
Expectation
Maximization What it is and how you use it

The Goal

argmax

✓
E[log p(x|✓)]

The Goal

argmax

✓
E[log p(x|✓)]

The Goal

• You have some observed data

argmax

✓
E[log p(x|✓)]

The Goal

• You have some observed data

Data

argmax

✓
E[log p(x|✓)]

The Goal

• You have some observed data

• You have a probabilistic model
that “generated” your data

Data

argmax

✓
E[log p(x|✓)]

The Goal

• You have some observed data

• You have a probabilistic model
that “generated” your data

Data

Model

argmax

✓
E[log p(x|✓)]

The Goal

• You have some observed data

• You have a probabilistic model
that “generated” your data

• What are the most likely
parameters of your model?

Data

Model

argmax

✓
E[log p(x|✓)]

The Goal

• You have some observed data

• You have a probabilistic model
that “generated” your data

• What are the most likely
parameters of your model?

Data

Parameters

Model

argmax

✓
E[log p(x|✓)]

The Goal

• You have some observed data

• You have a probabilistic model
that “generated” your data

• What are the most likely
parameters of your model?

• Let’s find parameters that
maximize the expected log
likelihood of your data

Data

Parameters

Model

argmax

✓
E[log p(x|✓)]

The Goal

• You have some observed data

• You have a probabilistic model
that “generated” your data

• What are the most likely
parameters of your model?

• Let’s find parameters that
maximize the expected log
likelihood of your data

• Why is this hard? Complex
models, lots of parameters, and
hidden data.

Data

Parameters

Model

Toys:
 a random experiment

Toys:
 a random experiment

• We let n children each choose
one of four toys, and keep a
histogram y of their choices:

Toys:
 a random experiment

• We let n children each choose
one of four toys, and keep a
histogram y of their choices:

Toys:
 a random experiment

~y = [y1, y2, y3, y4];
X4

i=1
yi = n

• We let n children each choose
one of four toys, and keep a
histogram y of their choices:

• Let’s pick a Multinomial model
with toy probabilities:

Toys:
 a random experiment

~y = [y1, y2, y3, y4];
X4

i=1
yi = n

• We let n children each choose
one of four toys, and keep a
histogram y of their choices:

• Let’s pick a Multinomial model
with toy probabilities:

Toys:
 a random experiment

~y = [y1, y2, y3, y4];
X4

i=1
yi = n

~p = [p1, p2, p3, p4];
X4

i=1
pi = 1

• We let n children each choose
one of four toys, and keep a
histogram y of their choices:

• Let’s pick a Multinomial model
with toy probabilities:

• Our model probability for any
particular histogram is:

Toys:
 a random experiment

~y = [y1, y2, y3, y4];
X4

i=1
yi = n

~p = [p1, p2, p3, p4];
X4

i=1
pi = 1

• We let n children each choose
one of four toys, and keep a
histogram y of their choices:

• Let’s pick a Multinomial model
with toy probabilities:

• Our model probability for any
particular histogram is:

Toys:
 a random experiment

~y = [y1, y2, y3, y4];
X4

i=1
yi = n

~p = [p1, p2, p3, p4];
X4

i=1
pi = 1

p(~y|~p, n) ⇠ Mu(~y|n, ~p)

=
n!

Q4
i=1 yi!

Y4

i=1
pyi
i

Toys:
 parameters and hidden data

Toys:
 parameters and hidden data

• Suppose we think the toy probabilities are related to some parameter " :

Toys:
 parameters and hidden data

• Suppose we think the toy probabilities are related to some parameter " :

~p✓ =


1

2
+

✓

4
,
1� ✓

4
,
1� ✓

4
,
✓

4

�

Toys:
 parameters and hidden data

• Suppose we think the toy probabilities are related to some parameter " :

• We also think that the kids really choose based on being in one of five hidden
states of mind, and we want to count up how many kids are in each:

~p✓ =


1

2
+

✓

4
,
1� ✓

4
,
1� ✓

4
,
✓

4

�

Toys:
 parameters and hidden data

• Suppose we think the toy probabilities are related to some parameter " :

• We also think that the kids really choose based on being in one of five hidden
states of mind, and we want to count up how many kids are in each:

~p✓ =


1

2
+

✓

4
,
1� ✓

4
,
1� ✓

4
,
✓

4

�

~q✓ =


1

2
,
✓

4
,
1� ✓

4
,
1� ✓

4
,
✓

4

�
~x ⇠ Mu(n, ~q✓); ~y , [x1 + x2, x3, x4, x4]

Toys:
 parameters and hidden data

• Suppose we think the toy probabilities are related to some parameter " :

• We also think that the kids really choose based on being in one of five hidden
states of mind, and we want to count up how many kids are in each:

• This gives us a new model based on the hidden X rather than the observed Y:

~p✓ =


1

2
+

✓

4
,
1� ✓

4
,
1� ✓

4
,
✓

4

�

~q✓ =


1

2
,
✓

4
,
1� ✓

4
,
1� ✓

4
,
✓

4

�
~x ⇠ Mu(n, ~q✓); ~y , [x1 + x2, x3, x4, x4]

Toys:
 parameters and hidden data

• Suppose we think the toy probabilities are related to some parameter " :

• We also think that the kids really choose based on being in one of five hidden
states of mind, and we want to count up how many kids are in each:

• This gives us a new model based on the hidden X rather than the observed Y:

~p✓ =


1

2
+

✓

4
,
1� ✓

4
,
1� ✓

4
,
✓

4

�

~q✓ =


1

2
,
✓

4
,
1� ✓

4
,
1� ✓

4
,
✓

4

�
~x ⇠ Mu(n, ~q✓); ~y , [x1 + x2, x3, x4, x4]

p(~x|✓) = n!
Q5

i=1 xi

!

✓
1

2

◆
x1

✓
✓

4

◆
x2+x5

✓
1� ✓

4

◆
x3+x4

Toys:
 parameters and hidden data

• Suppose we think the toy probabilities are related to some parameter " :

• We also think that the kids really choose based on being in one of five hidden
states of mind, and we want to count up how many kids are in each:

• This gives us a new model based on the hidden X rather than the observed Y:

• All we need is to find a value of " and values for X that fit our assumptions:

~p✓ =


1

2
+

✓

4
,
1� ✓

4
,
1� ✓

4
,
✓

4

�

~q✓ =


1

2
,
✓

4
,
1� ✓

4
,
1� ✓

4
,
✓

4

�
~x ⇠ Mu(n, ~q✓); ~y , [x1 + x2, x3, x4, x4]

p(~x|✓) = n!
Q5

i=1 xi

!

✓
1

2

◆
x1

✓
✓

4

◆
x2+x5

✓
1� ✓

4

◆
x3+x4

Toys:
 parameters and hidden data

• Suppose we think the toy probabilities are related to some parameter " :

• We also think that the kids really choose based on being in one of five hidden
states of mind, and we want to count up how many kids are in each:

• This gives us a new model based on the hidden X rather than the observed Y:

• All we need is to find a value of " and values for X that fit our assumptions:

~p✓ =


1

2
+

✓

4
,
1� ✓

4
,
1� ✓

4
,
✓

4

�

~q✓ =


1

2
,
✓

4
,
1� ✓

4
,
1� ✓

4
,
✓

4

�
~x ⇠ Mu(n, ~q✓); ~y , [x1 + x2, x3, x4, x4]

p(~x|✓) = n!
Q5

i=1 xi

!

✓
1

2

◆
x1

✓
✓

4

◆
x2+x5

✓
1� ✓

4

◆
x3+x4

argmax

✓
E[log p(~x|✓)]

Expectation Maximization:
 The EM algorithm

EM finds the values of the parameters " and hidden data X that maximize the
likelihood of the observed data Y.

Expectation Maximization:
 The EM algorithm

EM finds the values of the parameters " and hidden data X that maximize the
likelihood of the observed data Y.

1. Guess initial parameter values
2. Calculate the distribution over the data
3. Calculate the expected log probability for the data

4. Choose new parameter values to maximize

5. Repeat steps 2-4 until convergence

p(~x|~y, ✓(m))

✓(m=0)

Q(✓|✓(m)
) , E[log p(~x|✓)]

=

X

~x

log p(~x|✓)p(~x|~y, ✓(m)
)

Q(✓|✓(m))

argmax

✓
E[log p(~x|✓)] = argmax

✓
Q(✓|✓(m)

)

Expectation Maximization:
 The EM algorithm

EM finds the values of the parameters " and hidden data X that maximize the
likelihood of the observed data Y.

E-
st

ep

1. Guess initial parameter values
2. Calculate the distribution over the data
3. Calculate the expected log probability for the data

4. Choose new parameter values to maximize

5. Repeat steps 2-4 until convergence

p(~x|~y, ✓(m))

✓(m=0)

Q(✓|✓(m)
) , E[log p(~x|✓)]

=

X

~x

log p(~x|✓)p(~x|~y, ✓(m)
)

Q(✓|✓(m))

argmax

✓
E[log p(~x|✓)] = argmax

✓
Q(✓|✓(m)

)

Expectation Maximization:
 The EM algorithm

EM finds the values of the parameters " and hidden data X that maximize the
likelihood of the observed data Y.

E-
st

ep
M

-s
te

p

1. Guess initial parameter values
2. Calculate the distribution over the data
3. Calculate the expected log probability for the data

4. Choose new parameter values to maximize

5. Repeat steps 2-4 until convergence

p(~x|~y, ✓(m))

✓(m=0)

Q(✓|✓(m)
) , E[log p(~x|✓)]

=

X

~x

log p(~x|✓)p(~x|~y, ✓(m)
)

Q(✓|✓(m))

argmax

✓
E[log p(~x|✓)] = argmax

✓
Q(✓|✓(m)

)

EM for Toys:
 1. Guess initial parameter values

EM for Toys:
 1. Guess initial parameter values

• For toys, our only parameter is " , on which all our probabilities depend

EM for Toys:
 1. Guess initial parameter values

• For toys, our only parameter is " , on which all our probabilities depend

~q✓ =


1

2
,
✓

4
,
1� ✓

4
,
1� ✓

4
,
✓

4

�

EM for Toys:
 1. Guess initial parameter values

• For toys, our only parameter is " , on which all our probabilities depend

• Making a good guess doesn’t matter for this simple example

~q✓ =


1

2
,
✓

4
,
1� ✓

4
,
1� ✓

4
,
✓

4

�

EM for Toys:
 1. Guess initial parameter values

• For toys, our only parameter is " , on which all our probabilities depend

• Making a good guess doesn’t matter for this simple example

• It matters a lot in more complex cases – EM will find the nearest local
maximum to your initial guess

~q✓ =


1

2
,
✓

4
,
1� ✓

4
,
1� ✓

4
,
✓

4

�

EM for Toys:
 1. Guess initial parameter values

• For toys, our only parameter is " , on which all our probabilities depend

• Making a good guess doesn’t matter for this simple example

• It matters a lot in more complex cases – EM will find the nearest local
maximum to your initial guess

• We will try several initial values to see what happens

~q✓ =


1

2
,
✓

4
,
1� ✓

4
,
1� ✓

4
,
✓

4

�

EM for Toys:
 2. Calculate a distribution over the data

EM for Toys:
 2. Calculate a distribution over the data

• We already know how to calculate the probability of seeing a particular X:

EM for Toys:
 2. Calculate a distribution over the data

• We already know how to calculate the probability of seeing a particular X:

p(~x|✓) = n!
Q5

i=1 xi

!

✓
1

2

◆
x1

✓
✓

4

◆
x2+x5

✓
1� ✓

4

◆
x3+x4

EM for Toys:
 2. Calculate a distribution over the data

• We already know how to calculate the probability of seeing a particular X:

• This is a great time to wonder what happened to Y – our actual observations

p(~x|✓) = n!
Q5

i=1 xi

!

✓
1

2

◆
x1

✓
✓

4

◆
x2+x5

✓
1� ✓

4

◆
x3+x4

EM for Toys:
 2. Calculate a distribution over the data

• We already know how to calculate the probability of seeing a particular X:

• This is a great time to wonder what happened to Y – our actual observations

p(~x|✓) = n!
Q5

i=1 xi

!

✓
1

2

◆
x1

✓
✓

4

◆
x2+x5

✓
1� ✓

4

◆
x3+x4

~y , [x1 + x2, x3, x4, x5]

EM for Toys:
 2. Calculate a distribution over the data

• We already know how to calculate the probability of seeing a particular X:

• This is a great time to wonder what happened to Y – our actual observations

• We will need our observations very soon, but bear with me a little longer

p(~x|✓) = n!
Q5

i=1 xi

!

✓
1

2

◆
x1

✓
✓

4

◆
x2+x5

✓
1� ✓

4

◆
x3+x4

~y , [x1 + x2, x3, x4, x5]

EM for Toys:
 2. Calculate a distribution over the data

• We already know how to calculate the probability of seeing a particular X:

• This is a great time to wonder what happened to Y – our actual observations

• We will need our observations very soon, but bear with me a little longer

• Let’s get ready for a little math

p(~x|✓) = n!
Q5

i=1 xi

!

✓
1

2

◆
x1

✓
✓

4

◆
x2+x5

✓
1� ✓

4

◆
x3+x4

~y , [x1 + x2, x3, x4, x5]

EM for Toys:
 2. Calculate a distribution over the data

• We already know how to calculate the probability of seeing a particular X:

• This is a great time to wonder what happened to Y – our actual observations

• We will need our observations very soon, but bear with me a little longer

• Let’s get ready for a little math

p(~x|✓) = n!
Q5

i=1 xi

!

✓
1

2

◆
x1

✓
✓

4

◆
x2+x5

✓
1� ✓

4

◆
x3+x4

~y , [x1 + x2, x3, x4, x5]

EM for Toys:
 3. Calculate the expected log probability

EM for Toys:
 3. Calculate the expected log probability

• Working through the calculation:

EM for Toys:
 3. Calculate the expected log probability

• Working through the calculation:
Q(✓|✓(m)

) = E[log p(~x|✓)]

= E
~x|~y,✓(m)

"
log

n!

Q5
i=1 xi

!

✓
1

2

◆
x1
✓
✓

4

◆
x2+x5

✓
1� ✓

4

◆
x3+x4

!#

= E
~x|~y,✓(m)


log n!�

X5

i=1
log x

i

!� x1 log 2 + (x2 + x5) log ✓

� (x2 + x5) log 4 + (x3 + x4) log(1� ✓)� (x3 + x4) log 4

�

EM for Toys:
 3. Calculate the expected log probability

• Working through the calculation:

• BUT we only want to find " to maximize this expectation, not to calculate the
maximum value. Let’s take out everything that doesn’t depend on " .

Q(✓|✓(m)
) = E[log p(~x|✓)]

= E
~x|~y,✓(m)

"
log

n!

Q5
i=1 xi

!

✓
1

2

◆
x1
✓
✓

4

◆
x2+x5

✓
1� ✓

4

◆
x3+x4

!#

= E
~x|~y,✓(m)


log n!�

X5

i=1
log x

i

!� x1 log 2 + (x2 + x5) log ✓

� (x2 + x5) log 4 + (x3 + x4) log(1� ✓)� (x3 + x4) log 4

�

EM for Toys:
 3. Calculate the expected log probability

• Working through the calculation:

• BUT we only want to find " to maximize this expectation, not to calculate the
maximum value. Let’s take out everything that doesn’t depend on " .

Q(✓|✓(m)
) = E[log p(~x|✓)]

= E
~x|~y,✓(m)

"
log

n!

Q5
i=1 xi

!

✓
1

2

◆
x1
✓
✓

4

◆
x2+x5

✓
1� ✓

4

◆
x3+x4

!#

= E
~x|~y,✓(m)


log n!�

X5

i=1
log x

i

!� x1 log 2 + (x2 + x5) log ✓

� (x2 + x5) log 4 + (x3 + x4) log(1� ✓)� (x3 + x4) log 4

�

argmax

✓2(0,1)
Q(✓|✓(m)

) = argmax

✓2(0,1)
E[log p(~x|✓)]

⌘ argmax

✓2(0,1)
E
~x|~y,✓(m) [(x2 + x5) log ✓ + (x3 + x4) log(1� ✓)]

= argmax

✓2(0,1)
{(E[x2] + E[x5]) log ✓ + (E[x3] + E[x4]) log(1� ✓)}

I think we’ve earned a break.

• Our goal:

EM for Toys:
 3. Calculate the expected log probability (cont.)

argmax

✓2(0,1)
{(E[x2] + E[x5]) log ✓ + (E[x3] + E[x4]) log(1� ✓)}

• Our goal:

• Remember the observed data?

EM for Toys:
 3. Calculate the expected log probability (cont.)

argmax

✓2(0,1)
{(E[x2] + E[x5]) log ✓ + (E[x3] + E[x4]) log(1� ✓)}

• Our goal:

• Remember the observed data?

EM for Toys:
 3. Calculate the expected log probability (cont.)

argmax

✓2(0,1)
{(E[x2] + E[x5]) log ✓ + (E[x3] + E[x4]) log(1� ✓)}

~y , [x1 + x2, x3, x4, x5]

• Our goal:

• Remember the observed data?

• In order to get the expectations and tie us back to reality, we need to model
the hidden data X in terms of the observed data Y. If we say the first two
members of X are binomially distributed, given Y, then we have:

EM for Toys:
 3. Calculate the expected log probability (cont.)

argmax

✓2(0,1)
{(E[x2] + E[x5]) log ✓ + (E[x3] + E[x4]) log(1� ✓)}

~y , [x1 + x2, x3, x4, x5]

• Our goal:

• Remember the observed data?

• In order to get the expectations and tie us back to reality, we need to model
the hidden data X in terms of the observed data Y. If we say the first two
members of X are binomially distributed, given Y, then we have:

EM for Toys:
 3. Calculate the expected log probability (cont.)

argmax

✓2(0,1)
{(E[x2] + E[x5]) log ✓ + (E[x3] + E[x4]) log(1� ✓)}

~y , [x1 + x2, x3, x4, x5]

p(~x|~y, ✓) = y1!

x1!x2!

✓
2

2 + ✓

◆
x1

✓
✓

2 + ✓

◆
x2

I[x1 + x2 = y1]
Y5

i=3
I[x

i

= y

i�1]

• Our goal:

• Remember the observed data?

• In order to get the expectations and tie us back to reality, we need to model
the hidden data X in terms of the observed data Y. If we say the first two
members of X are binomially distributed, given Y, then we have:

• Now we can get the expected values using the binomial mean:

EM for Toys:
 3. Calculate the expected log probability (cont.)

argmax

✓2(0,1)
{(E[x2] + E[x5]) log ✓ + (E[x3] + E[x4]) log(1� ✓)}

~y , [x1 + x2, x3, x4, x5]

p(~x|~y, ✓) = y1!

x1!x2!

✓
2

2 + ✓

◆
x1

✓
✓

2 + ✓

◆
x2

I[x1 + x2 = y1]
Y5

i=3
I[x

i

= y

i�1]

• Our goal:

• Remember the observed data?

• In order to get the expectations and tie us back to reality, we need to model
the hidden data X in terms of the observed data Y. If we say the first two
members of X are binomially distributed, given Y, then we have:

• Now we can get the expected values using the binomial mean:

EM for Toys:
 3. Calculate the expected log probability (cont.)

argmax

✓2(0,1)
{(E[x2] + E[x5]) log ✓ + (E[x3] + E[x4]) log(1� ✓)}

~y , [x1 + x2, x3, x4, x5]

p(~x|~y, ✓) = y1!

x1!x2!

✓
2

2 + ✓

◆
x1

✓
✓

2 + ✓

◆
x2

I[x1 + x2 = y1]
Y5

i=3
I[x

i

= y

i�1]

E
~x|~y,✓[~x] =


2

2 + ✓

y1,
✓

2 + ✓

y1, y2, y3, y4

�

EM for Toys:
 4. Choose new parameters

EM for Toys:
 4. Choose new parameters

• With everything we’ve learned, we can simplify our objective function:

EM for Toys:
 4. Choose new parameters

• With everything we’ve learned, we can simplify our objective function:
argmax

✓2(0,1)
{(E[x2] + E[x5]) log ✓ + (E[x3] + E[x4]) log(1� ✓)}

EM for Toys:
 4. Choose new parameters

• With everything we’ve learned, we can simplify our objective function:
argmax

✓2(0,1)
{(E[x2] + E[x5]) log ✓ + (E[x3] + E[x4]) log(1� ✓)}

= argmax

✓2(0,1)

⇢✓
✓

2 + ✓
y1 + y4

◆
log ✓ + (y2 + y3) log(1� ✓)

�

EM for Toys:
 4. Choose new parameters

• With everything we’ve learned, we can simplify our objective function:
argmax

✓2(0,1)
{(E[x2] + E[x5]) log ✓ + (E[x3] + E[x4]) log(1� ✓)}

= argmax

✓2(0,1)

⇢✓
✓

2 + ✓
y1 + y4

◆
log ✓ + (y2 + y3) log(1� ✓)

�

=
✓(m)

2+✓(m) y1 + y4
✓(m)

2+✓(m) y1 + y2 + y3 + y4

EM for Toys:
 4. Choose new parameters

• With everything we’ve learned, we can simplify our objective function:

• We’re done! To find the value of " that maximizes the expected log
probability of Y, just run that single equation until it converges.

argmax

✓2(0,1)
{(E[x2] + E[x5]) log ✓ + (E[x3] + E[x4]) log(1� ✓)}

= argmax

✓2(0,1)

⇢✓
✓

2 + ✓
y1 + y4

◆
log ✓ + (y2 + y3) log(1� ✓)

�

=
✓(m)

2+✓(m) y1 + y4
✓(m)

2+✓(m) y1 + y2 + y3 + y4

Let’s look at some data

• Let’s test this on fake
data:

• Plus a uniform
distribution, to see what
happens when our
model is wrong

✓ 2 {0, 1/4, 1/2, 3/4, 1}
n 2 {100, 1000, 10000}

~p✓ =


1

2
+

✓

4
,
1� ✓

4
,
1� ✓

4
,
✓

4

�

Let’s look at some data

• Let’s test this on fake
data:

• Plus a uniform
distribution, to see what
happens when our
model is wrong

0 2000 4000 6000 8000

" = 0

" = 0.25

" = 0.5

" = 0.75

" = 1

uniform
2,527

2,461

1,908

1,271

629

0

2,522

0

650

1,272

1,894

2,443

2,457

0

606

1,209

1,861

2,491

2,494

7,539

6,836

6,248

5,616

5,066

✓ 2 {0, 1/4, 1/2, 3/4, 1}
n 2 {100, 1000, 10000}

~p✓ =


1

2
+

✓

4
,
1� ✓

4
,
1� ✓

4
,
✓

4

�

Python implementationEM for Toys

 def run(self):

 # Initialize the observed histogram y and the first guess theta
 y = self.y
 theta = self.theta
 print ("Initial theta: {:0.6f}".format(theta))

 # Run up to some maximum number of rounds
 for round in range(1, self.max_rounds + 1):

 # Calculate the new parameter estimate for this round
 new_theta = (((theta / (2 + theta)) * y[0] + y[3]) /
 ((theta / (2 + theta)) * y[0] + y[3] + y[2] + y[1]))
 delta = new_theta - theta
 theta = new_theta

 # Print our status and check for convergence
 print ("Round {} theta: {:0.9f} diff: {:0.3e}".format(round, theta, delta))
 if abs(delta) < 1e-12:
 print("Converged!")
 return

" = 0.75; n = 1,000; Guess = 0.3Example EM Output

Initial theta: 0.300000
Round 1 theta: 0.726310044 diff: 4.263e-01
Round 2 theta: 0.778614638 diff: 5.230e-02
Round 3 theta: 0.782829617 diff: 4.215e-03
Round 4 theta: 0.783155558 diff: 3.259e-04
Round 5 theta: 0.783180681 diff: 2.512e-05
Round 6 theta: 0.783182617 diff: 1.936e-06
Round 7 theta: 0.783182766 diff: 1.492e-07
Round 8 theta: 0.783182777 diff: 1.150e-08
Round 9 theta: 0.783182778 diff: 8.858e-10
Round 10 theta: 0.783182778 diff: 6.826e-11
Round 11 theta: 0.783182778 diff: 5.260e-12
Round 12 theta: 0.783182778 diff: 4.053e-13
Converged!
Theta: 0.7832
Predicted toy probs: [0.6958, 0.0542, 0.0542, 0.1958]
Empirical toy probs: [0.6920, 0.0430, 0.0660, 0.1990]
Y: [692, 43, 66, 199]
E[X]: [497.27, 194.73, 43, 66, 199]
KL(empirical||predicted): 0.002483

" = 0.75; n = 1,000; Guess = 0.75Example EM Output

Initial theta: 0.750000
Round 1 theta: 0.780563690 diff: 3.056e-02
Round 2 theta: 0.782980580 diff: 2.417e-03
Round 3 theta: 0.783167195 diff: 1.866e-04
Round 4 theta: 0.783181577 diff: 1.438e-05
Round 5 theta: 0.783182686 diff: 1.108e-06
Round 6 theta: 0.783182771 diff: 8.540e-08
Round 7 theta: 0.783182778 diff: 6.581e-09
Round 8 theta: 0.783182778 diff: 5.071e-10
Round 9 theta: 0.783182778 diff: 3.908e-11
Round 10 theta: 0.783182778 diff: 3.011e-12
Round 11 theta: 0.783182778 diff: 2.320e-13
Converged!
Theta: 0.7832
Predicted toy probs: [0.6958, 0.0542, 0.0542, 0.1958]
Empirical toy probs: [0.6920, 0.0430, 0.0660, 0.1990]
Y: [692, 43, 66, 199]
E[X]: [497.27, 194.73, 43, 66, 199]
KL(empirical||predicted): 0.002483

uniform; n = 1,000; Guess = 0.25Example EM Output

Initial theta: 0.250000
Round 1 theta: 0.331221198 diff: 8.122e-02
Round 2 theta: 0.338049688 diff: 6.828e-03
Round 3 theta: 0.338596066 diff: 5.464e-04
Round 4 theta: 0.338639608 diff: 4.354e-05
Round 5 theta: 0.338643076 diff: 3.469e-06
Round 6 theta: 0.338643353 diff: 2.763e-07
Round 7 theta: 0.338643375 diff: 2.201e-08
Round 8 theta: 0.338643377 diff: 1.754e-09
Round 9 theta: 0.338643377 diff: 1.397e-10
Round 10 theta: 0.338643377 diff: 1.113e-11
Round 11 theta: 0.338643377 diff: 8.866e-13
Converged!
Theta: 0.3386
Predicted toy probs: [0.5847, 0.1653, 0.1653, 0.0847]
Empirical toy probs: [0.2570, 0.2330, 0.2830, 0.2270]
Y: [257, 233, 283, 227]
E[X]: [219.79, 37.21, 233, 283, 227]
KL(empirical||predicted): 0.244673

What is the data telling us?

• EM is finding the local maximum closest to the initialization point

What is the data telling us?

• EM is finding the local maximum closest to the initialization point

• If we initialize to the “right answer,” it will move away from that to the
maximum for the observed data

What is the data telling us?

• EM is finding the local maximum closest to the initialization point

• If we initialize to the “right answer,” it will move away from that to the
maximum for the observed data

• EM can’t fix a bad model: if your modeling assumptions are bad, it will find
the best answer consistent with those assumptions

What is the data telling us?

• EM is finding the local maximum closest to the initialization point

• If we initialize to the “right answer,” it will move away from that to the
maximum for the observed data

• EM can’t fix a bad model: if your modeling assumptions are bad, it will find
the best answer consistent with those assumptions

• As you’d expect, EM is also sensitive to the amount of data you give it

Results of all data runs for Toys

Results of all data runs for Toys

0

0.038

0.075

0.113

0.15

n=100 1,000 10,000

Error in Estimated "

0

0.01

n=100 1,000 10,000

KL Divergence

! =0 ! =0.25 ! =0.5 ! =0.75 ! =1 Uniform

So what?

The EM Algorithm:
 a second look

Let’s think about how to do this in general.

E-
st

ep
M

-s
te

p

1. Guess initial parameter values
2. Calculate the distribution over the data
3. Calculate the expected log probability for the data

4. Choose new parameter values to maximize

5. Repeat steps 2-4 until convergence

p(~x|~y, ✓(m))

✓(m=0)

Q(✓|✓(m)
) , E[log p(~x|✓)]

=

X

~x

log p(~x|✓)p(~x|~y, ✓(m)
)

Q(✓|✓(m))

argmax

✓
E[log p(~x|✓)] = argmax

✓
Q(✓|✓(m)

)

The EM Algorithm:
 a second look

Let’s think about how to do this in general.
To start with, let’s allow X and Y to be anything.

E-
st

ep
M

-s
te

p

1. Guess initial parameter values
2. Calculate the distribution over the data
3. Calculate the expected log probability for the data

4. Choose new parameter values to maximize

5. Repeat steps 2-4 until convergence

p(~x|~y, ✓(m))

✓(m=0)

Q(✓|✓(m)
) , E[log p(~x|✓)]

=

X

~x

log p(~x|✓)p(~x|~y, ✓(m)
)

Q(✓|✓(m))

argmax

✓
E[log p(~x|✓)] = argmax

✓
Q(✓|✓(m)

)

The EM Algorithm:
 a second look

E-
st

ep
M

-s
te

p

1. Guess initial parameter values
2. Calculate the distribution over the data
3. Calculate the expected log probability for the data

4. Choose new parameter values to maximize

5. Repeat steps 2-4 until convergence

✓(m=0)

Q(✓|✓(m))

p(x|y, ✓(m))

Q(✓|✓(m)
) , E[log p(x|✓)]

=

X

x

log p(x|✓)p(x|y, ✓(m)
)

argmax

✓
E[log p(x|✓)] = argmax

✓
Q(✓|✓(m)

)

Let’s think about how to do this in general.
To start with, let’s allow X and Y to be anything.

The EM Algorithm:
 a second look

E-
st

ep
M

-s
te

p

1. Guess initial parameter values
2. Calculate the distribution over the data
3. Calculate the expected log probability for the data

4. Choose new parameter values to maximize

5. Repeat steps 2-4 until convergence

✓(m=0)

Q(✓|✓(m))

p(x|y, ✓(m))

Q(✓|✓(m)
) , E[log p(x|✓)]

=

X

x

log p(x|✓)p(x|y, ✓(m)
)

argmax

✓
E[log p(x|✓)] = argmax

✓
Q(✓|✓(m)

)

Let’s think about how to do this in general.
To start with, let’s allow X and Y to be anything.

Variables

The EM Algorithm:
 a second look

E-
st

ep
M

-s
te

p

1. Guess initial parameter values
2. Calculate the distribution over the data
3. Calculate the expected log probability for the data

4. Choose new parameter values to maximize

5. Repeat steps 2-4 until convergence

✓(m=0)

Q(✓|✓(m))

p(x|y, ✓(m))

Q(✓|✓(m)
) , E[log p(x|✓)]

=

X

x

log p(x|✓)p(x|y, ✓(m)
)

argmax

✓
E[log p(x|✓)] = argmax

✓
Q(✓|✓(m)

)

Let’s think about how to do this in general.
To start with, let’s allow X and Y to be anything.

Variables

✓ 2 ⇥

The EM Algorithm:
 a second look

E-
st

ep
M

-s
te

p

1. Guess initial parameter values
2. Calculate the distribution over the data
3. Calculate the expected log probability for the data

4. Choose new parameter values to maximize

5. Repeat steps 2-4 until convergence

✓(m=0)

Q(✓|✓(m))

p(x|y, ✓(m))

Q(✓|✓(m)
) , E[log p(x|✓)]

=

X

x

log p(x|✓)p(x|y, ✓(m)
)

argmax

✓
E[log p(x|✓)] = argmax

✓
Q(✓|✓(m)

)

Let’s think about how to do this in general.
To start with, let’s allow X and Y to be anything.

Variables

✓ 2 ⇥

y, Y 2 Rd1

The EM Algorithm:
 a second look

E-
st

ep
M

-s
te

p

1. Guess initial parameter values
2. Calculate the distribution over the data
3. Calculate the expected log probability for the data

4. Choose new parameter values to maximize

5. Repeat steps 2-4 until convergence

✓(m=0)

Q(✓|✓(m))

p(x|y, ✓(m))

Q(✓|✓(m)
) , E[log p(x|✓)]

=

X

x

log p(x|✓)p(x|y, ✓(m)
)

argmax

✓
E[log p(x|✓)] = argmax

✓
Q(✓|✓(m)

)

Let’s think about how to do this in general.
To start with, let’s allow X and Y to be anything.

Variables

✓ 2 ⇥

y, Y 2 Rd1

z, Z 2 Rd2

The EM Algorithm:
 a second look

E-
st

ep
M

-s
te

p

1. Guess initial parameter values
2. Calculate the distribution over the data
3. Calculate the expected log probability for the data

4. Choose new parameter values to maximize

5. Repeat steps 2-4 until convergence

✓(m=0)

Q(✓|✓(m))

p(x|y, ✓(m))

Q(✓|✓(m)
) , E[log p(x|✓)]

=

X

x

log p(x|✓)p(x|y, ✓(m)
)

argmax

✓
E[log p(x|✓)] = argmax

✓
Q(✓|✓(m)

)

Let’s think about how to do this in general.
To start with, let’s allow X and Y to be anything.

Variables

✓ 2 ⇥

y, Y 2 Rd1

z, Z 2 Rd2

x , (y, z)

X , (Y, Z)

Variables Meaning

Parameters (unknown)

Observed data and R.V. (known)

Hidden data and R.V. (unknown)

Complete data and R.V.

Model for observations, given params

Model for complete data in one round

The EM Algorithm:
 known unknowns

✓ 2 ⇥

y, Y 2 Rd1

z, Z 2 Rd2

x , (y, z)X , (Y, Z)

Variables Meaning

Parameters (unknown)

Observed data and R.V. (known)

Hidden data and R.V. (unknown)

Complete data and R.V.

Model for observations, given params

Model for complete data in one round

The EM Algorithm:
 known unknowns

✓ 2 ⇥

y, Y 2 Rd1

z, Z 2 Rd2

x , (y, z)X , (Y, Z)

p(Y = y|✓)

Variables Meaning

Parameters (unknown)

Observed data and R.V. (known)

Hidden data and R.V. (unknown)

Complete data and R.V.

Model for observations, given params

Model for complete data in one round

The EM Algorithm:
 known unknowns

✓ 2 ⇥

y, Y 2 Rd1

z, Z 2 Rd2

x , (y, z)X , (Y, Z)

p(Y = y|✓)

Variables Meaning

Parameters (unknown)

Observed data and R.V. (known)

Hidden data and R.V. (unknown)

Complete data and R.V.

Model for observations, given params

Model for complete data in one round

The EM Algorithm:
 known unknowns

✓ 2 ⇥

y, Y 2 Rd1

z, Z 2 Rd2

x , (y, z)X , (Y, Z)

p(Y = y|✓)

p(X = x|y, ✓)

Variables Meaning

Parameters (unknown)

Observed data and R.V. (known)

Hidden data and R.V. (unknown)

Complete data and R.V.

Model for observations, given params

Model for complete data in one round

The EM Algorithm:
 known unknowns

✓ 2 ⇥

y, Y 2 Rd1

z, Z 2 Rd2

x , (y, z)X , (Y, Z)

p(Y = y|✓)

p(X = x|y, ✓)

Variables Meaning

Parameters (unknown)

Observed data and R.V. (known)

Hidden data and R.V. (unknown)

Complete data and R.V.

Model for observations, given params

Model for complete data in one round

The EM Algorithm:
 known unknowns

✓ 2 ⇥

y, Y 2 Rd1

z, Z 2 Rd2

x , (y, z)X , (Y, Z)

p(Y = y|✓)

p(X = x|y, ✓)

E [p(X = x|y, ✓)]

Variables Meaning

Parameters (unknown)

Observed data and R.V. (known)

Hidden data and R.V. (unknown)

Complete data and R.V.

Model for observations, given params

Model for complete data in one round

The EM Algorithm:
 known unknowns

✓ 2 ⇥

y, Y 2 Rd1

z, Z 2 Rd2

x , (y, z)X , (Y, Z)

p(Y = y|✓)

p(X = x|y, ✓)

E [p(X = x|y, ✓)]

Variables Meaning

Parameters (unknown)

Observed data and R.V. (known)

Hidden data and R.V. (unknown)

Complete data and R.V.

Model for observations, given params

Model for complete data in one round

The EM Algorithm:
 known unknowns

✓ 2 ⇥

y, Y 2 Rd1

z, Z 2 Rd2

x , (y, z)X , (Y, Z)

p(Y = y|✓)

p(X = x|y, ✓)

E [p(X = x|y, ✓)]
Z

x:p(x|y,✓)>0
xp(X = x|y, ✓)dx

The EM Algorithm:
 the tricky part

Z

x:p(x|y,✓)>0
xp(X = x|y, ✓)dx

X

x2X

xp(X = x|y, ✓)

• How do we maximize this?

The EM Algorithm:
 the tricky part

Z

x:p(x|y,✓)>0
xp(X = x|y, ✓)dx

X

x2X

xp(X = x|y, ✓)

• How do we maximize this?

• It depends on what’s hiding inside your model

The EM Algorithm:
 the tricky part

Z

x:p(x|y,✓)>0
xp(X = x|y, ✓)dx

X

x2X

xp(X = x|y, ✓)

• How do we maximize this?

• It depends on what’s hiding inside your model

• Toys has a discrete model; we solved it algebraically

The EM Algorithm:
 the tricky part

Z

x:p(x|y,✓)>0
xp(X = x|y, ✓)dx

X

x2X

xp(X = x|y, ✓)

• How do we maximize this?

• It depends on what’s hiding inside your model

• Toys has a discrete model; we solved it algebraically

• You typically differentiate, set it to zero, and solve

That’s all for now!

That’s all for now!

Coming up:
• Proof of convergence

• Actually useful models

• An information theoretical look

• 100% fewer birds

