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Expectation Maximization (EM) [4, 3, 6] is a numerical algorithm for the maximization of functions of several
variables. There are several tutorial introductions to EM, including [8, 5, 2, 7]. These are excellent references for
greater generality about EM, several good intuitions, and useful explanations. The purpose of this document is to ex-
plain in a more self-contained way how EM can solve a special but important problem, the estimation of the parameters
of a mixture of Gaussians from a set of data points. Here is the outline of what follows:

1. A comparison of EM with Newton’s method
. The density estimation problem

. Membership probabilities

2
3
4. Characterization of the local maxima of the likelihood
5. Jensen’s inequality

6

. The EM algorithm

1 A Comparison of EM with Newton’s Method

The abstract idea of EM can be understood by comparison with Newton’s method for maximizing a scalar function
f(6) of a vectord of variables. Newton’s method starts at a given péift, approximateg in a neighborhood o (*)
with a paraboloid, (#), and finds the maximum of the paraboloid by solving a system of linear equations to obtain a
new pointd(!). This procedure is repeated for= 6(1), 0 ... until the change frond*~) to #() is small enough,
thereby signaling convergence to a point that we &3lk local maximum off.

EM works in a similar fashion, but instead of approximatifigvith a paraboloid ad‘®) it finds a new function
b;(6) with the following properties:

e b; is alower bound forf, that isb;(8) < f() everywhere in a neighborhood of the current péifit.
e The functionsh; andf touch ath(?, that is, f () = b;(6).

Both EM and Newton’s method satisfy the second propéit§{”)) = b;(6()). However, for EMb; need not be a
paraboloid. On the other hand, Newton’s paraboloid is not required to be a lower bouhdvioite EM’s b; function
is. So neither method is an extension of the other.

In general, it is not clear which of the two methods would give better results: it really depends on the fifnction
and, for EM, on the shape of the lower bourgsHowever, for both methods there are convergence guarantees. For
Newton’s method, the idea is that every function looks like a paraboloid in a small enough neighborhood of any point
6, so maximizingb; becomes increasingly closer to maximizifig Oncef® is close to the maximurfi*, one can
actually give bounds on the number of iterations that it takes to reach the maximum itself.

For the EM method, it is obvious that at the point of maxim@#it) of b; we must havef (90+1) > f(6®),

This is becausg; (/")) cannot be smaller thaf{9(*)) (the two functions are required to be equal there), the maximum
b;(0¢FD) of b; cannot be smaller thaby (6) (or else it would not be a maximum), arfdg(+) > b(i+1)
(becausé; is a lower bound forf). In summary,f(AC+D) > b,(A0FTD) > b;(6D)) = £(AM), so thatf(0+1)) >



Figure 1: Three-hundred points on the plane.

f(6%), as promised. This by itself is no guarantee of progress, since it could still bg(tiat!)) = f(#®)), but at
least EM does not go downhill.

The name of the game, then, is to be clever enough with thebwiybuilt to be able to show that the progress
made at every iteration is finite and bounded from below. If at every step we go uphill by at easbsif the function
f has a maximum, then at some point we are bound to reach the top. If in addition we find bound fundtiahare
very similar tof, then it is possible that EM works even better than Newton’s method.

For some functiong this game is hard to play. Other functions seem to be designed so that everything works
out just fine. One version of the all-importasgnsity estimatioproblem makes the EM idea work very well. In the
following section, density estimation is defined for mixtures of Gaussian functions. The sections thereafter show how
to use EM to solve the problem.

2 The Density Estimation Problem

Suppose that you are given a set of points as in Figure 1. These points are on the plane, but nothing about the current
theory is limited to two dimensions.

The points in the figure seem to be grouped in clusters. One cluster, on the right, is nicely separated from the
others. Two more clusters, on the left, are closer to each other, and it is not clear if a meaningful dividing line can be
drawn between them.

The density estimatiomproblem can be loosely defined as follows: given a seiVopoints in D dimensions,
X1,...,Xy € RP, and a familyF of probability density functions oR”, find the probability density (x) € F that
is most likely to have generated the given points.

One way to define the familyF is to give each of its members the same mathematical form, and to distinguish
different members by different values of a set of paraméteior instance, the functions i could bemixtures of
Gaussian functions

K
Fx:0) = prg(x; my, o%) )
k=1
where ) (1= u)z
g9(x; my, 03) = (Varo)D € *



is a D-dimensional isotropfc Gaussian function and = (0y,...,0x) = ((p1,my, 01),..., (px, Mg, 0k)) is @
K (D + 2)-dimensional vector containing timeixing probabilitiesp;, as well as the means,, and standard deviations
o of the K Gaussian functions in the mixtufe.

Each Gaussian function integrates to one:

/ g(x; myg, o) dx=1.
RD

Sincef is a density function, it must be nonnegative and integrate to one as well. We have

K K
1= f(x; 0 dx:/ pr g(X; my, of) dx = pk/ g(x; my, o) dx = Pk
i 0)ax= [ > o ax=m [ o Jax =3

RD k=1

so that the numbers,, which must be nonnegative legtx) takes on negative values, must add up to one:

K
pr >0 and Zpk =1.
k=1

This is why the numberg;, are called mixingprobabilities

Mixtures of Gaussian functions are obviously well-suited to modelling clusters of points: each cluster is assigned a
Gaussian, with its mean somewhere in the middle of the cluster, and with a standard deviation that somehow measures
the spread of that clustérAnother way to view this modelling problem is to note that the cloud of points in Figure 1
could have been generated by repeating the following procedunmes, once for each poirt,:

e Draw a random integer between 1 alRdwith probabilityp; of drawingk. This selects the cluster from which
to draw pointx,,.

e Draw a randomD-dimensional real vectat,, € R? from thek-th Gaussian density(x; my, o).

This is called ayenerative modébr the given set of point$.

Since the family of mixtures of Gaussian functions is parametric, the density estimation problem can be defined
more specifically as the problem of finding the vedmf parameters that specifies the model from which the points
are most likely to be drawn.

What remains to be determined is the meaning of “most likely.” We want a fundt{ofy 0) that measures the
likelihood of a particular model given the set of points: the Xet fixed, because the points, are given, and\ is
required to be large for those vectarsf parameters such that the mixture of Gaussian functfgrs ) is likely to
generate sets of points like the given one.

Bayesians will derive\ from Bayes’s theorem, but at the cost of having to specify a prior distributiof itself.

We take the more straightforward Maximum Likelihood approach: the probability of drawing a value in a small volume
of sizedx aroundx is f(x; 6) dx. If the random draws in the generative model are independent of each other, the
probability of drawing a sample d¥ points where each point is in a volume of sibearound one of the giver,, is

the productf(x;; 0) dx --- f(xn; 0) dx. Since the voluméx is constant, it can be ignored when looking for the

that yields the highest probability, and the likelihood function can be defined as follows:

N
AX; 0) =[] f(xns ).

1The restriction to isotropic Gaussian functions is conceptually minor but technically useful. For now, the most important implication of this
restriction is that the spread of each Gaussian function is measured by a scalar, rather than by a covariance matrix.

2The numberX of Gaussian functions could itself be a parameter subject to estimation. In this document, we consider it to be known.

SHere the assumption of isotropic Gaussian functions is a rather serious limitation, since elongated clusters cannot be modelled well.

4As you may have guessed, the points in Figure 1 were indeed generated in this way.



For mixtures of Gaussian functions, in particular, we have

N K
AX;0) = [T D prglxn; my, o) - 2)

n=1 k=1

In summary, the parametric density estimation problem can be defined more precisely as follows:

6= arg max A(X; ).

In principle, any maximization algorithm could be used to fihdhe maximum likelihood estimate of the parameter
vectord. In practice, as we will see in section 4, EM works particularly well for this problem.

3 Membership Probabilities
In view of further manipulation, it is useful to understand the meaning of the terms

q(k,n) = pr g(Xpn; My, 0%) 3

that appear in the definition (1) of a mixture density. When defining the likelihood funatioe have assumed that

the event of drawing componehtof the generative model is independent of the event of drawing a particular data
pointx,, out of a particular component. It then follows thgf, n) dx is the joint probability of drawing component

k and drawing a data point in a volurd& aroundx,,. The definition of conditional probability,

P(ANB)
PA|B)= ——=
(A1B) = =55
then tells us that the conditional probability of having selected compdngiven that data point,, was observed is

q(k, n)
plkln) = —g—— -

Zmzl q(m,n)
Note that the volumeéx cancels in the ratio that defingsk | n), so that this result holds even whér vanishes to
zero. Also, it is obvious from the expressionugf: | n) that

K
S p(kln) =1,
k=1

in keeping with the fact that it is certain that some comporieh&s generated data poigj,. Let us call the prob-
abilities p(k | n) the membership probabilitiesbecause they express the probability that peintas generated by
component.

(4)

4 Characterization of the Local Maxima of A
The logarithm of the likelihood function (X; #) defined in equation (2) is
N K
AX;0) = log Y prg(xn; my, %) -
n=1 k=1

To find expressions that are valid at local maxima¢br equivalentlyA) we follow [1], and compute the derivatives
of \ with respect tany, oy, px. Since

90w My, 0%) _ o gy O | L (I — ] ’
g\ Xn; Mg, Ok oy, 5

8mk Ok

4



and 5 5
kanx” - mk-H2 = ka (Xfxn + mfmk - ngmk) =2(x, —my) ,
we can write

ON S~ 1 prg(n; g, o) - p(k|n)
= — : : (mk‘ —Xp) = (mk —Xp)
Oy, ; 0—7% Zranl Pm g(xn§ em) nz::l 0—13
where we have used equations (3) and (4).
A similar procedure as faim,, yields

N

ox D x, —my?
oy, —Zp(k|n)< ;k+072

n=1

(recall thatD is the dimension of the space of the data points).

The derivative of\ with respect to the mixing probabilities, requires a little more work, because the values of
pi are constrained to being positive and adding up to one. After [1], this constraint can be handled by writing the
variablesp,, in turn as functions of unconstrained variablgsas follows:

ek
- 25:1 e
This trick to expresg,, through what is usually calledsoftmaxunction, enforces both constraints automatically. We
then have
Op [ pr—p; ifj=k
dv; | —pjpk  otherwise
From the chain rule for differentiation, we obtain

Pk

) N
F ;(p(kln) — ) -

Setting the derivatives we just found to zero, we obtain three groups of equations for the means, standard deviations,
and mixing probabilities:

>y Pk [ )%

= ——~N . 5
TSN k) ®)
o~ | L Eaipk )l — m? ©
D SN plk|n)
1 N
= = (k|n) . @
o N;p n

The first two expressions make immediate intuitive sense, beeaysdo;, are the sample mean and standard
deviation of the sample data, weighted by the conditional probability that datapewas generated by modél
The third equation, for the mixing probabilities, is not immediately obvious, but it is not too surprising either, since it
viewspy, as the sample mean of the conditional probabiliti's| n) assuming a uniform distribution over all the data
points.

These equations are intimately coupled with one another, because the(&ims in the right-hand sides depend
in turn on all the terms on the left-hand sides through equations (3) and (4). Because of this the equations above
are hard to solve directly. However, the lower bound idea discussed in section 1 provides an iterative solution. As a
preview, this solution involves starting with a guesséfpthe vector of all parametegs,, my, o, and then iteratively
cycling through equations (3), (4) (the “E step”), and then equations (5), (6), (7).

The next section shows an important technical result that is used to compute a bound for the logarithm of the
likelihood function. The EM algorithm is then derived in section 6, after the principle discussed in section 1.



5 Jensen’s Inequality

Jensen’s inequality is often used to bound the logarithm of a sum of terms, just like the one in the expression of
A Given K nonnegative numbers, , ..., mx that add up to one (that is, a discrete probability distribution) And
arbitrary numbers,, . .., ak, it follows from the convexity of the logarithm that

K K
logz TR > Z i log ay,
k=1 k=1

(see for instance exercise 2.13 in [1] for a proof outline).
From this inequality we can also derive the following useful expression, whei®still an element of a discrete
probability distribution andy, are arbitrary numbers:

K K K
Tk Ck
logz ckzlogz ckﬂ_— ZZW’“ logﬂ— (8)
k=1 k=1 ko k4 k

obtained from Jensen’s inequality wiih = ¢ /7. The inequality (8) is generally useful in probabilistic manipulation
because it bounds the logarithm of a sum with the expected value of a logarithm.

6 The EM Algorithm

Assume that approximate (possibly very bad) estim@i@s m,(j , ( ) are available for the parameters of the like-

lihood functionA(X; 6) or its logarithmA(X; #). Then, better estlmat D Ml 50 can be computed
by first using the old estimates to construct a lower bolyié) for the likelihood function, and then maximizing the
bound with respect tp,,, my, oy.

Expectation Maximization (EM) starts with initial valupg)) mko), ak ) for the parameters, and iteratively per-
forms these two steps until convergence. Construction of the byifdis called the “E step,” because the bound
is the expectation of a logarithm, derived from use of inequality (8). The maximizatiby{@fthat yields the new

estlmate:p““), mg’“) (1) is called the “M step.” This section derives expressions for these two steps.

Given the old parameter estlma@é) m,(:), a,(j), we can compute estimatg§k | n) for the membership proba-
bilities from equation (3) and (4):
(4) (4)
7 p g Xn7 m 70
PO n) = 290 o) ©

K
St i g0 m o)

This is the actual computation performed in the E step. The rest of the “construction” of thelia(ind theoretical,
and uses form (8) of Jensen'’s inequality to bound the logarithi; 6) of the likelihood function as follows.

The membership probabilitigg% | n) add up to one, and their estimaje8 (k | ) do so as well, because they are
computed from equation (9), which includes explicit normalization. Thus, we cap letp(?) (k | n) ande;, = q(k, n)
in the inequality (8) to obtain

K
MX;0) = Y log > q(k ZZ (k|n) log,m:bi(e)'

n=1 k=1 n=1 k=1

The bound;(#) thus obtained can be rewritten as follows:

N K N K
:ZZp (k|n) logq(k,n) — ZZP (k| n) logp' (k |n) .

n=1k=1 n=1 k=1



Since the old membership probabilitigd) (k | n) are known, minimizing; (6) is the same as minimizing the first of
the two summations, that is, the function

N K
=33 Ok |n) loga(k.n) -

n=1k=1

Prima facie the expression fop;(#) would seem to be even more complicated than that\folrhis is not so,
however: rather than the logarithm of a sys#) contains a linear combination & logarithms, and this breaks the
coupling of the equations obtained by setting the derivative @) with respect to the parameters to zero.

The derivative of3;(0) with respect tany, is easily found to be

81 _Xn
k

Upon setting this expression to zero, the variamgean be cancelled, and the remaining equation containsmply

as the unknown:
my Y pO(k|n) =" p(k|n)x
n=1 n=1
This equation can be solved immediately to yield the new estimate of the mean:

N i
m(i+1) — Zn:l p( )(k | TL) Xn
k - :
S 2O (k| )
which is only a function of old values (with superscrijt

The resulting valuen(”rl) can now be replaced into the expressionfgfd), which can now be differentiated
with respect tary, through a very similar manipulation to yield

N ; i+1
o0 _ [ L iy P0Gk m) e, — )2
’ b Sy PO (k| n)

The derivative of3;(6) with respect tgy, subject to the constraint that thg add up to one, can be handled again
through the softmax function just as we did in section 4. This yields the new estimate for the mixing probabilities as a
function of the old membership probabilities:

ZH) Zp (k|n).

In summary, given an initial estlmayéo) (O), a,io), EM iterates the following computations until convergence
to a local maximum of the likelihood function:

e E Step: ‘
O (1 - Pi 900 my o))
PN = (i) (@)
Yom=1Dp 9(Xn; M7 0,7)
e M Step:
N i
i) > ey PO (k[ n) x4y
]{) - .
SN p@D (k| n)
1 1
i | L pOCK | n) fx —my Y2
5 —
D S P (k| n)

N
W= g 0.
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