

Expectation

 MaximizationWhat it is and how you use it

The Goal

The Goal

$$
\underset{\theta}{\arg \max } \mathbb{E}[\log p(x \mid \theta)]
$$

The Goal

- You have some observed data

$$
\underset{\theta}{\arg \max } \mathbb{E}[\log p(x \mid \theta)]
$$

The Goal

- You have some observed data

Data
 $\underset{\theta}{\arg \max } \mathbb{E}[\log p(x \mid \theta)]$

The Goal

- You have some observed data

Data

- You have a probabilistic model that "generated" your data

The Goal

- You have some observed data

Data

- You have a probabilistic model that "generated" your data

The Goal

- You have some observed data
- You have a probabilistic model that "generated" your data
- What are the most likely parameters of your model?

Data

$\underset{\theta}{\arg \max } \mathbb{E}[\log \underset{\uparrow}{p(x \mid \theta)]}$
Model

The Goal

- You have some observed data
- You have a probabilistic model that "generated" your data
- What are the most likely parameters of your model?

$\arg \max \mathbb{E}[\log p(x \mid \theta)]$ θ
 Model
 \section*{Data}

The Goal

- You have some observed data
- You have a probabilistic model that "generated" your data
- What are the most likely parameters of your model?
- Let's find parameters that maximize the expected log likelihood of your data

The Goal

- You have some observed data
- You have a probabilistic model that "generated" your data
- What are the most likely parameters of your model?
- Let's find parameters that maximize the expected log likelihood of your data

$$
\underset{\theta}{\arg \max } \mathbb{E}[\operatorname{dog} p(x \mid \theta)]
$$

- Why is this hard? Complex models, lots of parameters, and hidden data.

Toys:

a random experiment

Toys:
a random experiment

Toys:

a random experiment

- We let n children each choose one of four toys, and keep a histogram y of their choices:

Toys:

a random experiment

- We let n children each choose one of four toys, and keep a histogram y of their choices:
$\vec{y}=\left[y_{1}, y_{2}, y_{3}, y_{4}\right] ; \sum_{i=1}^{4} y_{i}=n$

Toys:

a random experiment

- We let n children each choose one of four toys, and keep a histogram y of their choices: $\vec{y}=\left[y_{1}, y_{2}, y_{3}, y_{4}\right] ; \sum_{i=1}^{4} y_{i}=n$
- Let's pick a Multinomial model with toy probabilities:

Toys:

a random experiment

- We let n children each choose one of four toys, and keep a histogram y of their choices:
$\vec{y}=\left[y_{1}, y_{2}, y_{3}, y_{4}\right] ; \sum_{i=1}^{4} y_{i}=n$
- Let's pick a Multinomial model with toy probabilities:

$$
\vec{p}=\left[p_{1}, p_{2}, p_{3}, p_{4}\right] ; \sum_{i=1}^{4} p_{i}=1
$$

Toys:

a random experiment

- We let n children each choose one of four toys, and keep a histogram y of their choices: $\vec{y}=\left[y_{1}, y_{2}, y_{3}, y_{4}\right] ; \sum_{i=1}^{4} y_{i}=n$
- Let's pick a Multinomial model with toy probabilities:
$\vec{p}=\left[p_{1}, p_{2}, p_{3}, p_{4}\right] ; \sum_{i=1}^{4} p_{i}=1$
- Our model probability for any particular histogram is:

Toys:

a random experiment

- We let n children each choose one of four toys, and keep a histogram y of their choices:
$\vec{y}=\left[y_{1}, y_{2}, y_{3}, y_{4}\right] ; \sum_{i=1}^{4} y_{i}=n$
- Let's pick a Multinomial model with toy probabilities:

$$
\vec{p}=\left[p_{1}, p_{2}, p_{3}, p_{4}\right] ; \sum_{i=1}^{4} p_{i}=1
$$

- Our model probability for any particular histogram is:

$$
\begin{aligned}
p(\vec{y} \mid \vec{p}, n) & \sim M u(\vec{y} \mid n, \vec{p}) \\
& =\frac{n!}{\prod_{i=1}^{4} y_{i}!} \prod_{i=1}^{4} p_{i}^{y_{i}}
\end{aligned}
$$

Toys:
parameters and hidden data

Toys:
parameters and hidden data

- Suppose we think the toy probabilities are related to some parameter $\mathrm{\square}$:

Toys:
parameters and hidden data

- Suppose we think the toy probabilities are related to some parameter $\mathrm{\square}$:

$$
\vec{p}_{\theta}=\left[\frac{1}{2}+\frac{\theta}{4}, \frac{1-\theta}{4}, \frac{1-\theta}{4}, \frac{\theta}{4}\right]
$$

Toys:

parameters and hidden data

- Suppose we think the toy probabilities are related to some parameter $\mathrm{\square}$:

$$
\vec{p}_{\theta}=\left[\frac{1}{2}+\frac{\theta}{4}, \frac{1-\theta}{4}, \frac{1-\theta}{4}, \frac{\theta}{4}\right]
$$

- We also think that the kids really choose based on being in one of five hidden states of mind, and we want to count up how many kids are in each:

Toys:

parameters and hidden data

- Suppose we think the toy probabilities are related to some parameter $\mathrm{\square}$:

$$
\vec{p}_{\theta}=\left[\frac{1}{2}+\frac{\theta}{4}, \frac{1-\theta}{4}, \frac{1-\theta}{4}, \frac{\theta}{4}\right]
$$

- We also think that the kids really choose based on being in one of five hidden states of mind, and we want to count up how many kids are in each:

$$
\begin{gathered}
\vec{x} \sim M u\left(n, \vec{q}_{\theta}\right) ; \vec{y} \triangleq\left[x_{1}+x_{2}, x_{3}, x_{4}, x_{4}\right] \\
\overrightarrow{q_{\theta}}=\left[\frac{1}{2}, \frac{\theta}{4}, \frac{1-\theta}{4}, \frac{1-\theta}{4}, \frac{\theta}{4}\right]
\end{gathered}
$$

Toys:

parameters and hidden data

- Suppose we think the toy probabilities are related to some parameter $\mathrm{\square}$:

$$
\vec{p}_{\theta}=\left[\frac{1}{2}+\frac{\theta}{4}, \frac{1-\theta}{4}, \frac{1-\theta}{4}, \frac{\theta}{4}\right]
$$

- We also think that the kids really choose based on being in one of five hidden states of mind, and we want to count up how many kids are in each:

$$
\begin{gathered}
\vec{x} \sim M u\left(n, \vec{q}_{\theta}\right) ; \vec{y} \triangleq\left[x_{1}+x_{2}, x_{3}, x_{4}, x_{4}\right] \\
\vec{q}_{\theta}=\left[\frac{1}{2}, \frac{\theta}{4}, \frac{1-\theta}{4}, \frac{1-\theta}{4}, \frac{\theta}{4}\right]
\end{gathered}
$$

- This gives us a new model based on the hidden X rather than the observed Y :

Toys:

parameters and hidden data

- Suppose we think the toy probabilities are related to some parameter \square :

$$
\vec{p}_{\theta}=\left[\frac{1}{2}+\frac{\theta}{4}, \frac{1-\theta}{4}, \frac{1-\theta}{4}, \frac{\theta}{4}\right]
$$

- We also think that the kids really choose based on being in one of five hidden states of mind, and we want to count up how many kids are in each:

$$
\begin{gathered}
\vec{x} \sim M u\left(n, \vec{q}_{\theta}\right) ; \vec{y} \triangleq\left[x_{1}+x_{2}, x_{3}, x_{4}, x_{4}\right] \\
\overrightarrow{q_{\theta}}=\left[\frac{1}{2}, \frac{\theta}{4}, \frac{1-\theta}{4}, \frac{1-\theta}{4}, \frac{\theta}{4}\right]
\end{gathered}
$$

- This gives us a new model based on the hidden X rather than the observed Y :

$$
p(\vec{x} \mid \theta)=\frac{n!}{\prod_{i=1}^{5} x_{i}!}\left(\frac{1}{2}\right)^{x_{1}}\left(\frac{\theta}{4}\right)^{x_{2}+x_{5}}\left(\frac{1-\theta}{4}\right)^{x_{3}+x_{4}}
$$

Toys:

parameters and hidden data

- Suppose we think the toy probabilities are related to some parameter \square :

$$
\vec{p}_{\theta}=\left[\frac{1}{2}+\frac{\theta}{4}, \frac{1-\theta}{4}, \frac{1-\theta}{4}, \frac{\theta}{4}\right]
$$

- We also think that the kids really choose based on being in one of five hidden states of mind, and we want to count up how many kids are in each:

$$
\begin{gathered}
\vec{x} \sim M u\left(n, \overrightarrow{q_{\theta}}\right) ; \vec{y} \triangleq\left[x_{1}+x_{2}, x_{3}, x_{4}, x_{4}\right] \\
\overrightarrow{q_{\theta}}=\left[\frac{1}{2}, \frac{\theta}{4}, \frac{1-\theta}{4}, \frac{1-\theta}{4}, \frac{\theta}{4}\right]
\end{gathered}
$$

- This gives us a new model based on the hidden X rather than the observed Y :

$$
p(\vec{x} \mid \theta)=\frac{n!}{\prod_{i=1}^{5} x_{i}!}\left(\frac{1}{2}\right)^{x_{1}}\left(\frac{\theta}{4}\right)^{x_{2}+x_{5}}\left(\frac{1-\theta}{4}\right)^{x_{3}+x_{4}}
$$

- All we need is to find a value of \square and values for X that fit our assumptions:

Toys:

parameters and hidden data

- Suppose we think the toy probabilities are related to some parameter \square :

$$
\vec{p}_{\theta}=\left[\frac{1}{2}+\frac{\theta}{4}, \frac{1-\theta}{4}, \frac{1-\theta}{4}, \frac{\theta}{4}\right]
$$

- We also think that the kids really choose based on being in one of five hidden states of mind, and we want to count up how many kids are in each:

$$
\begin{gathered}
\vec{x} \sim M u\left(n, \vec{q}_{\theta}\right) ; \vec{y} \triangleq\left[x_{1}+x_{2}, x_{3}, x_{4}, x_{4}\right] \\
\overrightarrow{q_{\theta}}=\left[\frac{1}{2}, \frac{\theta}{4}, \frac{1-\theta}{4}, \frac{1-\theta}{4}, \frac{\theta}{4}\right]
\end{gathered}
$$

- This gives us a new model based on the hidden X rather than the observed Y :

$$
p(\vec{x} \mid \theta)=\frac{n!}{\prod_{i=1}^{5} x_{i}!}\left(\frac{1}{2}\right)^{x_{1}}\left(\frac{\theta}{4}\right)^{x_{2}+x_{5}}\left(\frac{1-\theta}{4}\right)^{x_{3}+x_{4}}
$$

- All we need is to find a value of \square and values for X that fit our assumptions:

$$
\underset{\theta}{\arg \max } \mathbb{E}[\log p(\vec{x} \mid \theta)]
$$

Expectation Maximization: The EM algorithm

EM finds the values of the parameters \square and hidden data X that maximize the likelihood of the observed data Y.

Expectation Maximization: The EM algorithm

EM finds the values of the parameters \square and hidden data X that maximize the likelihood of the observed data Y.

1. Guess initial parameter values $\theta^{(m=0)}$
2. Calculate the distribution over the data $p\left(\vec{x} \mid \vec{y}, \theta^{(m)}\right)$
3. Calculate the expected log probability for the data

$$
\begin{aligned}
Q\left(\theta \mid \theta^{(m)}\right) & \triangleq \mathbb{E}[\log p(\vec{x} \mid \theta)] \\
& =\sum_{\vec{x}} \log p(\vec{x} \mid \theta) p\left(\vec{x} \mid \vec{y}, \theta^{(m)}\right)
\end{aligned}
$$

4. Choose new parameter values to maximize $Q\left(\theta \mid \theta^{(m)}\right)$

$$
\underset{\theta}{\arg \max } \mathbb{E}[\log p(\vec{x} \mid \theta)]=\underset{\theta}{\arg \max } Q\left(\theta \mid \theta^{(m)}\right)
$$

5. Repeat steps 2-4 until convergence

Expectation Maximization: The EM algorithm

EM finds the values of the parameters \square and hidden data X that maximize the likelihood of the observed data Y.

1. Guess initial parameter values $\theta^{(m=0)}$
2. Calculate the distribution over the data $p\left(\vec{x} \mid \vec{y}, \theta^{(m)}\right)$
3. Calculate the expected log probability for the data

$$
\begin{aligned}
Q\left(\theta \mid \theta^{(m)}\right) & \triangleq \mathbb{E}[\log p(\vec{x} \mid \theta)] \\
& =\sum_{\vec{x}} \log p(\vec{x} \mid \theta) p\left(\vec{x} \mid \vec{y}, \theta^{(m)}\right)
\end{aligned}
$$

4. Choose new parameter values to maximize $Q\left(\theta \mid \theta^{(m)}\right)$

$$
\underset{\theta}{\arg \max } \mathbb{E}[\log p(\vec{x} \mid \theta)]=\underset{\theta}{\arg \max } Q\left(\theta \mid \theta^{(m)}\right)
$$

5. Repeat steps 2-4 until convergence

Expectation Maximization: The EM algorithm

EM finds the values of the parameters \square and hidden data X that maximize the likelihood of the observed data Y.

1. Guess initial parameter values $\theta^{(m=0)}$
2. Calculate the distribution over the data $p\left(\vec{x} \mid \vec{y}, \theta^{(m)}\right)$
3. Calculate the expected log probability for the data

$$
\begin{aligned}
Q\left(\theta \mid \theta^{(m)}\right) & \triangleq \mathbb{E}[\log p(\vec{x} \mid \theta)] \\
& =\sum_{\vec{x}} \log p(\vec{x} \mid \theta) p\left(\vec{x} \mid \vec{y}, \theta^{(m)}\right)
\end{aligned}
$$

4. Choose new parameter values to maximize $Q\left(\theta \mid \theta^{(m)}\right)$

$$
\underset{\theta}{\arg \max } \mathbb{E}[\log p(\vec{x} \mid \theta)]=\underset{\theta}{\arg \max } Q\left(\theta \mid \theta^{(m)}\right)
$$

5. Repeat steps 2-4 until convergence

EM for Toys:

1. Guess initial parameter values

EM for Toys:

1. Guess initial parameter values

- For toys, our only parameter is \square, on which all our probabilities depend

EM for Toys:

1. Guess initial parameter values

- For toys, our only parameter is \square, on which all our probabilities depend

$$
\vec{q}_{\theta}=\left[\frac{1}{2}, \frac{\theta}{4}, \frac{1-\theta}{4}, \frac{1-\theta}{4}, \frac{\theta}{4}\right]
$$

EM for Toys:

1. Guess initial parameter values

- For toys, our only parameter is \square, on which all our probabilities depend

$$
\vec{q}_{\theta}=\left[\frac{1}{2}, \frac{\theta}{4}, \frac{1-\theta}{4}, \frac{1-\theta}{4}, \frac{\theta}{4}\right]
$$

- Making a good guess doesn't matter for this simple example

EM for Toys:

1. Guess initial parameter values

- For toys, our only parameter is \square, on which all our probabilities depend

$$
\vec{q}_{\theta}=\left[\frac{1}{2}, \frac{\theta}{4}, \frac{1-\theta}{4}, \frac{1-\theta}{4}, \frac{\theta}{4}\right]
$$

- Making a good guess doesn't matter for this simple example
- It matters a lot in more complex cases - EM will find the nearest local maximum to your initial guess

EM for Toys:

1. Guess initial parameter values

- For toys, our only parameter is \square, on which all our probabilities depend

$$
\vec{q}_{\theta}=\left[\frac{1}{2}, \frac{\theta}{4}, \frac{1-\theta}{4}, \frac{1-\theta}{4}, \frac{\theta}{4}\right]
$$

- Making a good guess doesn't matter for this simple example
- It matters a lot in more complex cases - EM will find the nearest local maximum to your initial guess
- We will try several initial values to see what happens

EM for Toys:
2. Calculate a distribution over the data

EM for Toys:

2. Calculate a distribution over the data

- We already know how to calculate the probability of seeing a particular X :

EM for Toys:

2. Calculate a distribution over the data

- We already know how to calculate the probability of seeing a particular X :

$$
p(\vec{x} \mid \theta)=\frac{n!}{\prod_{i=1}^{5} x_{i}!}\left(\frac{1}{2}\right)^{x_{1}}\left(\frac{\theta}{4}\right)^{x_{2}+x_{5}}\left(\frac{1-\theta}{4}\right)
$$

EM for Toys:

2. Calculate a distribution over the data

- We already know how to calculate the probability of seeing a particular X :

$$
p(\vec{x} \mid \theta)=\frac{n!}{\prod_{i=1}^{5} x_{i}!}\left(\frac{1}{2}\right)^{x_{1}}\left(\frac{\theta}{4}\right)^{x_{2}+x_{5}}\left(\frac{1-\theta}{4}\right)
$$

- This is a great time to wonder what happened to Y - our actual observations

EM for Toys:

2. Calculate a distribution over the data

- We already know how to calculate the probability of seeing a particular X :

$$
p(\vec{x} \mid \theta)=\frac{n!}{\prod_{i=1}^{5} x_{i}!}\left(\frac{1}{2}\right)^{x_{1}}\left(\frac{\theta}{4}\right)^{x_{2}+x_{5}}\left(\frac{1-\theta}{4}\right)
$$

- This is a great time to wonder what happened to Y - our actual observations

$$
\vec{y} \triangleq\left[x_{1}+x_{2}, x_{3}, x_{4}, x_{5}\right]
$$

EM for Toys:

2. Calculate a distribution over the data

- We already know how to calculate the probability of seeing a particular X :

$$
p(\vec{x} \mid \theta)=\frac{n!}{\prod_{i=1}^{5} x_{i}!}\left(\frac{1}{2}\right)^{x_{1}}\left(\frac{\theta}{4}\right)^{x_{2}+x_{5}}\left(\frac{1-\theta}{4}\right)
$$

- This is a great time to wonder what happened to Y - our actual observations

$$
\vec{y} \triangleq\left[x_{1}+x_{2}, x_{3}, x_{4}, x_{5}\right]
$$

- We will need our observations very soon, but bear with me a little longer

EM for Toys:

2. Calculate a distribution over the data

- We already know how to calculate the probability of seeing a particular X:

$$
p(\vec{x} \mid \theta)=\frac{n!}{\prod_{i=1}^{5} x_{i}!}\left(\frac{1}{2}\right)^{x_{1}}\left(\frac{\theta}{4}\right)^{x_{2}+x_{5}}\left(\frac{1-\theta}{4}\right)
$$

- This is a great time to wonder what happened to Y - our actual observations

$$
\vec{y} \triangleq\left[x_{1}+x_{2}, x_{3}, x_{4}, x_{5}\right]
$$

- We will need our observations very soon, but bear with me a little longer
- Let's get ready for a little math

EM for Toys:

2. Calculate a distribution over the data

- We already know how to calculate the probability of seeing a particular X:

$$
p(\vec{x} \mid \theta)=\frac{n!}{\prod_{i=1}^{5} x_{i}!}\left(\frac{1}{2}\right)^{x_{1}}\left(\frac{\theta}{4}\right)^{x_{2}+x_{5}}\left(\frac{1-\theta}{4}\right)
$$

- This is a great time to wonder what happened to Y - our actual observations

$$
\vec{y} \triangleq\left[x_{1}+x_{2}, x_{3}, x_{4}, x_{5}\right]
$$

- We will need our observations very soon, but bear with me a little longer
- Let's get ready for a little math

EM for Toys:
3. Calculate the expected log probability

EM for Toys:

3. Calculate the expected log probability

- Working through the calculation:

EM for Toys:

3. Calculate the expected log probability

- Working through the calculation:

$$
\begin{aligned}
Q\left(\theta \mid \theta^{(m)}\right) & =\mathbb{E}[\log p(\vec{x} \mid \theta)] \\
& =\mathbb{E}_{\vec{x} \mid \vec{y}, \theta^{(m)}}\left[\log \left(\frac{n!}{\prod_{i=1}^{5} x_{i}!}\left(\frac{1}{2}\right)^{x_{1}}\left(\frac{\theta}{4}\right)^{x_{2}+x_{5}}\left(\frac{1-\theta}{4}\right)^{x_{3}+x_{4}}\right)\right] \\
& =\mathbb{E}_{\vec{x} \mid \vec{y}, \theta^{(m)}}\left[\log n!-\sum_{i=1}^{5} \log x_{i}!-x_{1} \log 2+\left(x_{2}+x_{5}\right) \log \theta\right. \\
& \left.-\left(x_{2}+x_{5}\right) \log 4+\left(x_{3}+x_{4}\right) \log (1-\theta)-\left(x_{3}+x_{4}\right) \log 4\right]
\end{aligned}
$$

EM for Toys:

3. Calculate the expected log probability

- Working through the calculation:

$$
\begin{aligned}
Q\left(\theta \mid \theta^{(m)}\right) & =\mathbb{E}[\log p(\vec{x} \mid \theta)] \\
& =\mathbb{E}_{\vec{x} \mid \vec{y}, \theta^{(m)}}\left[\log \left(\frac{n!}{\prod_{i=1}^{5} x_{i}!}\left(\frac{1}{2}\right)^{x_{1}}\left(\frac{\theta}{4}\right)^{x_{2}+x_{5}}\left(\frac{1-\theta}{4}\right)^{x_{3}+x_{4}}\right)\right] \\
& =\mathbb{E}_{\vec{x} \mid \vec{y}, \theta^{(m)}}\left[\log n!-\sum_{i=1}^{5} \log x_{i}!-x_{1} \log 2+\left(x_{2}+x_{5}\right) \log \theta\right. \\
& \left.-\left(x_{2}+x_{5}\right) \log 4+\left(x_{3}+x_{4}\right) \log (1-\theta)-\left(x_{3}+x_{4}\right) \log 4\right]
\end{aligned}
$$

- BUT we only want to find \square to maximize this expectation, not to calculate the maximum value. Let's take out everything that doesn't depend on \square.

EM for Toys:
 3. Calculate the expected log probability

- Working through the calculation:

$$
\begin{aligned}
Q\left(\theta \mid \theta^{(m)}\right) & =\mathbb{E}[\log p(\vec{x} \mid \theta)] \\
& =\mathbb{E}_{\vec{x} \mid \vec{y}, \theta^{(m)}}\left[\log \left(\frac{n!}{\prod_{i=1}^{5} x_{i}!}\left(\frac{1}{2}\right)^{x_{1}}\left(\frac{\theta}{4}\right)^{x_{2}+x_{5}}\left(\frac{1-\theta}{4}\right)^{x_{3}+x_{4}}\right)\right] \\
& =\mathbb{E}_{\vec{x} \mid \vec{y}, \theta^{(m)}}\left[\log n!-\sum_{i=1}^{5} \log x_{i}!-x_{1} \log 2+\left(x_{2}+x_{5}\right) \log \theta\right. \\
& \left.-\left(x_{2}+x_{5}\right) \log 4+\left(x_{3}+x_{4}\right) \log (1-\theta)-\left(x_{3}+x_{4}\right) \log 4\right]
\end{aligned}
$$

- BUT we only want to find \square to maximize this expectation, not to calculate the maximum value. Let's take out everything that doesn't depend on D .

$$
\begin{aligned}
\underset{\theta \in(0,1)}{\arg \max } Q\left(\theta \mid \theta^{(m)}\right) & =\underset{\theta \in(0,1)}{\arg \max } \mathbb{E}[\log p(\vec{x} \mid \theta)] \\
& \equiv \underset{\theta \in(0,1)}{\arg \max } \mathbb{E}_{\vec{x} \mid \vec{y}, \theta(m)}\left[\left(x_{2}+x_{5}\right) \log \theta+\left(x_{3}+x_{4}\right) \log (1-\theta)\right] \\
& =\underset{\theta \in(0,1)}{\arg \max }\left\{\left(\mathbb{E}\left[x_{2}\right]+\mathbb{E}\left[x_{5}\right]\right) \log \theta+\left(\mathbb{E}\left[x_{3}\right]+\mathbb{E}\left[x_{4}\right]\right) \log (1-\theta)\right\}
\end{aligned}
$$

I think we've earned a break.

EM for Toys:

3. Calculate the expected log probability (cont.)

- Our goal: $\arg \max \left\{\left(\mathbb{E}\left[x_{2}\right]+\mathbb{E}\left[x_{5}\right]\right) \log \theta+\left(\mathbb{E}\left[x_{3}\right]+\mathbb{E}\left[x_{4}\right]\right) \log (1-\theta)\right\}$ $\theta \in(0,1)$

EM for Toys:

3. Calculate the expected log probability (cont.)

- Our goal: $\arg \max \left\{\left(\mathbb{E}\left[x_{2}\right]+\mathbb{E}\left[x_{5}\right]\right) \log \theta+\left(\mathbb{E}\left[x_{3}\right]+\mathbb{E}\left[x_{4}\right]\right) \log (1-\theta)\right\}$ $\theta \in(0,1)$
- Remember the observed data?

EM for Toys:

3. Calculate the expected log probability (cont.)

- Our goal: $\arg \max \left\{\left(\mathbb{E}\left[x_{2}\right]+\mathbb{E}\left[x_{5}\right]\right) \log \theta+\left(\mathbb{E}\left[x_{3}\right]+\mathbb{E}\left[x_{4}\right]\right) \log (1-\theta)\right\}$ $\theta \in(0,1)$
- Remember the observed data?

$$
\vec{y} \triangleq\left[x_{1}+x_{2}, x_{3}, x_{4}, x_{5}\right]
$$

EM for Toys:

3. Calculate the expected log probability (cont.)

- Our goal: $\arg \max \left\{\left(\mathbb{E}\left[x_{2}\right]+\mathbb{E}\left[x_{5}\right]\right) \log \theta+\left(\mathbb{E}\left[x_{3}\right]+\mathbb{E}\left[x_{4}\right]\right) \log (1-\theta)\right\}$ $\theta \in(0,1)$
- Remember the observed data?

$$
\vec{y} \triangleq\left[x_{1}+x_{2}, x_{3}, x_{4}, x_{5}\right]
$$

- In order to get the expectations and tie us back to reality, we need to model the hidden data X in terms of the observed data Y. If we say the first two members of X are binomially distributed, given Y, then we have:

EM for Toys:

3. Calculate the expected log probability (cont.)

- Our goal: $\arg \max \left\{\left(\mathbb{E}\left[x_{2}\right]+\mathbb{E}\left[x_{5}\right]\right) \log \theta+\left(\mathbb{E}\left[x_{3}\right]+\mathbb{E}\left[x_{4}\right]\right) \log (1-\theta)\right\}$ $\theta \in(0,1)$
- Remember the observed data?

$$
\vec{y} \triangleq\left[x_{1}+x_{2}, x_{3}, x_{4}, x_{5}\right]
$$

- In order to get the expectations and tie us back to reality, we need to model the hidden data X in terms of the observed data Y. If we say the first two members of X are binomially distributed, given Y, then we have:

$$
p(\vec{x} \mid \vec{y}, \theta)=\frac{y_{1}!}{x_{1}!x_{2}!}\left(\frac{2}{2+\theta}\right)^{x_{1}}\left(\frac{\theta}{2+\theta}\right)^{x_{2}} \mathbb{I}\left[x_{1}+x_{2}=y_{1}\right] \prod_{i=3}^{5} \mathbb{I}\left[x_{i}=y_{i-1}\right]
$$

EM for Toys:
 3. Calculate the expected log probability (cont.)

- Our goal: $\arg \max \left\{\left(\mathbb{E}\left[x_{2}\right]+\mathbb{E}\left[x_{5}\right]\right) \log \theta+\left(\mathbb{E}\left[x_{3}\right]+\mathbb{E}\left[x_{4}\right]\right) \log (1-\theta)\right\}$ $\theta \in(0,1)$
- Remember the observed data?

$$
\vec{y} \triangleq\left[x_{1}+x_{2}, x_{3}, x_{4}, x_{5}\right]
$$

- In order to get the expectations and tie us back to reality, we need to model the hidden data X in terms of the observed data Y . If we say the first two members of X are binomially distributed, given Y , then we have:

$$
p(\vec{x} \mid \vec{y}, \theta)=\frac{y_{1}!}{x_{1}!x_{2}!}\left(\frac{2}{2+\theta}\right)^{x_{1}}\left(\frac{\theta}{2+\theta}\right)^{x_{2}} \mathbb{I}\left[x_{1}+x_{2}=y_{1}\right] \prod_{i=3}^{5} \mathbb{I}\left[x_{i}=y_{i-1}\right]
$$

- Now we can get the expected values using the binomial mean:

EM for Toys:
 3. Calculate the expected log probability (cont.)

- Our goal: $\arg \max \left\{\left(\mathbb{E}\left[x_{2}\right]+\mathbb{E}\left[x_{5}\right]\right) \log \theta+\left(\mathbb{E}\left[x_{3}\right]+\mathbb{E}\left[x_{4}\right]\right) \log (1-\theta)\right\}$ $\theta \in(0,1)$
- Remember the observed data?

$$
\vec{y} \triangleq\left[x_{1}+x_{2}, x_{3}, x_{4}, x_{5}\right]
$$

- In order to get the expectations and tie us back to reality, we need to model the hidden data X in terms of the observed data Y . If we say the first two members of X are binomially distributed, given Y , then we have:

$$
p(\vec{x} \mid \vec{y}, \theta)=\frac{y_{1}!}{x_{1}!x_{2}!}\left(\frac{2}{2+\theta}\right)^{x_{1}}\left(\frac{\theta}{2+\theta}\right)^{x_{2}} \mathbb{I}\left[x_{1}+x_{2}=y_{1}\right] \prod_{i=3}^{5} \mathbb{I}\left[x_{i}=y_{i-1}\right]
$$

- Now we can get the expected values using the binomial mean:

$$
\mathbb{E}_{\vec{x} \mid \vec{y}, \theta}[\vec{x}]=\left[\frac{2}{2+\theta} y_{1}, \frac{\theta}{2+\theta} y_{1}, y_{2}, y_{3}, y_{4}\right]
$$

EM for Toys:
4. Choose new parameters

EM for Toys:
 4. Choose new parameters

- With everything we've learned, we can simplify our objective function:

EM for Toys:
 4. Choose new parameters

- With everything we've learned, we can simplify our objective function:

$$
\underset{\theta \in(0,1)}{\arg \max }\left\{\left(\mathbb{E}\left[x_{2}\right]+\mathbb{E}\left[x_{5}\right]\right) \log \theta+\left(\mathbb{E}\left[x_{3}\right]+\mathbb{E}\left[x_{4}\right]\right) \log (1-\theta)\right\}
$$

EM for Toys:
 4. Choose new parameters

- With everything we've learned, we can simplify our objective function:

$$
\begin{aligned}
\underset{\theta \in(0,1)}{\arg \max } & \left\{\left(\mathbb{E}\left[x_{2}\right]+\mathbb{E}\left[x_{5}\right]\right) \log \theta+\left(\mathbb{E}\left[x_{3}\right]+\mathbb{E}\left[x_{4}\right]\right) \log (1-\theta)\right\} \\
& =\underset{\theta \in(0,1)}{\arg \max }\left\{\left(\frac{\theta}{2+\theta} y_{1}+y_{4}\right) \log \theta+\left(y_{2}+y_{3}\right) \log (1-\theta)\right\}
\end{aligned}
$$

EM for Toys:
 4. Choose new parameters

- With everything we've learned, we can simplify our objective function:

$$
\begin{gathered}
\underset{\theta \in(0,1)}{\arg \max }\left\{\left(\mathbb{E}\left[x_{2}\right]+\mathbb{E}\left[x_{5}\right]\right) \log \theta+\left(\mathbb{E}\left[x_{3}\right]+\mathbb{E}\left[x_{4}\right]\right) \log (1-\theta)\right\} \\
=\underset{\theta \in(0,1)}{\arg \max }\left\{\left(\frac{\theta}{2+\theta} y_{1}+y_{4}\right) \log \theta+\left(y_{2}+y_{3}\right) \log (1-\theta)\right\} \\
=\frac{\frac{\theta^{(m)}}{2+\theta^{(m)}} y_{1}+y_{4}}{\frac{\theta^{(m)}}{2+\theta^{(m)}} y_{1}+y_{2}+y_{3}+y_{4}}
\end{gathered}
$$

EM for Toys:
 4. Choose new parameters

- With everything we've learned, we can simplify our objective function:

$$
\begin{gathered}
\underset{\theta \in(0,1)}{\arg \max }\left\{\left(\mathbb{E}\left[x_{2}\right]+\mathbb{E}\left[x_{5}\right]\right) \log \theta+\left(\mathbb{E}\left[x_{3}\right]+\mathbb{E}\left[x_{4}\right]\right) \log (1-\theta)\right\} \\
=\underset{\theta \in(0,1)}{\arg \max }\left\{\left(\frac{\theta}{2+\theta} y_{1}+y_{4}\right) \log \theta+\left(y_{2}+y_{3}\right) \log (1-\theta)\right\} \\
=\frac{\frac{\theta^{(m)}}{2+\theta^{(m)}} y_{1}+y_{4}}{\frac{\theta^{(m)}}{2+\theta^{(m)}} y_{1}+y_{2}+y_{3}+y_{4}}
\end{gathered}
$$

- We're done! To find the value of \square that maximizes the expected log probability of Y , just run that single equation until it converges.

Let's look at some data

- Let's test this on fake data:

$$
\begin{aligned}
& \theta \in\{0,1 / 4,1 / 2,3 / 4,1\} \\
& n \in\{100,1000,10000\}
\end{aligned}
$$

- Plus a uniform distribution, to see what happens when our model is wrong

$$
\vec{p}_{\theta}=\left[\frac{1}{2}+\frac{\theta}{4}, \frac{1-\theta}{4}, \frac{1-\theta}{4}, \frac{\theta}{4}\right]
$$

Let's look at some data


```
def run(self):
    # Initialize the observed histogram y and the first guess theta
    y = self.y
    theta = self.theta
    print ("Initial theta: {:0.6f}".format(theta))
    # Run up to some maximum number of rounds
    for round in range(1, self.max_rounds + 1):
        # Calculate the new parameter estimate for this round
        new_theta = (((theta / (2 + theta)) * y[0] + y[3]) /
                            ((theta / (2 + theta)) * y[0] + y[3] + y[2] + y[1]))
    delta = new_theta - theta
    theta = new_theta
    # Print our status and check for convergence
    print ("Round {} theta: {:0.9f} diff: {:0.3e}".format(round, theta, delta))
    if abs(delta) < 1e-12:
        print("Converged!")
        return
```

```
Initial theta: 0.300000
Round 1 theta: 0.726310044 diff: 4.263e-01
Round 2 theta: 0.778614638 diff: 5.230e-02
Round 3 theta: 0.782829617 diff: 4.215e-03
Round 4 theta: 0.783155558 diff: 3.259e-04
Round 5 theta: 0.783180681 diff: 2.512e-05
Round 6 theta: 0.783182617 diff: 1.936e-06
Round 7 theta: 0.783182766 diff: 1.492e-07
Round 8 theta: 0.783182777 diff: 1.150e-08
Round 9 theta: 0.783182778 diff: 8.858e-10
Round 10 theta: 0.783182778 diff: 6.826e-11
Round 11 theta: 0.783182778 diff: 5.260e-12
Round 12 theta: 0.783182778 diff: 4.053e-13
Converged!
Theta: 0.7832
Predicted toy probs: [0.6958, 0.0542, 0.0542, 0.1958]
Empirical toy probs: [0.6920, 0.0430, 0.0660, 0.1990]
Y: [692, 43, 66, 199]
E[X]: [497.27, 194.73, 43, 66, 199]
KL(empirical||predicted): 0.002483
```

Example EM Output

```
Initial theta: 0.750000
Round 1 theta: 0.780563690 diff: 3.056e-02
Round 2 theta: 0.782980580 diff: 2.417e-03
Round 3 theta: 0.783167195 diff: 1.866e-04
Round 4 theta: 0.783181577 diff: 1.438e-05
Round 5 theta: 0.783182686 diff: 1.108e-06
Round 6 theta: 0.783182771 diff: 8.540e-08
Round 7 theta: 0.783182778 diff: 6.581e-09
Round 8 theta: 0.783182778 diff: 5.071e-10
Round 9 theta: 0.783182778 diff: 3.908e-11
Round 10 theta: 0.783182778 diff: 3.011e-12
Round 11 theta: 0.783182778 diff: 2.320e-13
Converged!
Theta: 0.7832
Predicted toy probs: [0.6958, 0.0542, 0.0542, 0.1958]
Empirical toy probs: [0.6920, 0.0430, 0.0660, 0.1990]
Y: [692, 43, 66, 199]
E[X]: [497.27, 194.73, 43, 66, 199]
KL(empirical||predicted): 0.002483
```

```
Initial theta: 0.250000
Round 1 theta: 0.331221198 diff: 8.122e-02
Round 2 theta: 0.338049688 diff: 6.828e-03
Round 3 theta: 0.338596066 diff: 5.464e-04
Round 4 theta: 0.338639608 diff: 4.354e-05
Round 5 theta: 0.338643076 diff: 3.469e-06
Round 6 theta: 0.338643353 diff: 2.763e-07
Round 7 theta: 0.338643375 diff: 2.201e-08
Round 8 theta: 0.338643377 diff: 1.754e-09
Round 9 theta: 0.338643377 diff: 1.397e-10
Round 10 theta: 0.338643377 diff: 1.113e-11
Round 11 theta: 0.338643377 diff: 8.866e-13
Converged!
Theta: 0.3386
Predicted toy probs: [0.5847, 0.1653, 0.1653, 0.0847]
Empirical toy probs: [0.2570, 0.2330, 0.2830, 0.2270]
Y: [257, 233, 283, 227]
E[X]: [219.79, 37.21, 233, 283, 227]
KL(empirical||predicted): 0.244673
```


What is the data telling us?

- EM is finding the local maximum closest to the initialization point

What is the data telling us?

- EM is finding the local maximum closest to the initialization point
- If we initialize to the "right answer," it will move away from that to the maximum for the observed data

What is the data telling us?

- EM is finding the local maximum closest to the initialization point
- If we initialize to the "right answer," it will move away from that to the maximum for the observed data
- EM can’t fix a bad model: if your modeling assumptions are bad, it will find the best answer consistent with those assumptions

What is the data telling us?

- EM is finding the local maximum closest to the initialization point
- If we initialize to the "right answer," it will move away from that to the maximum for the observed data
- EM can’t fix a bad model: if your modeling assumptions are bad, it will find the best answer consistent with those assumptions
- As you'd expect, EM is also sensitive to the amount of data you give it

Error in Estimated $[$

KL Divergence

Results of all data runs for Toys

So what?

The EM Algorithm: a second look

Let's think about how to do this in general.

1. Guess initial parameter values $\theta^{(m=0)}$
2. Calculate the distribution over the data $p\left(\vec{x} \mid \vec{y}, \theta^{(m)}\right)$
3. Calculate the expected log probability for the data

$$
\begin{aligned}
Q\left(\theta \mid \theta^{(m)}\right) & \triangleq \mathbb{E}[\log p(\vec{x} \mid \theta)] \\
& =\sum_{\vec{x}} \log p(\vec{x} \mid \theta) p\left(\vec{x} \mid \vec{y}, \theta^{(m)}\right)
\end{aligned}
$$

4. Choose new parameter values to maximize $Q\left(\theta \mid \theta^{(m)}\right)$

$$
\underset{\theta}{\arg \max } \mathbb{E}[\log p(\vec{x} \mid \theta)]=\underset{\theta}{\arg \max } Q\left(\theta \mid \theta^{(m)}\right)
$$

5. Repeat steps 2-4 until convergence

The EM Algorithm: a second look

Let's think about how to do this in general.
To start with, let's allow X and Y to be anything.

1. Guess initial parameter values $\theta^{(m=0)}$
2. Calculate the distribution over the data $p\left(\vec{x} \mid \vec{y}, \theta^{(m)}\right)$
3. Calculate the expected log probability for the data

$$
\begin{aligned}
Q\left(\theta \mid \theta^{(m)}\right) & \triangleq \mathbb{E}[\log p(\vec{x} \mid \theta)] \\
& =\sum_{\vec{x}} \log p(\vec{x} \mid \theta) p\left(\vec{x} \mid \vec{y}, \theta^{(m)}\right)
\end{aligned}
$$

4. Choose new parameter values to maximize $Q\left(\theta \mid \theta^{(m)}\right)$

$$
\underset{\theta}{\arg \max } \mathbb{E}[\log p(\vec{x} \mid \theta)]=\underset{\theta}{\arg \max } Q\left(\theta \mid \theta^{(m)}\right)
$$

5. Repeat steps 2-4 until convergence

The EM Algorithm: a second look

Let's think about how to do this in general.
To start with, let's allow X and Y to be anything.

1. Guess initial parameter values $\theta^{(m=0)}$
2. Calculate the distribution over the data $p\left(x \mid y, \theta^{(m)}\right)$
3. Calculate the expected log probability for the data

$$
\begin{aligned}
Q\left(\theta \mid \theta^{(m)}\right) & \triangleq \mathbb{E}[\log p(x \mid \theta)] \\
& =\sum_{x} \log p(x \mid \theta) p\left(x \mid y, \theta^{(m)}\right)
\end{aligned}
$$

4. Choose new parameter values to maximize $Q\left(\theta \mid \theta^{(m)}\right)$

$$
\underset{\theta}{\arg \max } \mathbb{E}[\log p(x \mid \theta)]=\underset{\theta}{\arg \max } Q\left(\theta \mid \theta^{(m)}\right)
$$

5. Repeat steps 2-4 until convergence

The EM Algorithm: a second look

Let's think about how to do this in general.
To start with, let's allow X and Y to be anything.
Variables

1. Guess initial parameter values $\theta^{(m=0)}$
2. Calculate the distribution over the data $p\left(x \mid y, \theta^{(m)}\right)$
3. Calculate the expected log probability for the data

$$
\begin{aligned}
Q\left(\theta \mid \theta^{(m)}\right) & \triangleq \mathbb{E}[\log p(x \mid \theta)] \\
& =\sum_{x} \log p(x \mid \theta) p\left(x \mid y, \theta^{(m)}\right)
\end{aligned}
$$

4. Choose new parameter values to maximize $Q\left(\theta \mid \theta^{(m)}\right)$

$$
\underset{\theta}{\arg \max } \mathbb{E}[\log p(x \mid \theta)]=\underset{\theta}{\arg \max } Q\left(\theta \mid \theta^{(m)}\right)
$$

5. Repeat steps 2-4 until convergence

The EM Algorithm: a second look

Let's think about how to do this in general.
To start with, let's allow X and Y to be anything.
Variables

1. Guess initial parameter values $\theta^{(m=0)}$
2. Calculate the distribution over the data $p\left(x \mid y, \theta^{(m)}\right)$
3. Calculate the expected log probability for the data

$$
\begin{aligned}
Q\left(\theta \mid \theta^{(m)}\right) & \triangleq \mathbb{E}[\log p(x \mid \theta)] \\
& =\sum_{x} \log p(x \mid \theta) p\left(x \mid y, \theta^{(m)}\right)
\end{aligned}
$$

4. Choose new parameter values to maximize $Q\left(\theta \mid \theta^{(m)}\right)$

$$
\underset{\theta}{\arg \max } \mathbb{E}[\log p(x \mid \theta)]=\underset{\theta}{\arg \max } Q\left(\theta \mid \theta^{(m)}\right)
$$

5. Repeat steps 2-4 until convergence

The EM Algorithm: a second look

Let's think about how to do this in general.
To start with, let's allow X and Y to be anything.
Variables

1. Guess initial parameter values $\theta^{(m=0)}$
$\theta \in \Theta$
2. Calculate the distribution over the data $p\left(x \mid y, \theta^{(m)}\right) \quad y, Y \in \mathbb{R}^{d_{1}}$
3. Calculate the expected log probability for the data

$$
\begin{aligned}
Q\left(\theta \mid \theta^{(m)}\right) & \triangleq \mathbb{E}[\log p(x \mid \theta)] \\
& =\sum_{x} \log p(x \mid \theta) p\left(x \mid y, \theta^{(m)}\right)
\end{aligned}
$$

4. Choose new parameter values to maximize $Q\left(\theta \mid \theta^{(m)}\right)$

$$
\underset{\theta}{\arg \max } \mathbb{E}[\log p(x \mid \theta)]=\underset{\theta}{\arg \max } Q\left(\theta \mid \theta^{(m)}\right)
$$

5. Repeat steps 2-4 until convergence

The EM Algorithm: a second look

Let's think about how to do this in general.
To start with, let's allow X and Y to be anything.
Variables

1. Guess initial parameter values $\theta^{(m=0)}$
$\theta \in \Theta$
2. Calculate the distribution over the data $p\left(x \mid y, \theta^{(m)}\right)$
$y, Y \in \mathbb{R}^{d_{1}}$
3. Calculate the expected log probability for the data

$$
\begin{aligned}
Q\left(\theta \mid \theta^{(m)}\right) & \triangleq \mathbb{E}[\log p(x \mid \theta)] \\
& =\sum_{x} \log p(x \mid \theta) p\left(x \mid y, \theta^{(m)}\right)
\end{aligned}
$$

4. Choose new parameter values to maximize $Q\left(\theta \mid \theta^{(m)}\right)$

$$
\underset{\theta}{\arg \max } \mathbb{E}[\log p(x \mid \theta)]=\underset{\theta}{\arg \max } Q\left(\theta \mid \theta^{(m)}\right)
$$

5. Repeat steps 2-4 until convergence

The EM Algorithm: a second look

Let's think about how to do this in general.
To start with, let's allow X and Y to be anything.
Variables

1. Guess initial parameter values $\theta^{(m=0)} \quad \theta \in \Theta$
2. Calculate the distribution over the data $p\left(x \mid y, \theta^{(m)}\right)$

$$
z, Z \in \mathbb{R}^{d_{2}}
$$

3. Calculate the expected log probability for the data

$$
\begin{aligned}
Q\left(\theta \mid \theta^{(m)}\right) & \triangleq \mathbb{E}[\log p(x \mid \theta)] \\
& =\sum_{x} \log p(x \mid \theta) p\left(x \mid y, \theta^{(m)}\right)
\end{aligned}
$$

$x \triangleq(y, z)$
4. Choose new parameter values to maximize $Q\left(\theta \mid \theta^{(m)}\right)$

$$
\underset{\theta}{\arg \max } \mathbb{E}[\log p(x \mid \theta)]=\underset{\theta}{\arg \max } Q\left(\theta \mid \theta^{(m)}\right)
$$

5. Repeat steps 2-4 until convergence

The EM Algorithm: known unknowns

Variables	Meaning
$\theta \in \Theta$	Parameters (unknown)
$y, Y \in \mathbb{R}^{d_{1}}$	Observed data and R.V. (known)
$z, Z \in \mathbb{R}^{d_{2}}$	Hidden data and R.V. (unknown)
$x \triangleq(y, z) X \triangleq(Y, Z)$	Complete data and R.V.
	Model for observations, given params
	Model for complete data in one round

The EM Algorithm: known unknowns

Variables	Meaning
$\theta \in \Theta$	Parameters (unknown)
$y, Y \in \mathbb{R}^{d_{1}}$	Observed data and R.V. (known)
$z, Z \in \mathbb{R}^{d_{2}}$	Hidden data and R.V. (unknown)
$x \triangleq(y, z) X \triangleq(Y, Z)$	Complete data and R.V.
$p(Y=y \mid \theta)$	Model for observations, given params
	Model for complete data in one round

The EM Algorithm: known unknowns

Variables	Meaning
$\theta \in \Theta$	Parameters (unknown)
$y, Y \in \mathbb{R}^{d_{1}}$	Observed data and R.V. (known)
$z, Z \in \mathbb{R}^{d_{2}}$	Hidden data and R.V. (unknown)
$x \triangleq(y, z) X \triangleq(Y, Z)$	Complete data and R.V.
$p(Y=y \mid \theta)$	Model for observations, given params

The EM Algorithm: known unknowns

Variables	Meaning
$\theta \in \Theta$	Parameters (unknown)
$y, Y \in \mathbb{R}^{d_{1}}$	Observed data and R.V. (known)
$z, Z \in \mathbb{R}^{d_{2}}$	Hidden data and R.V. (unknown)
$x \triangleq(y, z) X \triangleq(Y, Z)$	Complete data and R.V.
$p(Y=y \mid \theta)$	Model for observations, given params
$p(X=x \mid y, \theta)$	

The EM Algorithm: known unknowns

Variables	Meaning
$\theta \in \Theta$	Parameters (unknown)
$y, Y \in \mathbb{R}^{d_{1}}$	Observed data and R.V. (known)
$z, Z \in \mathbb{R}^{d_{2}}$	Hidden data and R.V. (unknown)
$x \triangleq(y, z) X \triangleq(Y, Z)$	Complete data and R.V.
$p(Y=y \mid \theta)$	Model for observations, given params
$p(X=x \mid y, \theta)$	Model for complete data in one round

The EM Algorithm: known unknowns

Variables	Meaning
$\theta \in \Theta$	Parameters (unknown)
$y, Y \in \mathbb{R}^{d_{1}}$	Observed data and R.V. (known)
$z, Z \in \mathbb{R}^{d_{2}}$	Hidden data and R.V. (unknown)
$x \triangleq(y, z) X \triangleq(Y, Z)$	Complete data and R.V.
$p(Y=y \mid \theta)$	Model for observations, given params
$p(X=x \mid y, \theta)$	Model for complete data in one round
$\mathbb{E}[p(X=x \mid y, \theta)]$	

The EM Algorithm: known unknowns

Variables	Meaning
$\theta \in \Theta$	Parameters (unknown)
$y, Y \in \mathbb{R}^{d_{1}}$	Observed data and R.V. (known)
$z, Z \in \mathbb{R}^{d_{2}}$	Hidden data and R.V. (unknown)
$x \triangleq(y, z) X \triangleq(Y, Z)$	Complete data and R.V.
$p(Y=y \mid \theta)$	Model for observations, given params
$p(X=x \mid y, \theta)$	Model for complete data in one round
$\mathbb{E}[p(X=x \mid y, \theta)]$	

The EM Algorithm: known unknowns

Variables	Meaning
$\theta \in \Theta$	Parameters (unknown)
$y, Y \in \mathbb{R}^{d_{1}}$	Observed data and R.V. (known)
$z, Z \in \mathbb{R}^{d_{2}}$	Hidden data and R.V. (unknown)
$x \triangleq(y, z) X \triangleq(Y, Z)$	Complete data and R.V.
$p(Y=y \mid \theta)$	Model for observations, given params
$p(X=x \mid y, \theta)$	Model for complete data in one round
$\mathbb{E}[p(X=x \mid y, \theta)]$	$\int_{x: p(x \mid y, \theta)>0} x p(X=x \mid y, \theta) d x$

The EM Algorithm: the tricky part

$$
\int_{x: p(x \mid y, \theta)>0} x p(X=x \mid y, \theta) d x \sum_{x \in X} x p(X=x \mid y, \theta)
$$

- How do we maximize this?

The EM Algorithm: the tricky part

$$
\int_{x: p(x \mid y, \theta)>0} x p(X=x \mid y, \theta) d x \sum_{x \in X} x p(X=x \mid y, \theta)
$$

- How do we maximize this?
- It depends on what's hiding inside your model

The EM Algorithm: the tricky part

$$
\int_{x: p(x \mid y, \theta)>0} x p(X=x \mid y, \theta) d x \sum_{x \in X} x p(X=x \mid y, \theta)
$$

- How do we maximize this?
- It depends on what's hiding inside your model
- Toys has a discrete model; we solved it algebraically

The EM Algorithm: the tricky part

$$
\int_{x: p(x \mid y, \theta)>0} x p(X=x \mid y, \theta) d x \sum_{x \in X} x p(X=x \mid y, \theta)
$$

- How do we maximize this?
- It depends on what's hiding inside your model
- Toys has a discrete model; we solved it algebraically
- You typically differentiate, set it to zero, and solve

That's all for now!

That's all for now!

Coming up:

- Proof of convergence
- Actually useful models
- An information theoretical look
- 100\% fewer birds

