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1 Mixtures

10.2 Mixture Densities and Identifiability

We begin by assuming that we know the complete probability structure for the prob-
lem with the sole exception of the values of some parameters. To be more specific, we
make the following assumptions:

1. The samples come from a known number ¢ of classes.
2. The prior probabilities P(w;) for each class are known, j = 1,...,¢.

3. The forms for the class-conditional probability densities p(x|w,;,®@;) are known,
i=1,...,c

4. The values for the ¢ parameter vectors €,,...,8. are unknown.

5. The category labels are unknown.

Samples are assumed to be obtained by selecting a state of nature w; with prob-
ability P(w;) and then selecting an x according to the probability law p(x|w;,@;).
Thus, the probability density function for the samples is given by

p(x18) =" p(xlw;,0;)P(w;), (1)

i=1

where @ = (0,,...,8.). For obvious reasons, a density function of this form is called
a mirture density. The conditional densities p(x|w;,@;) are called the component
densities, and the prior probabilities P(w;) are called the mizing parameters. The
mixing parameters can also be included among the unknown parameters, but for the
moment we shall assume that only @ is unknown,

Our basic goal will be to use samples drawn from this mixture density to estimate
the unknown parameter vector 8. Once we know 8 we can decompose the mixture
into its components and use a Bayesian classifier on the derived densities, if indeed
classification is our final goal. Before seeking explicit solutions to this problem, how-
ever, let us ask whether or not it is possible in principle to recover @ from the mixture.
Suppose that we had an unlimited number of samples, and that we used one of the
nonparametric methods of Chap. 77 to determine the value of p(x|@) for every x. I¥
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encountered in real-world problems.

Mixtures of discrete distributions are not always so obliging. As a simple example
consider the case where & is binary and P(2]8) is the mixture

1 1
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1-1(0+6) ife=0.

P(x|6)

Suppose, for example, that we know for our data that P(xz = 1|8} = 0.6, and hence
that P(xz = 0]|@) = 0.4. Then we know the function P(x|@), but we cannot determine
8, and hence cannot extract the component distributions. The most we can say is
that #; +8; = 1.2. Thus, here we have a case in which the mixture distribution is com-
pletely unidentifiable, and hence a case for which unsupervised learning is impossible
in principle. Related situations may permit us to determine one or some parameters,
but not all (Problem 3).

This kind of problem commonly occurs with discrete distributions. If there are
too many components in the mixture, there may be more unknowns than independent
equations, and identifiability can be a serious problem. For the continuous case,
the problems are less severe, although certain minor difficulties can arise due to the
possibility of special cases. Thus, while it can be shown that mixtures of normal
densities are usually identifiable, the parameters in the simple mixture density

p(el®) = D exp [—%(w _9, )2] + Doy [—%(:e - 92)2] @)

cannot be uniquely identified if P{wy) = P(w2), for then #; and #3 ¢an be interchanged
without affecting p(x]|@). To avoid such irritations, we shall acknowledge that identi-
fiability can be a problem, but shall henceforth assume that the mixture densities we
are working with are identifiable.

* Technically speaking, a distribution is not identifiable if we cannot determine the parameters
without bias. We might guess their correct values, but such a guess would have to be biased in
SOIME Way.




10.3 Maximum-Likelihood Estimates

Suppose now that we are given a set D = {x1,...,%,} of n unlabeled samples drawn
independently from the mixture density

p(x(0) = p(x|w;, 05)P(w;), (1)

F=1

where the full parameter vector € is fixed but unknown. The likelihood of the observed
samples is, by definition, the joint density

p(D8) = [ p(xil6). (3)
k=1

The maximum-likelihood estimate @ is that value of @ that maximizes p(D|@).

If we assume that p(D|@) is a differentiable function of @, then we can derive some
interesting necessary conditions for 8. Let | be the logarithm of the likelihood, and
let Vg | be the gradient of [ with respect to 8;. Then

1= In p(xil6) (4)
k=1
and
™ 1 i _
Vgtlzﬁng& ;p(xkle‘ﬁj)f’(wj) : (5)

If we assume that the elements of 8; and 8; are functionally independent if ¢ # 7, and
if we introduce the posterior probability
p(Xk|wi, 0:) Plw;)
P(w;|x;,8) = : , f
( 9'| ks ] })[xkle} ( )

we see that the gradient of the log-likelihood can be written in the interesting form

n
Vo.l=)_ Plwilxk,0)Vg In p(xi|ws,0;). (7
k=1
Since the gradient must vanish at the value of @; that maximizes [, the maxiium-
likelihood estimate @; must satisfy the conditions

Y Plwilxi,0)Vg In p(xklw;, 0:) =0, i=1,....c (8)
k=1

Among the solutions to these equations for Eﬂ?,- we may find the maximum-likelihood
solution.

It is not hard to generalize these results to include the prior probabilities P{w;)
among the unknown quantities. In this case the search for the maximum value of
p(D]@) extends over @ and P(w;), subject to the constraints

Pw)>0 i=1,...,¢ (9)



and

3 Plw) = 1. (10)

i=1

Let P(w;) be the maximum-likelihood estimate for P(w;), and let 8; be the maximum-
likelihood estimate for 8;. It can be shown (Problem ?7) that if the likelihood function

is differentiable and if P(w;) # 0 for any i, then P(w;) and 8; must satisfy

) = 5 3 Pl i
and :
S Pl )V In plxelen,00) = 0, (12)
where -
P[w;ka,é) _ ﬂp(xk|uiré'in)p(wi) ‘ (13)
;21 p(xkkos, 0;)P(w;)

These equations have the following interpretation. Equation 11 states that the
maximum-likelihood estimate of the probability of a category is the average over the
entire data set of the estimate derived from each sample — each sample is weighted
equally. Equation 13 is ultimately related to Bayes Theorem, but notice that in
estimating the probability for class w;, the numerator on the right-hand side depends
on @; and not the full @ directly. While Eq. 12 is a bit subtle, we can understand
it clearly in the trivial n = 1 case. Since P # 0, this case states merely that the
probability density is maximized as a function of 8; — surely what is needed for the
maximume-likelihood solution.

10.4 Application to Normal Mixtures

It is enlightening to see how these general results apply to the case where the compo-
nent densities are multivariate normal, p(x|w;, 8;) ~ N(p,, ;). The following table
illustrates a few of the different cases that can arise depending upon which parameters
are known (=) and which are unknown (7):

[(Case [ po; [ i [ Plwi) [ c |

1 [ 7] x % X
2 7 7 7 ®
3 7] 7 ?

Case 1 is the simplest, and will be considered in detail because of its pedagogical
value. Case 2 is more realistic, though somewhat more involved. Case 3 represents the
problem we face on encountering a completely unknown set of data; unfortunately, it
cannot be solved by maximum-likelihood methods. We shall postpone discussion of
what can be done when the number of classes is unknown until Sect. 77.




10.4.1 Case 1: Unknown Mean Vectors

If the only unknown quantities are the mean vectors g, then of course 8; consists of
the components of p,. Equation 8 can then be used to obtain necessary conditions
on the maximum-likelihood estimate for g;. Since the likelihood is

: 1 - .
In pcfw, ) = —In [0V B7] - S0c— ) T x—p), (1)

its derivative is

Vi In p(xws, ;) = T (x — ). (15)

Thus according to Eq. 8, the maximurm-likelihood estimate g, must satisty

™
> Plwilxe, ;" (xk — j1;) =0, where 1= (fuy, ..., fi,). (16)
k=1

After multiplying by 3; and rearranging terms, we obtain the solution:

3> Plwixk, it)xe
iy = "= : (17)

> Plwilx, ft)
k=1

This equation is intuitively very satisfying. It shows that the maximum-likelihood
estimate for p; is merely a weighted average of the samples; the weight for the kth
sample is an estimate of how likely it is that x) belongs to the ith class. If P(w;|xx, ft)
happened to be 1.0 for some of the samples and 0.0 for the rest, then fi; would be the
mean of those samples estimated to belong to the ith class. More generally, suppose
that f; is sufficiently close to the true value of p,; that Plw;|xk,ft) is essentially
the true posterior probability for w;. If we think of P(w;|xy, ft) as the fraction of
those samples having value x; that come from the ith class, then we see that Eq. 17
essentially gives fi; as the average of the samples coming from the ith class.

Unfortunately, Eq. 17 does not give fi; explicitly, and if we substitute

P(Wi|xk,ﬂ,) — cp(xklw'.‘;ﬂi)P(w&-)
> plxalo ity Ple;)
J=

with p(x|w;, ft;) ~ N(j;, B;), we obtain a tangled snarl of coupled simultaneous
nonlinear equations. These equations usually do not have a unique solution, and we
must test the solutions we get to find the one that actually maximizes the likelihood.
If we have some way of obtaining fairly good initial estimates f1,(0) for the unknown
means, Eq. 17 suggests the following iterative scheme for improving the estimates:

3 Pwslxe, ()X
(i +1) =55 (18)

3 Pl e, i)

This is basically a gradient ascent or hill-climbing procedure for maximizing the log-
likelihood function. If the overlap between component densities is small, then the




coupling between classes will be small and convergence will be fast. However, when
convergence does occur, all that we can be sure of is that the gradient is zero. Like all
hill-climbing procedures, this one carries no guarantee of yielding the global maximum
(Computer exercise 19). Note too that if the model is mis-specified (for instance we
assume the “wrong” number of clusters) then the log-likelihood ean actually decrease
(Computer exercise 21).

|

Example 1: Mixtures of two 1D Gaussians

To illustrate the kind of behavior that can occur, consider the simple two-component
one-dimensional normal mixture:

pla|p, pa) = W—EXP[ m)] =P [—%(r——m)""],

~ ~~
] =

where w; denotes a Gaussian component. The 25 samples shown in the table were
drawn sequentially from this mixture with gy = —2 and ps = 2. Let us use these
samples to compute the log-likelihood function

Hpa,p) = Y I plag|ua, pa)
k=1

for various values of py and us. The bottom figure shows how [ varies with py and s
The maximum value of [ occurs at 13 = —2.130 and fi» = 1.668, which is in the rough
vicinity of the true values iy = —2 and p, = 2. However, [ reaches another peak of
comparable height at fi; = 2.085 and fip = —1.257. Roughly speaking, this solution
corresponds to interchanging gy and po. Note that had the prior probabilities heen
equal, interchanging i and poe would have produced no change in the log-likelihood
function. Thus, as we mentioned before, when the mixture density is not identifiable,
the maximum-likelihood solution is not unique.

k T | W | Wa k T | Wy | W k i W | Wa
1| 0.608 x 9 | 0.262 X 17 | -3.458 | x
2 -1.590 | = 10 | 1.072 P 18 | 0.257 X
31 0.235 x 11| -L773 | = 19 | 2.569 x
41 3.949 X 12 | 0.537 X 20 | 1.415 X
51-2249 | x 13 | 3.240 P 21 | 1410 P
61 2.704 X 14 | 2.400 * 22| -2.653 | x
7|-2473 | x 15 | -2.499 | x 23 | 1.396 X
8| 0.672 X 16 | 2.608 X 24 | 3.286 P
25 | 0.712 | x

Additional insight into the nature of these multiple solutions can be obtained by
examining the resulting estimates for the mixture density. The figure at the top
shows the true (source) mixture density and the estimates obtained by using the two
maximum-likelihood estimates as it they were the true parameter values. The 25
sample values are shown as a scatter of points along the abscissa — wy points in




10.4.2 Case 2: All Parameters Unknown

If p;, By, and P(w;) are all unknown, and if no constraints are placed on the covariance
matrix, then the maximum-likelihood principle yields useless singular solutions. The
reason for this can be appreciated from the following simple example in one dimension.
Let p(z|p, %) be the two-component normal mixture:

exp [— l(u)z] + L exp [— %ﬁ'-“z].

2\ ¢ 22

The likelihood function for n samples drawn from this probability density is merely
the product of the n densities p(xy|u, o). Suppose that we let p = x;, the value of
the first sample. In this situation the density is

z|p,0?) = ——
plalp, o) Ty

(alino®) = 5= + e [-30%|
z|p,0%) = ——— + ——exp |—=z?|.
Aala 2V2re  2V2m B 2

Clearly, for the rest of the samples

plax|p,a”) >

b2
b2
=
@
]
=
|
| =
=
B
—_

50 that

1 1 1 1 o
p(ar,. .. xnlu,0%) > {; + exp [—51’%}] } mexp [_EEIE] :

Thus, the first term at the right shows that by letting ¢ approach zero we can malke
the likelihood arbitrarily large, and the maximume-likelihood solution is singular.

Ordinarily, singular solutions are of no interest, and we are forced to conclude that
the maximum-likelihood principle fails for this class of normal mixtures. However, it
is an empirical fact that meaningful solutions can still be obtained if we restrict our
attention to the largest of the finite local maxima of the likelihood function. Assuming
that the likelihood function is well behaved at such maxima, we can use Eqs. 11 —
13 to obtain estimates for p,;, 3;, and P(w;). When we include the elements of 2;
in the elements of the parameter vector #;, we must remember that only half of the
off-diagonal elements are independent. In addition, it turns out to be much more
convenient to let the independent elements of X' rather than £; be the unknown
parameters. With these observations, the actual differentiation of

b _
In p(xy|w;, 8;) = In B‘-’W - 5 (%% - ) 2 o - )



with respect to the elements of p; and X7 ' is relatively routine. Let z,(k) be the pth
element of x, j1, (i) be the pth element of p;, 7,4(7) be the pgth element of %;, and
oP4(i) be the pgth element of 3} !, Then differentiation gives

Vi, In p(xelws, 0:) = 7" (xi — p;)

and

A p(xg|wy, 0;) .0 . . )
T P8 — (1= 2) o0l = (20l0) = @) ) = )],
where 0y, is the Kronecker delta. We substitute these results in Eq. 12 and perform a
small amount of algebraic manipulation (Problem 16) and thereby obtain the following
equations for the local-maximum-likelihood estimate fa;, 3, and P{wz}

Plwr) = = 3" Plaiba,0) (19)
k=1

P(w;ix, 8)x,

fr,="———— (20)

Plwi|xx. 6)

—

=

k

- kil p(wi|xk!9)(xk - P‘i}(xk - P”')t
Y= — n 1)
E P(wi|xx,0)

where

Plwilxi, 8) psiker, 6) Pl
;)P

Z p(xk |wj 1 (

_ B ew[ - (xk—ﬁatﬁ:'(xk—m)]ﬁ(wa e

jgl 13217172 exp[ = §(xx — i)' 7" (xk — fi;)] Plwy)

While the notation may make these equations appear to be rather formidable,
their interpretation is actually quite simple. In the extreme case where P(w;|x, &) is
1.0 when x; is from Class w; and 0.0 otherwise, P(w;) is the fraction of samples from
w;, f1; is the mean of those samples, and ﬁk is the corresponding sample covariance
matrix. More generally, P(w,-|xk,9') is between 0.0 and 1.0, and all of the samples
play some role in the estimates. However, the estimates are basically still frequency
ratios, sample means, and sample covariance matrices,

The problems involved in solving these implicit equations are similar to the prob-
lems discussed in Sect. 77, with the additional complication of having to avoid singular
solutions. Of the various techmques that can be used to obtain a solution, the most
obvious approach is to use initial estimates to evaluate Eq. 22 for P (i %k, 9] and then



2 EM

-missing values
- or missing labels
E step: expecteation of the likelihood , involvex marginalization over the missing values
M step : recompute the parameters that maximize the likelihood

where @ includes the priors P(G;) and also the sufficient statistics of the
component densities p(xf|G;). Unfortunately, we cannot solve for the
parameters analytically and need to resort to iterative optimization.

The Expectation-Maximization (EM) algorithm (Dempster, Laird, and Ru-
bin 1977; Redner and Walker 1984) is used in maximum likelihood esti-
mation where the problem involves two sets of random variables of which
one, X, is observable and the other, Z, is hidden. The goal of the algo-
rithm is to find the parameter vector ¢ that maximizes the likelihood of
the observed values of X, £(®|X). But in cases where this is not feasi-
ble, we associate the extra hidden variables Z and express the underlying
model using both, to maximize the likelihood of the joint distribution of
X and Z, the complete likelihood L.(®|X, Z).

Since the Z values are not observed, we cannot work directly with the
complete data likelihood L., instead we work with its expectation, @,
given X and the current parameter values ®/, where | indexes iteration.
This is the expectation (E) step of the algorithm. Then in the maximization
(M) step, we look for the new parameter values, &!*1 that maximize this.
Thus

E-step : Q(d|®)) = E[Lo(®]X,2)X, ')
M-step : ¢**'=argm§|xQ(¢|¢’}

Dempster, Laird, and Rubin (1977) proved that an increase in € implies
an increase in the incomplete likelihood

LX) = L@'X)

In the case of mixtures, the hidden variables are the sources of ob-
servations, namely, which observation belongs to which component. If
these were given, for example, as class labels in a supervised setting, we
would know which parameters to adjust to fit that data point. The EM
algorithm works as follows: In the E-step we estimate these labels given
our current knowledge of components, and in the M-step we update our
class knowledge given the labels estimated in the E-step. These two steps
are the same as the two steps of k-means; calculation of b} (E-step) and
reestimation of m; (M-step).

We define a vector of indicator variables z' = {z},...,z}} where z{ = 1
if x! belongs to cluster G;, and 0 otherwise. z is a multinomial distribu-



tion from k categories with prior probabilities 77;, shorthand for P(G;).
Then

k I
P(z') = []m/
i=1

The likelihood of an observation x! is equal to its probability specified by
the component that generated it:

k
p(x‘|zt) = [ pi(x")?
i=1
pi(x"') is shorthand for p(x'1G;). The joint density is
p(x',z') = P(z")p(x'|2")
and the complete data likelihood of the iid sample X is

Lo(®]X,2) log [ [p(xt, z'|®)
3

> logp(x', z'|®)
t

It

D log P(z!|®) + log p(x'|z", ®)
[§

> > zl(log mr; + log pi(x'|®)]
r i

E-step: We define
Q@le) = E[logP(X,2)ix,®']
= E[Lc(@IX,2)1X,0)]

= D D Elz[|X,®'][log m + log pi(x'|®)]

t

where

E[z[1xX,®') = E[z]|x",®'] x'are iid
= P(z[ = 1|x",®") z!isa0/1 random variable
~ plizf = 1,0)P(2f = 119)) .
= o e 100) Bayes’ rule
pi(x'|®!)
> pj(xt|@hm;

10



p(x'|Gi, ®)P(G)
> p(xtiG;, ®HP(G))
P(GiIx',®") = h!

We see that the expected value of the hidden variable, E[z]], is the
posterior probability that x! is generated by component G;. Because this
is a probability, it is between 0 and 1 and is a “soft” label, as opposed to
the 0/1 “hard” label of k-means,

M-step: We maximize Q to get the next set of parameter values ®'*!:

P+l = arg max 9 (b))
which is
2(@@") = > > hiflogm +logpi(x'|d)]

r i

>3 hilogmi + 33 hilogpi(x'|®!)
t i t i

The second term is independent of 1; and using the constraint that
5 ;m; = 1 as the Lagrangian, we solve for

Vi 2. > hilogm — A (er; — 1) =0
r i i

and get

t
o Zehi

N
which is analogous to the calculation of priors in equation 7.2.
Similarly, the first term of equation 7.10 is independent of the compo-

nents and can be dropped while estimating the parameters of the com-
ponents. We solve for

Ve D > hilogpi(x'|$) = 0

[ |

If we assume Gaussian components, p;(x'|®) ~ N (m;,S;), the M-step
is

141 Z! h:xr
m; = S
2ehi
ge1 2l mitHx —mithT
) =

Zehi

11



EM solution
18-

10

Figure 7.4 Data points and the fitted Gaussians by EM, initialized by one k-
means iteration of figure 7.2, Unlike in k-means, as can be seen, EM allows
estimating the covariance matrices. The data points labeled by greater h;, the
contours of the estimated Gaussian densities, and the separating curve of h; =
0.5 (dashed line) are shown.

where, for Gaussian components in the E-step, we calculate

pt = TS~ exp[—(1/2) (x ~ my)TS; ! (x — my)]
bZmlSsI-VZexp[—(1/2) (xt — my) TS (xt — m;)]

Again, the similarity between equations 7.13 and 7.2 is not accidental;
the estimated soft labels h] replace the actual (unknown) labels r/.

EM is initalized by k-means. After a few iterations of k-means, we get
the estimates for the centers m; and using the instances covered by each
center, we estimate the S; and 3, b/ /N give us the ;. We run EM from
that point on, as shown in figure 7.4.

Just as in parametric classification (section 5.5), with small samples and
large dimensionality we can regularize by making simplifying assump-
tions. When p; (x'|®) ~ N (m;,S), the case of a shared covariance matrix,

12



equation 7.12 reduces to

min > > hi(x' - m)TS 1 (x" — my)
misT 5

When p;(x'|®) ~ N (m;,s°1), the case of a shared diagonal matrix, we
have

. Ixt — myl|®
min Al
m,.s Zg' J 52
which is the reconstruction error we defined in k-means clustering (equa-
tion 7.3). The difference is that now

pt — exp[=(1/25%)Ix" — mill?]
l Z.J‘EXP[—(UZsz)HxI_mJ"z]

is a probability between 0 and 1. b} of k-means clustering makes a hard
0/1 decision, whereas h! is a soft label that assigns the input to a cluster
with a certain probability. When h} are used instead of b, an instance
contributes to the update of parameters of all components, to each with
a certain probability. This is especially useful if the instance is close to
the midpoint between two centers. We thus see that k-means clustering
is a special case of EM applied to Gaussian mixtures where inputs are
assumed independent with equal and shared variances and where labels
are hardened. k-means thus pave the input density with circles, whereas
EM in the general case uses ellipses of arbitrary shapes and orientations.

3 Clustering. K-means

13



10.4.3 K-means clustering

Of the various techniques that can be used to simplify the computation and acceler-
ate convergence, we shall brietly consider one elementary, approximate method. From
Eq. 22, it is clear that the probability ﬁ[wdxk,é) is large when the squared Maha-
lanobis distance (x; — ﬁ:f]*ﬁ; (%) — f1;) is small. Suppose that we merely compute
the squared Euclideanﬁ distance ||xy — f1;]|?, find the mean fi,, nearest to xj, and

approximate P(w;|x,6) as

1 ifi=m

Pluwi|xx, 6) ~ { 0 otherwise.

(23)
Then the iterative application of Eq. 20 leads to the following procedure for finding
fiy,. .., fi.. (Although the algorithm is historically referred to as k-means clustering,

we retain the notation ¢, our symbol for the number of clusters.)

Algorithm 1 (K-means clustering)

1 begin initialize n, ¢, o1, pto, ..., 4,

2 do classify n samples according to nearest u,
3 recompute pu;

4 until no change in p,

5 return gy, e, ... 1,

6 end

The computational complexity of the algorithm is O(ndeT") where d the number of
features and T the number of iterations (Problem 15). In practice, the number of
iterations is generally much less than the number of samples.

This is typical of a class of procedures that are known as clustering procedures or
algorithms. Later on we shall place it in the class of iterative optimization procedures,
since the means tend to move so as to minimize a squared-error criterion function. For
the moment we view it merely as an approximate way to obtain maximum-likelihood
estimates for the means., The values obtained can be accepted as the answer, or can
be used as starting points for the more exact computations.

It is interesting to see how this procedure behaves on the example data we saw
in Example 1. Figure 10.1 shows the sequence of values for ji; and ji» obtained for
several different starting points. Since interchanging fi; and fiz merely interchanges
the labels assigned to the data, the trajectories are symmetric about the line iy = is.
The trajectories lead either to the point ji; = —2.176, iz = 1.684 or to its symmetric

4 Clustering. Graphical models

single link clusters (Connected component) subgraphsuch that each node is connected to at least one other
node in the subgraphand the set of nodes is maximal with respect to that property

complete link clusters(Maximal complete subgraph) subgraphsuch that each node is connected to every
other node in the subgraph(clique)

average link clusters each cluster member has a greater average similarity to the remaining members of

14
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Figure 10.1: The k-means clustering procedure is a form of stochastic hill climbing
in the log-likelihood function. The contours represent equal log-likelihood values for
the one-dimensional data in Example 1. The dots indicate parameter values after
different iterations of the k-means algorithm. Six of the starting points shown lead to
local maxima, whereas two (i.e., p;(0) = u2(0)) lead to a saddle point near pu = 0.

image. This is close to the solution found by the maximum-likelihood method (viz.,
iy = —2,130 and i, = 1.688), and the trajectories show a general resemblance to
those shown in Example 1. In general, when the overlap between the component
densities is small the maximum-likelihood approach and the k-means procedure can
be expected to give similar results.

Figure 10.2 shows a two-dimensional example, with the assumption of ¢ = 3 clus-
ters. The three initial cluster centers, chosen randomly from the training points, and
their associated Voronoi tesselation, are shown in pink. According to the algorithm,
the points in each of the three Voronol cells are used to calculate new cluster centers
(dark pink), and so on. Here, after the third iteration the algorithm has converged
(red). Because the k-means algorithm is very simple and works well in practice, it is
a staple of clustering methods.

the cluster than it does to all members of any other cluster

15
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