

Expectation Maximization

What it is and how you use it

$$\underset{\theta}{\arg\max} \, \mathbb{E}[\log p(x|\theta)]$$

You have some observed data

$$\underset{\theta}{\arg\max} \, \mathbb{E}[\log p(x|\theta)]$$

You have some observed data

$$\operatorname*{arg\,max} \mathbb{E}[\log p(x|\theta)]$$

- You have some observed data
- You have a probabilistic model that "generated" your data

$$\operatorname*{arg\,max} \mathbb{E}[\log p(x|\theta)]$$

- You have some observed data
- You have a probabilistic model that "generated" your data

$$\max_{ heta} \mathbb{E}[\log p(x| heta)]$$

- You have some observed data
- You have a probabilistic model that "generated" your data
- What are the most likely parameters of your model?

- You have some observed data
- You have a probabilistic model that "generated" your data
- What are the most likely parameters of your model?

- You have some observed data
- You have a probabilistic model that "generated" your data
- What are the most likely parameters of your model?
- Let's find parameters that maximize the expected log likelihood of your data

- You have some observed data
- You have a probabilistic model that "generated" your data
- What are the most likely parameters of your model?
- Let's find parameters that maximize the expected log likelihood of your data
- Why is this hard? Complex models, lots of parameters, and hidden data.

Toys: a random experiment

Toys: a random experiment

Toys: a random experiment

 We let n children each choose one of four toys, and keep a histogram y of their choices:

a random experiment

 We let n children each choose one of four toys, and keep a histogram y of their choices:

$$\vec{y} = [y_1, y_2, y_3, y_4]; \sum_{i=1}^{4} y_i = n$$

a random experiment

 We let n children each choose one of four toys, and keep a histogram y of their choices:

$$\vec{y} = [y_1, y_2, y_3, y_4]; \sum_{i=1}^{4} y_i = n$$

 Let's pick a Multinomial model with toy probabilities:

a random experiment

 We let n children each choose one of four toys, and keep a histogram y of their choices:

$$\vec{y} = [y_1, y_2, y_3, y_4]; \sum_{i=1}^{4} y_i = n$$

 Let's pick a Multinomial model with toy probabilities:

$$\vec{p} = [p_1, p_2, p_3, p_4]; \sum_{i=1}^{4} p_i = 1$$

a random experiment

 We let n children each choose one of four toys, and keep a histogram y of their choices:

$$\vec{y} = [y_1, y_2, y_3, y_4]; \sum_{i=1}^{4} y_i = n$$

 Let's pick a Multinomial model with toy probabilities:

$$\vec{p} = [p_1, p_2, p_3, p_4]; \sum_{i=1}^{4} p_i = 1$$

 Our model probability for any particular histogram is:

a random experiment

 We let n children each choose one of four toys, and keep a histogram y of their choices:

$$\vec{y} = [y_1, y_2, y_3, y_4]; \sum_{i=1}^{4} y_i = n$$

 Let's pick a Multinomial model with toy probabilities:

$$\vec{p} = [p_1, p_2, p_3, p_4]; \sum_{i=1}^{4} p_i = 1$$

 Our model probability for any particular histogram is:

$$p(\vec{y}|\vec{p}, n) \sim Mu(\vec{y}|n, \vec{p})$$

$$= \frac{n!}{\prod_{i=1}^{4} y_i!} \prod_{i=1}^{4} p_i^{y_i}$$

Toys: parameters and hidden data

Toys: parameters and hidden data

• Suppose we think the toy probabilities are related to some parameter []:

Toys: parameters and hidden data

• Suppose we think the toy probabilities are related to some parameter []:

$$ec{p_{ heta}} = \left[rac{1}{2} + rac{ heta}{4}, rac{1- heta}{4}, rac{1- heta}{4}, rac{ heta}{4}
ight]$$

parameters and hidden data

• Suppose we think the toy probabilities are related to some parameter []:

$$ec{p_{ heta}} = \left[rac{1}{2} + rac{ heta}{4}, rac{1- heta}{4}, rac{1- heta}{4}, rac{ heta}{4}
ight]$$

 We also think that the kids really choose based on being in one of five hidden states of mind, and we want to count up how many kids are in each:

parameters and hidden data

• Suppose we think the toy probabilities are related to some parameter []:

$$ec{p_{ heta}} = \left[rac{1}{2} + rac{ heta}{4}, rac{1- heta}{4}, rac{1- heta}{4}, rac{ heta}{4}
ight]$$

 We also think that the kids really choose based on being in one of five hidden states of mind, and we want to count up how many kids are in each:

$$\vec{x} \sim Mu(n, \vec{q}_{\theta}); \vec{y} \triangleq [x_1 + x_2, x_3, x_4, x_4]$$

$$\vec{q}_{\theta} = \left[\frac{1}{2}, \frac{\theta}{4}, \frac{1 - \theta}{4}, \frac{1 - \theta}{4}, \frac{\theta}{4}\right]$$

parameters and hidden data

• Suppose we think the toy probabilities are related to some parameter []:

$$ec{p_{ heta}} = \left[rac{1}{2} + rac{ heta}{4}, rac{1- heta}{4}, rac{1- heta}{4}, rac{ heta}{4}
ight]$$

 We also think that the kids really choose based on being in one of five hidden states of mind, and we want to count up how many kids are in each:

$$\vec{x} \sim Mu(n, \vec{q}_{\theta}); \vec{y} \triangleq [\mathbf{x}_1 + \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4, \mathbf{x}_4]$$

$$\vec{q}_{\theta} = \left[\frac{1}{2}, \frac{\theta}{4}, \frac{1-\theta}{4}, \frac{1-\theta}{4}, \frac{\theta}{4}\right]$$

This gives us a new model based on the hidden X rather than the observed Y:

parameters and hidden data

• Suppose we think the toy probabilities are related to some parameter []:

$$ec{p_{ heta}} = \left[rac{1}{2} + rac{ heta}{4}, rac{1- heta}{4}, rac{1- heta}{4}, rac{ heta}{4}
ight]$$

 We also think that the kids really choose based on being in one of five hidden states of mind, and we want to count up how many kids are in each:

$$\vec{x} \sim Mu(n, \vec{q}_{\theta}); \vec{y} \triangleq [\mathbf{x}_1 + \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4, \mathbf{x}_4]$$

$$\vec{q}_{\theta} = \left[\frac{1}{2}, \frac{\theta}{4}, \frac{1-\theta}{4}, \frac{1-\theta}{4}, \frac{\theta}{4}\right]$$

This gives us a new model based on the hidden X rather than the observed Y:

$$p(\vec{x}|\theta) = \frac{n!}{\prod_{i=1}^{5} x_i!} \left(\frac{1}{2}\right)^{x_1} \left(\frac{\theta}{4}\right)^{x_2 + x_5} \left(\frac{1 - \theta}{4}\right)^{x_3 + x_4}$$

parameters and hidden data

• Suppose we think the toy probabilities are related to some parameter []:

$$\vec{p_{ heta}} = \left[\frac{1}{2} + \frac{ heta}{4}, \frac{1- heta}{4}, \frac{1- heta}{4}, \frac{ heta}{4} \right]$$

 We also think that the kids really choose based on being in one of five hidden states of mind, and we want to count up how many kids are in each:

$$\vec{x} \sim Mu(n, \vec{q}_{\theta}); \vec{y} \triangleq [x_1 + x_2, x_3, x_4, x_4]$$

$$\vec{q}_{\theta} = \left[\frac{1}{2}, \frac{\theta}{4}, \frac{1 - \theta}{4}, \frac{1 - \theta}{4}, \frac{\theta}{4}\right]$$

This gives us a new model based on the hidden X rather than the observed Y:

$$p(\vec{x}|\theta) = \frac{n!}{\prod_{i=1}^{5} x_i!} \left(\frac{1}{2}\right)^{x_1} \left(\frac{\theta}{4}\right)^{x_2 + x_5} \left(\frac{1 - \theta}{4}\right)^{x_3 + x_4}$$

• All we need is to find a value of \square and values for X that fit our assumptions:

parameters and hidden data

• Suppose we think the toy probabilities are related to some parameter []:

$$\vec{p_{ heta}} = \left[\frac{1}{2} + \frac{ heta}{4}, \frac{1- heta}{4}, \frac{1- heta}{4}, \frac{ heta}{4} \right]$$

 We also think that the kids really choose based on being in one of five hidden states of mind, and we want to count up how many kids are in each:

$$\vec{x} \sim Mu(n, \vec{q}_{\theta}); \vec{y} \triangleq [x_1 + x_2, x_3, x_4, x_4]$$

$$\vec{q}_{\theta} = \left[\frac{1}{2}, \frac{\theta}{4}, \frac{1 - \theta}{4}, \frac{1 - \theta}{4}, \frac{\theta}{4}\right]$$

This gives us a new model based on the hidden X rather than the observed Y:

$$p(\vec{x}|\theta) = \frac{n!}{\prod_{i=1}^{5} x_i!} \left(\frac{1}{2}\right)^{x_1} \left(\frac{\theta}{4}\right)^{x_2 + x_5} \left(\frac{1 - \theta}{4}\right)^{x_3 + x_4}$$

• All we need is to find a value of \square and values for X that fit our assumptions:

$$\arg\max_{\theta} \mathbb{E}[\log p(\vec{x}|\theta)]$$

EM finds the values of the parameters

and hidden data X that maximize the likelihood of the observed data Y.

EM finds the values of the parameters

and hidden data X that maximize the likelihood of the observed data Y.

- 1. Guess initial parameter values $\theta^{(m=0)}$
- 2. Calculate the distribution over the data $p(\vec{x}|\vec{y}, \theta^{(m)})$
- 3. Calculate the expected log probability for the data

$$Q(\theta|\theta^{(m)}) \triangleq \mathbb{E}[\log p(\vec{x}|\theta)]$$
$$= \sum_{\vec{x}} \log p(\vec{x}|\theta) p(\vec{x}|\vec{y}, \theta^{(m)})$$

4. Choose new parameter values to maximize $Q(\theta|\theta^{(m)})$

$$\arg\max_{\theta} \mathbb{E}[\log p(\vec{x}|\theta)] = \arg\max_{\theta} Q(\theta|\theta^{(m)})$$

5. Repeat steps 2-4 until convergence

EM finds the values of the parameters

and hidden data X that maximize the likelihood of the observed data Y.

- 1. Guess initial parameter values $\theta^{(m=0)}$
- 2. Calculate the distribution over the data $p(\vec{x}|\vec{y}, \theta^{(m)})$
- 3. Calculate the expected log probability for the data

$$Q(\theta|\theta^{(m)}) \triangleq \mathbb{E}[\log p(\vec{x}|\theta)]$$
$$= \sum_{\vec{x}} \log p(\vec{x}|\theta) p(\vec{x}|\vec{y}, \theta^{(m)})$$

4. Choose new parameter values to maximize $Q(\theta|\theta^{(m)})$

$$\arg\max_{\theta} \mathbb{E}[\log p(\vec{x}|\theta)] = \arg\max_{\theta} Q(\theta|\theta^{(m)})$$

5. Repeat steps 2-4 until convergence

EM finds the values of the parameters

and hidden data X that maximize the likelihood of the observed data Y.

- 1. Guess initial parameter values $\theta^{(m=0)}$
- 2. Calculate the distribution over the data $p(\vec{x}|\vec{y}, \theta^{(m)})$
- 3. Calculate the expected log probability for the data

$$Q(\theta|\theta^{(m)}) \triangleq \mathbb{E}[\log p(\vec{x}|\theta)]$$
$$= \sum_{\vec{x}} \log p(\vec{x}|\theta) p(\vec{x}|\vec{y}, \theta^{(m)})$$

4. Choose new parameter values to maximize $Q(\theta|\theta^{(m)})$

$$\arg\max_{\theta} \mathbb{E}[\log p(\vec{x}|\theta)] = \arg\max_{\theta} Q(\theta|\theta^{(m)})$$

5. Repeat steps 2-4 until convergence

E-step

M-step

1. Guess initial parameter values

1. Guess initial parameter values

• For toys, our only parameter is [], on which all our probabilities depend

1. Guess initial parameter values

• For toys, our only parameter is [], on which all our probabilities depend

$$ec{q_{ heta}} = \left[rac{1}{2}, rac{ heta}{4}, rac{1- heta}{4}, rac{1- heta}{4}, rac{ heta}{4}
ight]$$

1. Guess initial parameter values

• For toys, our only parameter is [], on which all our probabilities depend

$$ec{q}_{ heta} = \left[rac{1}{2}, rac{ heta}{4}, rac{1- heta}{4}, rac{1- heta}{4}, rac{ heta}{4}
ight]$$

Making a good guess doesn't matter for this simple example

1. Guess initial parameter values

• For toys, our only parameter is [], on which all our probabilities depend

$$ec{q}_{ heta} = \left[rac{1}{2}, rac{ heta}{4}, rac{1- heta}{4}, rac{1- heta}{4}, rac{ heta}{4}
ight]$$

- Making a good guess doesn't matter for this simple example
- It matters a lot in more complex cases EM will find the nearest local maximum to your initial guess

1. Guess initial parameter values

• For toys, our only parameter is [], on which all our probabilities depend

$$ec{q}_{ heta} = \left[rac{1}{2}, rac{ heta}{4}, rac{1- heta}{4}, rac{1- heta}{4}, rac{ heta}{4}
ight]$$

- Making a good guess doesn't matter for this simple example
- It matters a lot in more complex cases EM will find the nearest local maximum to your initial guess
- We will try several initial values to see what happens

2. Calculate a distribution over the data

2. Calculate a distribution over the data

• We already know how to calculate the probability of seeing a particular X:

2. Calculate a distribution over the data

We already know how to calculate the probability of seeing a particular X:

$$p(\vec{x}|\theta) = \frac{n!}{\prod_{i=1}^{5} x_i!} \left(\frac{1}{2}\right)^{x_1} \left(\frac{\theta}{4}\right)^{x_2 + x_5} \left(\frac{1 - \theta}{4}\right)^{x_3 + x_4}$$

2. Calculate a distribution over the data

• We already know how to calculate the probability of seeing a particular X:

$$p(\vec{x}|\theta) = \frac{n!}{\prod_{i=1}^{5} x_i!} \left(\frac{1}{2}\right)^{x_1} \left(\frac{\theta}{4}\right)^{x_2 + x_5} \left(\frac{1 - \theta}{4}\right)^{x_3 + x_4}$$

This is a great time to wonder what happened to Y – our actual observations

2. Calculate a distribution over the data

• We already know how to calculate the probability of seeing a particular X:

$$p(\vec{x}|\theta) = \frac{n!}{\prod_{i=1}^{5} x_i!} \left(\frac{1}{2}\right)^{x_1} \left(\frac{\theta}{4}\right)^{x_2 + x_5} \left(\frac{1 - \theta}{4}\right)^{x_3 + x_4}$$

This is a great time to wonder what happened to Y – our actual observations

$$\vec{y} \triangleq [x_1 + x_2, x_3, x_4, x_5]$$

2. Calculate a distribution over the data

• We already know how to calculate the probability of seeing a particular X:

$$p(\vec{x}|\theta) = \frac{n!}{\prod_{i=1}^{5} x_i!} \left(\frac{1}{2}\right)^{x_1} \left(\frac{\theta}{4}\right)^{x_2 + x_5} \left(\frac{1 - \theta}{4}\right)^{x_3 + x_4}$$

• This is a great time to wonder what happened to Y – our actual observations $\vec{y} \triangleq [x_1 + x_2, x_3, x_4, x_5]$

· We will need our observations very soon, but bear with me a little longer

2. Calculate a distribution over the data

• We already know how to calculate the probability of seeing a particular X:

$$p(\vec{x}|\theta) = \frac{n!}{\prod_{i=1}^{5} x_i!} \left(\frac{1}{2}\right)^{x_1} \left(\frac{\theta}{4}\right)^{x_2 + x_5} \left(\frac{1 - \theta}{4}\right)^{x_3 + x_4}$$

• This is a great time to wonder what happened to Y – our actual observations $\vec{y} \triangleq [x_1 + x_2, x_3, x_4, x_5]$

- · We will need our observations very soon, but bear with me a little longer
- Let's get ready for a little math

2. Calculate a distribution over the data

• We already know how to calculate the probability of seeing a particular X:

$$p(\vec{x}|\theta) = \frac{n!}{\prod_{i=1}^{5} x_i!} \left(\frac{1}{2}\right)^{x_1} \left(\frac{\theta}{4}\right)^{x_2 + x_5} \left(\frac{1 - \theta}{4}\right)^{x_3 + x_4}$$

- This is a great time to wonder what happened to Y our actual observations $\vec{y} \triangleq [x_1 + x_2, x_3, x_4, x_5]$
- · We will need our observations very soon, but bear with me a little longer
- Let's get ready for a little math

3. Calculate the expected log probability

3. Calculate the expected log probability

Working through the calculation:

3. Calculate the expected log probability

Working through the calculation:

$$Q(\theta|\theta^{(m)}) = \mathbb{E}[\log p(\vec{x}|\theta)]$$

$$= \mathbb{E}_{\vec{x}|\vec{y},\theta^{(m)}} \left[\log \left(\frac{n!}{\prod_{i=1}^{5} x_{i}!} \left(\frac{1}{2} \right)^{x_{1}} \left(\frac{\theta}{4} \right)^{x_{2}+x_{5}} \left(\frac{1-\theta}{4} \right)^{x_{3}+x_{4}} \right) \right]$$

$$= \mathbb{E}_{\vec{x}|\vec{y},\theta^{(m)}} \left[\log n! - \sum_{i=1}^{5} \log x_{i}! - x_{1} \log 2 + (x_{2} + x_{5}) \log \theta \right]$$

$$- (x_{2} + x_{5}) \log 4 + (x_{3} + x_{4}) \log(1-\theta) - (x_{3} + x_{4}) \log 4$$

3. Calculate the expected log probability

Working through the calculation:

$$Q(\theta|\theta^{(m)}) = \mathbb{E}[\log p(\vec{x}|\theta)]$$

$$= \mathbb{E}_{\vec{x}|\vec{y},\theta^{(m)}} \left[\log \left(\frac{n!}{\prod_{i=1}^{5} x_{i}!} \left(\frac{1}{2} \right)^{x_{1}} \left(\frac{\theta}{4} \right)^{x_{2}+x_{5}} \left(\frac{1-\theta}{4} \right)^{x_{3}+x_{4}} \right) \right]$$

$$= \mathbb{E}_{\vec{x}|\vec{y},\theta^{(m)}} \left[\log n! - \sum_{i=1}^{5} \log x_{i}! - x_{1} \log 2 + (x_{2} + x_{5}) \log \theta \right]$$

$$- (x_{2} + x_{5}) \log 4 + (x_{3} + x_{4}) \log (1-\theta) - (x_{3} + x_{4}) \log 4$$

• BUT we only want to find □ to maximize this expectation, not to calculate the maximum value. Let's take out everything that doesn't depend on □.

3. Calculate the expected log probability

Working through the calculation:

$$Q(\theta|\theta^{(m)}) = \mathbb{E}[\log p(\vec{x}|\theta)]$$

$$= \mathbb{E}_{\vec{x}|\vec{y},\theta^{(m)}} \left[\log \left(\frac{n!}{\prod_{i=1}^{5} x_{i}!} \left(\frac{1}{2} \right)^{x_{1}} \left(\frac{\theta}{4} \right)^{x_{2}+x_{5}} \left(\frac{1-\theta}{4} \right)^{x_{3}+x_{4}} \right) \right]$$

$$= \mathbb{E}_{\vec{x}|\vec{y},\theta^{(m)}} \left[\log n! - \sum_{i=1}^{5} \log x_{i}! - x_{1} \log 2 + (x_{2} + x_{5}) \log \theta \right]$$

$$- (x_{2} + x_{5}) \log 4 + (x_{3} + x_{4}) \log(1-\theta) - (x_{3} + x_{4}) \log 4$$

• BUT we only want to find □ to maximize this expectation, not to calculate the maximum value. Let's take out everything that doesn't depend on □.

$$\underset{\theta \in (0,1)}{\operatorname{arg max}} Q(\theta | \theta^{(m)}) = \underset{\theta \in (0,1)}{\operatorname{arg max}} \mathbb{E}[\log p(\vec{x}|\theta)]$$

$$\equiv \underset{\theta \in (0,1)}{\operatorname{arg max}} \mathbb{E}_{\vec{x}|\vec{y},\theta^{(m)}} \left[(\mathbf{x_2} + \mathbf{x_5}) \log \theta + (\mathbf{x_3} + \mathbf{x_4}) \log(1 - \theta) \right]$$

$$= \underset{\theta \in (0,1)}{\operatorname{arg max}} \left\{ (\mathbb{E}[\mathbf{x_2}] + \mathbb{E}[\mathbf{x_5}]) \log \theta + (\mathbb{E}[\mathbf{x_3}] + \mathbb{E}[\mathbf{x_4}]) \log(1 - \theta) \right\}$$

I think we've earned a break.

3. Calculate the expected log probability (cont.)

• Our goal: $\underset{\theta \in (0,1)}{\operatorname{arg\,max}} \{ (\mathbb{E}[x_2] + \mathbb{E}[x_5]) \log \theta + (\mathbb{E}[x_3] + \mathbb{E}[x_4]) \log (1-\theta) \}$

3. Calculate the expected log probability (cont.)

- Our goal: $\underset{\theta \in (0,1)}{\operatorname{arg\,max}} \{ (\mathbb{E}[x_2] + \mathbb{E}[x_5]) \log \theta + (\mathbb{E}[x_3] + \mathbb{E}[x_4]) \log (1-\theta) \}$
- Remember the observed data?

3. Calculate the expected log probability (cont.)

- Our goal: $\underset{\theta \in (0,1)}{\operatorname{arg\,max}} \{ (\mathbb{E}[\underline{x_2}] + \mathbb{E}[x_5]) \log \theta + (\mathbb{E}[\underline{x_3}] + \mathbb{E}[\underline{x_4}]) \log (1-\theta) \}$
- Remember the observed data?

$$\vec{y} \triangleq [x_1 + x_2, x_3, x_4, x_5]$$

3. Calculate the expected log probability (cont.)

- Our goal: $\underset{\theta \in (0,1)}{\operatorname{arg\,max}} \{ (\mathbb{E}[x_2] + \mathbb{E}[x_5]) \log \theta + (\mathbb{E}[x_3] + \mathbb{E}[x_4]) \log (1-\theta) \}$
- Remember the observed data?

$$\vec{y} \triangleq [x_1 + x_2, x_3, x_4, x_5]$$

• In order to get the expectations and tie us back to reality, we need to model the hidden data X in terms of the observed data Y. If we say the first two members of X are binomially distributed, given Y, then we have:

3. Calculate the expected log probability (cont.)

- Our goal: $\underset{\theta \in (0,1)}{\operatorname{arg\,max}} \{ (\mathbb{E}[\underline{x_2}] + \mathbb{E}[x_5]) \log \theta + (\mathbb{E}[\underline{x_3}] + \mathbb{E}[\underline{x_4}]) \log (1 \theta) \}$
- Remember the observed data?

$$\vec{y} \triangleq [x_1 + x_2, x_3, x_4, x_5]$$

• In order to get the expectations and tie us back to reality, we need to model the hidden data X in terms of the observed data Y. If we say the first two members of X are binomially distributed, given Y, then we have:

$$p(\vec{x}|\vec{y},\theta) = \frac{y_1!}{x_1!x_2!} \left(\frac{2}{2+\theta}\right)^{x_1} \left(\frac{\theta}{2+\theta}\right)^{x_2} \mathbb{I}[x_1 + x_2 = y_1] \prod_{i=3}^{5} \mathbb{I}[x_i = y_{i-1}]$$

3. Calculate the expected log probability (cont.)

- Our goal: $\underset{\theta \in (0,1)}{\operatorname{arg\,max}} \{ (\mathbb{E}[\underline{x_2}] + \mathbb{E}[x_5]) \log \theta + (\mathbb{E}[\underline{x_3}] + \mathbb{E}[\underline{x_4}]) \log (1 \theta) \}$
- Remember the observed data?

$$\vec{y} \triangleq [x_1 + x_2, x_3, x_4, x_5]$$

• In order to get the expectations and tie us back to reality, we need to model the hidden data X in terms of the observed data Y. If we say the first two members of X are binomially distributed, given Y, then we have:

$$p(\vec{x}|\vec{y},\theta) = \frac{y_1!}{x_1!x_2!} \left(\frac{2}{2+\theta}\right)^{x_1} \left(\frac{\theta}{2+\theta}\right)^{x_2} \mathbb{I}[x_1 + x_2 = y_1] \prod_{i=3}^{5} \mathbb{I}[x_i = y_{i-1}]$$

Now we can get the expected values using the binomial mean:

3. Calculate the expected log probability (cont.)

- Our goal: $\underset{\theta \in (0,1)}{\operatorname{arg\,max}} \{ (\mathbb{E}[\underline{x_2}] + \mathbb{E}[x_5]) \log \theta + (\mathbb{E}[\underline{x_3}] + \mathbb{E}[\underline{x_4}]) \log (1 \theta) \}$
- Remember the observed data?

$$\vec{y} \triangleq [x_1 + x_2, x_3, x_4, x_5]$$

• In order to get the expectations and tie us back to reality, we need to model the hidden data X in terms of the observed data Y. If we say the first two members of X are binomially distributed, given Y, then we have:

$$p(\vec{x}|\vec{y},\theta) = \frac{y_1!}{x_1!x_2!} \left(\frac{2}{2+\theta}\right)^{x_1} \left(\frac{\theta}{2+\theta}\right)^{x_2} \mathbb{I}[x_1 + x_2 = y_1] \prod_{i=3}^{5} \mathbb{I}[x_i = y_{i-1}]$$

Now we can get the expected values using the binomial mean:

$$\mathbb{E}_{\vec{x}|\vec{y},\theta}[\vec{x}] = \left[\frac{2}{2+\theta} y_1, \frac{\theta}{2+\theta} y_1, y_2, y_3, y_4 \right]$$

4. Choose new parameters

4. Choose new parameters

4. Choose new parameters

$$\underset{\theta \in (0,1)}{\operatorname{arg max}} \left\{ \left(\mathbb{E}[\mathbf{x_2}] + \mathbb{E}[\mathbf{x_5}] \right) \log \theta + \left(\mathbb{E}[\mathbf{x_3}] + \mathbb{E}[\mathbf{x_4}] \right) \log (1 - \theta) \right\}$$

4. Choose new parameters

$$\underset{\theta \in (0,1)}{\operatorname{arg\,max}} \left\{ \left(\mathbb{E}[\mathbf{x_2}] + \mathbb{E}[\mathbf{x_5}] \right) \log \theta + \left(\mathbb{E}[\mathbf{x_3}] + \mathbb{E}[\mathbf{x_4}] \right) \log (1 - \theta) \right\}$$

$$= \underset{\theta \in (0,1)}{\operatorname{arg\,max}} \left\{ \left(\frac{\theta}{2+\theta} y_1 + y_4 \right) \log \theta + \left(y_2 + y_3 \right) \log \left(1 - \theta \right) \right\}$$

4. Choose new parameters

$$\underset{\theta \in (0,1)}{\operatorname{arg\,max}} \left\{ \left(\mathbb{E}[\mathbf{x_2}] + \mathbb{E}[\mathbf{x_5}] \right) \log \theta + \left(\mathbb{E}[\mathbf{x_3}] + \mathbb{E}[\mathbf{x_4}] \right) \log (1 - \theta) \right\}$$

$$= \underset{\theta \in (0,1)}{\operatorname{arg\,max}} \left\{ \left(\frac{\theta}{2+\theta} y_1 + y_4 \right) \log \theta + \left(y_2 + y_3 \right) \log \left(1 - \theta \right) \right\}$$

$$=\frac{\frac{\theta^{(m)}}{2+\theta^{(m)}}y_1+y_4}{\frac{\theta^{(m)}}{2+\theta^{(m)}}y_1+y_2+y_3+y_4}$$

4. Choose new parameters

With everything we've learned, we can simplify our objective function:

$$\underset{\theta \in (0,1)}{\operatorname{arg\,max}} \left\{ \left(\mathbb{E}[\mathbf{x}_2] + \mathbb{E}[\mathbf{x}_5] \right) \log \theta + \left(\mathbb{E}[\mathbf{x}_3] + \mathbb{E}[\mathbf{x}_4] \right) \log (1 - \theta) \right\}$$

$$= \underset{\theta \in (0,1)}{\operatorname{arg\,max}} \left\{ \left(\frac{\theta}{2+\theta} y_1 + y_4 \right) \log \theta + \left(y_2 + y_3 \right) \log \left(1 - \theta \right) \right\}$$

$$=\frac{\frac{\theta^{(m)}}{2+\theta^{(m)}}y_1+y_4}{\frac{\theta^{(m)}}{2+\theta^{(m)}}y_1+y_2+y_3+y_4}$$

• We're done! To find the value of \square that maximizes the expected log probability of Y, just run that single equation until it converges.

Let's look at some data

 Let's test this on fake data:

$$\theta \in \{0, 1/4, 1/2, 3/4, 1\}$$

 $n \in \{100, 1000, 10000\}$

 Plus a uniform distribution, to see what happens when our model is wrong

$$ec{p_{ heta}} = \left[rac{1}{2} + rac{ heta}{4}, rac{1- heta}{4}, rac{1- heta}{4}, rac{ heta}{4}
ight]$$

Let's look at some data


```
def run(self):
 # Initialize the observed histogram y and the first guess theta
 y = self.y
 theta = self.theta
  print ("Initial theta: {:0.6f}".format(theta))
 # Run up to some maximum number of rounds
  for round in range(1, self.max_rounds + 1):
   # Calculate the new parameter estimate for this round
    new_theta = (((theta / (2 + theta)) * y[0] + y[3]) /
                 ((theta / (2 + theta)) * y[0] + y[3] + y[2] + y[1]))
    delta = new_theta - theta
    theta = new_theta
    # Print our status and check for convergence
    print ("Round {} theta: {:0.9f} diff: {:0.3e}".format(round, theta, delta))
    if abs(delta) < 1e-12:</pre>
      print("Converged!")
      return
```

```
Initial theta: 0.300000
Round 1 theta: 0.726310044 diff: 4.263e-01
Round 2 theta: 0.778614638 diff: 5.230e-02
Round 3 theta: 0.782829617 diff: 4.215e-03
Round 4 theta: 0.783155558 diff: 3.259e-04
Round 5 theta: 0.783180681 diff: 2.512e-05
Round 6 theta: 0.783182617 diff: 1.936e-06
Round 7 theta: 0.783182766 diff: 1.492e-07
Round 8 theta: 0.783182777 diff: 1.150e-08
Round 9 theta: 0.783182778 diff: 8.858e-10
Round 10 theta: 0.783182778 diff: 6.826e-11
Round 11 theta: 0.783182778 diff: 5.260e-12
Round 12 theta: 0.783182778 diff: 4.053e-13
Converged!
Theta: 0.7832
Predicted toy probs: [0.6958, 0.0542, 0.0542, 0.1958]
Empirical toy probs: [0.6920, 0.0430, 0.0660, 0.1990]
Y: [692, 43, 66, 199]
E[X]: [497.27, 194.73, 43, 66, 199]
KL(empirical||predicted): 0.002483
```

 \Box = 0.75; n = 1,000; Guess = 0.3

```
Initial theta: 0.750000
Round 1 theta: 0.780563690 diff: 3.056e-02
Round 2 theta: 0.782980580 diff: 2.417e-03
Round 3 theta: 0.783167195 diff: 1.866e-04
Round 4 theta: 0.783181577 diff: 1.438e-05
Round 5 theta: 0.783182686 diff: 1.108e-06
Round 6 theta: 0.783182771 diff: 8.540e-08
Round 7 theta: 0.783182778 diff: 6.581e-09
Round 8 theta: 0.783182778 diff: 5.071e-10
Round 9 theta: 0.783182778 diff: 3.908e-11
Round 10 theta: 0.783182778 diff: 3.011e-12
Round 11 theta: 0.783182778 diff: 2.320e-13
Converged!
Theta: 0.7832
Predicted toy probs: [0.6958, 0.0542, 0.0542, 0.1958]
Empirical toy probs: [0.6920, 0.0430, 0.0660, 0.1990]
Y: [692, 43, 66, 199]
E[X]: [497.27, 194.73, 43, 66, 199]
KL(empirical||predicted): 0.002483
```

 \Box = 0.75; n = 1,000; Guess = 0.75

```
Initial theta: 0.250000
Round 1 theta: 0.331221198 diff: 8.122e-02
Round 2 theta: 0.338049688 diff: 6.828e-03
Round 3 theta: 0.338596066 diff: 5.464e-04
Round 4 theta: 0.338639608 diff: 4.354e-05
Round 5 theta: 0.338643076 diff: 3.469e-06
Round 6 theta: 0.338643353 diff: 2.763e-07
Round 7 theta: 0.338643375 diff: 2.201e-08
Round 8 theta: 0.338643377 diff: 1.754e-09
Round 9 theta: 0.338643377 diff: 1.397e-10
Round 10 theta: 0.338643377 diff: 1.113e-11
Round 11 theta: 0.338643377 diff: 8.866e-13
Converged!
Theta: 0.3386
Predicted toy probs: [0.5847, 0.1653, 0.1653, 0.0847]
Empirical toy probs: [0.2570, 0.2330, 0.2830, 0.2270]
Y: [257, 233, 283, 227]
E[X]: [219.79, 37.21, 233, 283, 227]
KL(empirical||predicted): 0.244673
```

uniform; n = 1,000; Guess = 0.25

What is the data telling us?

• EM is finding the local maximum closest to the initialization point

What is the data telling us?

- EM is finding the local maximum closest to the initialization point
- If we initialize to the "right answer," it will move away from that to the maximum for the observed data

What is the data telling us?

- EM is finding the local maximum closest to the initialization point
- If we initialize to the "right answer," it will move away from that to the maximum for the observed data
- EM can't fix a bad model: if your modeling assumptions are bad, it will find the best answer consistent with those assumptions

What is the data telling us?

- EM is finding the local maximum closest to the initialization point
- If we initialize to the "right answer," it will move away from that to the maximum for the observed data
- EM can't fix a bad model: if your modeling assumptions are bad, it will find the best answer consistent with those assumptions
- · As you'd expect, EM is also sensitive to the amount of data you give it

So what?

Let's think about how to do this in general.

- 1. Guess initial parameter values $\theta^{(m=0)}$
- 2. Calculate the distribution over the data $p(\vec{x}|\vec{y}, \theta^{(m)})$
- 3. Calculate the expected log probability for the data

$$Q(\theta|\theta^{(m)}) \triangleq \mathbb{E}[\log p(\vec{x}|\theta)]$$
$$= \sum_{\vec{x}} \log p(\vec{x}|\theta) p(\vec{x}|\vec{y}, \theta^{(m)})$$

4. Choose new parameter values to maximize $Q(\theta|\theta^{(m)})$

$$\arg\max_{\theta} \mathbb{E}[\log p(\vec{x}|\theta)] = \arg\max_{\theta} Q(\theta|\theta^{(m)})$$

5. Repeat steps 2-4 until convergence

E-step

Let's think about how to do this in general.

To start with, let's allow X and Y to be anything.

- 1. Guess initial parameter values $\theta^{(m=0)}$
- 2. Calculate the distribution over the data $p(\vec{x}|\vec{y}, \theta^{(m)})$
- 3. Calculate the expected log probability for the data

$$Q(\theta|\theta^{(m)}) \triangleq \mathbb{E}[\log p(\vec{x}|\theta)]$$
$$= \sum_{\vec{x}} \log p(\vec{x}|\theta) p(\vec{x}|\vec{y}, \theta^{(m)})$$

4. Choose new parameter values to maximize $Q(\theta|\theta^{(m)})$

$$\arg\max_{\theta} \mathbb{E}[\log p(\vec{x}|\theta)] = \arg\max_{\theta} Q(\theta|\theta^{(m)})$$

5. Repeat steps 2-4 until convergence

E-step

Let's think about how to do this in general.

To start with, let's allow X and Y to be anything.

- 1. Guess initial parameter values $\theta^{(m=0)}$
- 2. Calculate the distribution over the data $p(x|y, \theta^{(m)})$
- 3. Calculate the expected log probability for the data

$$Q(\theta|\theta^{(m)}) \triangleq \mathbb{E}[\log p(x|\theta)]$$

$$= \sum_{x} \log p(x|\theta)p(x|y,\theta^{(m)})$$

4. Choose new parameter values to maximize $Q(\theta|\theta^{(m)})$

$$\arg\max_{\theta} \mathbb{E}[\log p(x|\theta)] = \arg\max_{\theta} Q(\theta|\theta^{(m)})$$

5. Repeat steps 2-4 until convergence

E-step

Let's think about how to do this in general.

To start with, let's allow X and Y to be anything.

Variables

- 1. Guess initial parameter values $\theta^{(m=0)}$
- 2. Calculate the distribution over the data $p(x|y, \theta^{(m)})$
- 3. Calculate the expected log probability for the data

$$Q(\theta|\theta^{(m)}) \triangleq \mathbb{E}[\log p(x|\theta)]$$
$$= \sum_{x} \log p(x|\theta)p(x|y,\theta^{(m)})$$

4. Choose new parameter values to maximize $Q(\theta|\theta^{(m)})$

$$\arg\max_{\theta} \mathbb{E}[\log p(x|\theta)] = \arg\max_{\theta} Q(\theta|\theta^{(m)})$$

5. Repeat steps 2-4 until convergence

M-step E-step

Let's think about how to do this in general.

To start with, let's allow X and Y to be anything.

Variables

1. Guess initial parameter values $\theta^{(m=0)}$

- $\theta \in \Theta$
- 2. Calculate the distribution over the data $p(x|y,\theta^{(m)})$
- 3. Calculate the expected log probability for the data

$$Q(\theta|\theta^{(m)}) \triangleq \mathbb{E}[\log p(x|\theta)]$$
$$= \sum_{x} \log p(x|\theta)p(x|y,\theta^{(m)})$$

4. Choose new parameter values to maximize $Q(\theta|\theta^{(m)})$

$$\arg\max_{\theta} \mathbb{E}[\log p(x|\theta)] = \arg\max_{\theta} Q(\theta|\theta^{(m)})$$

5. Repeat steps 2-4 until convergence

E-step

M-step ..

Let's think about how to do this in general.

To start with, let's allow X and Y to be anything.

Variables

1. Guess initial parameter values $\theta^{(m=0)}$

$$\theta \in \Theta$$

2. Calculate the distribution over the data $p(x|y, \theta^{(m)})$

$$y, Y \in \mathbb{R}^{d_1}$$

3. Calculate the expected log probability for the data

$$Q(\theta|\theta^{(m)}) \triangleq \mathbb{E}[\log p(x|\theta)]$$
$$= \sum_{x} \log p(x|\theta)p(x|y,\theta^{(m)})$$

4. Choose new parameter values to maximize $Q(\theta|\theta^{(m)})$

$$\arg\max_{\theta} \mathbb{E}[\log p(x|\theta)] = \arg\max_{\theta} Q(\theta|\theta^{(m)})$$

5. Repeat steps 2-4 until convergence

E-step

Let's think about how to do this in general.

To start with, let's allow X and Y to be anything.

Variables

1. Guess initial parameter values $\theta^{(m=0)}$

$$\theta \in \Theta$$

2. Calculate the distribution over the data $p(x|y, \theta^{(m)})$

$$y, Y \in \mathbb{R}^{d_1}$$

 $z, Z \in \mathbb{R}^{d_2}$

3. Calculate the expected log probability for the data

$$Q(\theta|\theta^{(m)}) \triangleq \mathbb{E}[\log p(x|\theta)]$$
$$= \sum \log p(x|\theta)p(x|y,\theta)$$

$$= \sum_{x} \log p(x|\theta) p(x|y,\theta^{(m)})$$

4. Choose new parameter values to maximize $Q(\theta|\theta^{(m)})$

$$\arg\max_{\theta} \mathbb{E}[\log p(x|\theta)] = \arg\max_{\theta} Q(\theta|\theta^{(m)})$$

5. Repeat steps 2-4 until convergence

Let's think about how to do this in general.

To start with, let's allow X and Y to be anything.

Variables

1. Guess initial parameter values $\theta^{(m=0)}$

$$\theta \in \Theta$$

2. Calculate the distribution over the data $p(x|y, \theta^{(m)})$

$$y, Y \in \mathbb{R}^{d_1}$$

3. Calculate the expected log probability for the data

$$z, Z \in \mathbb{R}^{d_2}$$
$$x \triangleq (y, z)$$

$$Q(\theta|\theta^{(m)}) \triangleq \mathbb{E}[\log p(x|\theta)]$$

$$X \triangleq (Y, Z)$$

$$= \sum_{x} \log p(x|\theta) p(x|y,\theta^{(m)})$$

4. Choose new parameter values to maximize $Q(\theta|\theta^{(m)})$

$$\arg\max_{\theta} \mathbb{E}[\log p(x|\theta)] = \arg\max_{\theta} Q(\theta|\theta^{(m)})$$

5. Repeat steps 2-4 until convergence

E-step

Variables	Meaning
$\theta \in \Theta$	Parameters (unknown)
$y, Y \in \mathbb{R}^{d_1}$	Observed data and R.V. (known)
$z, Z \in \mathbb{R}^{d_2}$	Hidden data and R.V. (unknown)
$x \triangleq (y, z) X \triangleq (Y, Z)$	Complete data and R.V.
	Model for observations, given params
	Model for complete data in one round

Variables	Meaning
$\theta \in \Theta$	Parameters (unknown)
$y, Y \in \mathbb{R}^{d_1}$	Observed data and R.V. (known)
$z, Z \in \mathbb{R}^{d_2}$	Hidden data and R.V. (unknown)
$x \triangleq (y, z) X \triangleq (Y, Z)$	Complete data and R.V.
$p(Y = y \theta)$	Model for observations, given params
	Model for complete data in one round

Variables	Meaning
$\theta \in \Theta$	Parameters (unknown)
$y, Y \in \mathbb{R}^{d_1}$	Observed data and R.V. (known)
$z,Z\in\mathbb{R}^{d_2}$	Hidden data and R.V. (unknown)
$x \triangleq (y, z) X \triangleq (Y, Z)$	Complete data and R.V.
$p(Y = y \theta)$	Model for observations, given params

Variables	Meaning
$\theta \in \Theta$	Parameters (unknown)
$y, Y \in \mathbb{R}^{d_1}$	Observed data and R.V. (known)
$z,Z\in\mathbb{R}^{d_2}$	Hidden data and R.V. (unknown)
$x \triangleq (y, z) X \triangleq (Y, Z)$	Complete data and R.V.
$p(Y = y \theta)$	Model for observations, given params
$p(X = x y, \theta)$	

Variables	Meaning
$\theta \in \Theta$	Parameters (unknown)
$y, Y \in \mathbb{R}^{d_1}$	Observed data and R.V. (known)
$z, Z \in \mathbb{R}^{d_2}$	Hidden data and R.V. (unknown)
$x \triangleq (y, z) X \triangleq (Y, Z)$	Complete data and R.V.
$p(Y = y \theta)$	Model for observations, given params
$p(X = x y, \theta)$	Model for complete data in one round

Variables	Meaning
$\theta \in \Theta$	Parameters (unknown)
$y, Y \in \mathbb{R}^{d_1}$	Observed data and R.V. (known)
$z,Z\in\mathbb{R}^{d_2}$	Hidden data and R.V. (unknown)
$x \triangleq (y, z) X \triangleq (Y, Z)$	Complete data and R.V.
$p(Y = y \theta)$	Model for observations, given params
$p(X = x y, \theta)$	Model for complete data in one round
$\mathbb{E}\left[p(X=x y,\theta)\right]$	

Variables	Meaning
$\theta \in \Theta$	Parameters (unknown)
$y, Y \in \mathbb{R}^{d_1}$	Observed data and R.V. (known)
$z,Z\in\mathbb{R}^{d_2}$	Hidden data and R.V. (unknown)
$x \triangleq (y, z) X \triangleq (Y, Z)$	Complete data and R.V.
$p(Y = y \theta)$	Model for observations, given params
$p(X = x y, \theta)$	Model for complete data in one round
$\mathbb{E}\left[p(X=x y,\theta)\right]$	

Variables	Meaning
$\theta \in \Theta$	Parameters (unknown)
$y, Y \in \mathbb{R}^{d_1}$	Observed data and R.V. (known)
$z, Z \in \mathbb{R}^{d_2}$	Hidden data and R.V. (unknown)
$x \triangleq (y, z) X \triangleq (Y, Z)$	Complete data and R.V.
$p(Y = y \theta)$	Model for observations, given params
$p(X = x y, \theta)$	Model for complete data in one round
$\mathbb{E}\left[p(X=x y,\theta)\right]$	$\int_{x:p(x y,\theta)>0} xp(X=x y,\theta)dx$

$$\int_{x:p(x|y,\theta)>0} xp(X=x|y,\theta)dx \sum_{x\in X} xp(X=x|y,\theta)$$

How do we maximize this?

$$\int_{x:p(x|y,\theta)>0} xp(X=x|y,\theta)dx \sum_{x\in X} xp(X=x|y,\theta)$$

- How do we maximize this?
- It depends on what's hiding inside your model

$$\int_{x:p(x|y,\theta)>0} xp(X=x|y,\theta)dx \sum_{x\in X} xp(X=x|y,\theta)$$

- How do we maximize this?
- It depends on what's hiding inside your model
- Toys has a discrete model; we solved it algebraically

$$\int_{x:p(x|y,\theta)>0} xp(X=x|y,\theta)dx \sum_{x\in X} xp(X=x|y,\theta)$$

- How do we maximize this?
- It depends on what's hiding inside your model
- Toys has a discrete model; we solved it algebraically
- · You typically differentiate, set it to zero, and solve

That's all for now!

Coming up:

- Proof of convergence
- Actually useful models
- An information theoretical look
- 100% fewer birds

