ Us + Y

- We're done! To find the value of I that maximizes the expected log
probability of Y, just run that single equation until it converges.
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L et’s l[ook at some data

- Let’s test this on fake
data:
9 c{0,1/4,1/2,3/4,1}
n € {100, 1000, 10000}

6,248 » Plus a uniform
distribution, to see what
6,836 happens when our
model is wrong
7539 . |1 0 1—0 6
0= 135 =+ 1 R

2,461

2,494
2,457
2,522
2,527

0 2000 4000 6000 8000

uniform




def run(self):

# Initialize the observed histogram y and the first guess theta
y = self.y

theta = self.theta
print ("Initial theta: {:0.6f}".format(theta))

# Run up to some maximum number of rounds
for round in range(1, self.max_rounds + 1):

# Calculate the new parameter estimate for this round
new_theta = (((theta / (2 + theta)) x y[0] + y[3]) /
((theta / (2 + theta)) x y[0] + yI[3] + y[2] + yI[1]))
new_theta - theta
new_theta

delta
theta

# Print our status and check for convergence

print ("Round {} theta: {:0.9f} diff: {:0.3e}".format(round, theta, delta))
if abs(delta) < 1le-12:

print("Converged!")
return

EM fOr TOyS Python implementation
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Round
Round
Round
Round
Round
Round
Round
Round
Round

OooNOUTEE WN K-

theta:
theta:
theta:
theta:
theta:
theta:
theta:
theta:
theta:
theta:

.300000

. 726310044
. 778614638
. 782829617
. /783155558
. /83180681
. 783182617
. 783182766
. 783182777
. 783182778
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diff:
diff:
diff:
diff:
diff:
diff:
diff:
diff:

diff:

R EPENWRAUA

.263e-01
. 230e-02
.215e-03
. 259e-04
.512e-05
. 936e-06
.492e-07
.150e-08

.858e-10

0.783182778 diff: 6.826e-11
0.783182778 diff: 5.260e-12
0.783182778 diff: 4.053e-13

10 theta:
Round 11 theta:
Round 12 theta:
Converged!
Theta: 0.7832
Predicted toy probs:
Empirical toy probs:
Y: [692, 43, 66, 199]
E[X]: [497.27, 194.73, 43, 66, 199]
KL(empirical| |predicted): 0.002483

Round

[0.6958, 0.0542, 0.0542, 0.1958]
[0.6920, 0.0430, 0.0660, 0.1990]

0 =0.75; n=1,000; Guess =0.3

—xample EM Qutput
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Round
Round
Round
Round
Round
Round
Round
Round
Round

OooNOUTEE WN K-

theta:
theta:
theta:
theta:
theta:
theta:
theta:
theta:
theta:
theta:

. 750000
. 780563690
. 782980580
. 783167195
. 783181577
. /83182686
. 783182771
. 783182778
. 783182778
. 783182778

®®®®®®®®®®

diff:
diff:
diff:
diff:
diff:
diff:
diff:
diff:

diff:

UJU1®OOI—\I—‘I—\I\)UJ

.056e-02
.417e-03
.866e-04
.438e-05
.108e-06
.540e-08
.581e-09
.071e-10

.908e-11

0.783182778 diff: 3.011le-12
0.783182778 diff: 2.320e-13

Round 10 theta:
Round 11 theta:
Converged!
Theta: 0.7832
Predicted toy probs:
Empirical toy probs:
Y: [692, 43, 66, 199]
E[X]: [497.27, 194.73, 43, 66, 199]
KL(empirical| |predicted): 0.002483

[0.6958, 0.0542, 0.0542, 0.1958]
[0.6920, 0.0430, 0.0660, 0.1990]

0 =0.75; n=1,000; Guess =0.75

Example EM QOutput




Initial

Round
Round
Round
Round
Round
Round
Round
Round
Round

OooNOUTEE WN K-

theta:
theta:
theta:
theta:
theta:
theta:
theta:
theta:
theta:
theta:

. 250000

.331221198
. 338049688
. 3385960606
. 338639608
.338643076
.338643353
.338643375
.338643377
.338643377

®®®®®®®®®®

diff:
diff:
diff:
diff:
diff:
diff:
diff:
diff:

diff:

I—\I—\I\)I\)UU-bU'ICﬁOO

.122e-02
. 828e-03
.464e-04
. 354e-05
.469e-06
. /63e-07
.201e-08
. /54e-09

.397e-10

0.338643377 diff: 1.113e-11
0.338643377 diff: 8.866e-13

Round 10 theta:
Round 11 theta:
Converged!
Theta: 0.3386
Predicted toy probs: [0.5847, 0.1653, 0.1653, 0.0847]
Empirical toy probs: [0.2570, 0.2330, 0.2830, 0.2270]
Y: [257, 233, 283, 227]

E[X]: [219.79, 37.21, 233, 283, 227]

KL(empirical| |predicted): 0.244673

uniform; n = 1,000; Guess = 0.25

Example EM QOutput
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What is the data telling us®

« EM is finding the local maximum closest to the initialization point

- If we initialize to the “right answer,” it will move away from that to the
maximum for the observed data

- EM can’t fix a bad model: if your modeling assumptions are bad, it will find
the best answer consistent with those assumptions

* As you’d expect, EM is also sensitive to the amount of data you give it
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Error in Estimated [ KL Divergence

0.15
0.113
0.01 N
AN S
0.075
\ . —

0.038 ; : \

0 ——

n=100 1,000 10,000 n=100 1,000 10,000

— =0 =— =025 =— =05 — 1 =0.75 =— =1 =— Uniform

Results of all data runs for Toys



So what?



The EM Algorithm:

a second look

E-step

Let’s think about how to do this in general.

- M-step

1. Guess initial parameter values (=Y

" 2. Calculate the distribution over the data p(z|g, ™)

3. Calculate the expected log probability for the data
Q(0]6'™)) £ E[log p(6)]

=) log p(Z|0)p(&ly,0"™)

" 4. Choose new parameter values to maximize Q(6|6™)

arg max E[log p(#]6)] = arg max Q(9]6™)
0 0

5. Repeat steps 2-4 until convergence
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Known unknowns

Variables Meaning
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the tricky part

/ rp(X = x|y, 0)dx Z zp(X = zly, 0)
x:p(x|y,0)>0 rcX

« How do we maximize this?
* |t depends on what’s hiding inside your model
* Toys has a discrete model; we solved it algebraically

 You typically differentiate, set it to zero, and solve
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Coming up:

* Proof of convergence
e Actually useful models

 An information theoretical look

e 100% fewer birds



