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* Denotes advanced sections that may be omitted on a firsingad
1 Univariate Gaussians
1.1 Basic properties
Recall the one dimensional Gaussian (normal) distribution
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wherey is the mean ane is the standard deviation.
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(from which we infer the useful resulf[X?] = p? + o?). See Figure 1 for an example. The te% is a
normalization constant. Note that it is possible thgtz|u, o) > 1 for somez, as long asf NV (z|u, o)dx = 1, since
this is aprobability density function (pdf) .

If Z ~N(0,1), we sayZ follows astandard normal distribution. Itscumulative distribution function (cdf) is
defined as .

o) = [ plais ™

which is called theprobit distribution . This has no closed form expression, but is built in to mofihxsoe packages
(eg.normcdf in the matlab statistics toolbox). In particular, we can paoite it in terms of therror (erf) function

®(w;p,0) = 5[1 + erf(z/V2)] (8)
wherez = (z — p)/o and
def 2 v —¢2
erf(z) = ﬁ/o e v dt 9)

Let us see how we can use the cdf to compute how much prolyabiiss is contained in the interyah- 20. If
X ~ N(p,0?),thenZ = (X — u)/o ~ N(0,1). The amount of mass contained inside 2aeinterval is given by

CL;M<Z< b;”)
SRR s (11)
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Standard Normal Gaussian cdf

Figure 1. A standard normal pdf and cdf. The matlab code used to prodhese plots isxs=-3:0.01:3;
plot(xs,normpdf(xs,mu,sigma)); plot(xs,normcdf(xs,mu ,sigmay)); ) where s =
[—3,-2.99,-2.98,...,2.99, 3.0] is a vector of points at which the density is evaluated.

Function Matlab R

density normpdf dnorm
cdf normcdf pnorm
inverse cdf (quantiles) norminv  gnorm
sampling randn rnorm

Table 1. Translation between Matlab and R for common functions eel&b univariate gaussians.

Since
p(Z < —1.96) = normcdf—1.96) = 0.025 (12)

we have
p(—=1.960 < X — 4 < 1.960) =1 —2 x 0.025 = 0.95 (13)

Often we approximate this by replacing 1.96 with 2, and sgyimat the interval: + 20 contains 0.95 mass. See
Figure??for an illustration.

It is also useful to compute quantiles of a distribution.aAjuantile is the valuef, = z s.t., f(X < z) = q,
wheref is the pdf. For example, the median is the 50%-quantile. Afs@ ~ AN(0, 1), then the 2.5% quantile is
No.o2s = ®71(0.025) = —1.96, whered ! is the inverse of the Gaussian cdf:

z = normin0.025) = —1.96 (14)
p(Z <z) = normcdfz) = 0.025 (15)

By symmetry of the Gaussia®,~1(0.025) = —®~1(1 — 0.025) = ®~1(0.975).
1.2 Maximum likelihood estimation
Let X; ~ N (p,0?). Then

N
p(Plu,o%) = [[N(@iln o?) (16)
i=1
N
1 N N
U, 0?) = ~552 (2 — p)? — 5 Ino? — 5 In(27) (a7)



To find the maximum, we set the partial derivatives to O andesdbtarting with the mean, we have

oL 2
o T 22 (xi—p)=0 (18)
1 N
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which is just the empirical mean. Similarly, letting= o2, andu = iy,
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= Y- (5 Ywy (23)

since) , z; = Njyr. This is just the empirical variance. Note that we divide/dyand not byN — 1. We shall
discuss this issue in Secti@?.

Since we can express the MLEs in termsyof ; and)_, (z7), we say these are treaifficient statisticsfor the
data. In other words, if we know the sufficient statistics,caa “throw the data away” without losing any information.

2 Multivariate Gaussians
LetZ = (Zy,..., Z,.) consist ofr iid A/(0, 1) random variabled, be anp x r matrix andi ap x 1 vector. Then

X=(X1,...X,)=LZ+ [ (24)
has amultivariate Gaussian or multivariate normal (MVN) distribution given by

=) = def 1 1
N(Z|i, %) = Wexp[—i(

F—g)'sTNE - )] (25)
whereji is ap x 1 vector,X is ap x p symmetric positive definite (pd)matrix, andp is the dimensionality of’. It
can be shown that’[X| = 7 and CoyX| = X (see e.g., [Bis06, p82]). (Note that in the 1D casés the standard
deviation, whereas in the multivariate casds the covariance matrix.) In fact we have

CovX =Y =L CovZL=LL" (26)

So a MVN is a linear combination of scalar iid Gaussians. Weatao show that linear combinations of MVN are
MVN:
A~N(u,Y) = AX ~ N(Ap, AXA) (27)

This implies that marginals of a MVN are also Gaussian. Totlsise suppose thaX < IR* and we want to compute
p(X1, X2): we can just use the projection matrix

1000
A:(0100> (28)

Thequadratic form A = (7 — )T ~1(Z — i) in the exponent is called tHdahalanobis distancebetweent
andji. The equatiom\ = const defines an ellipsoid, which are the level sets of cohgensity: see Figure 2, where
the region inside the ellipses contains 95% of the mass df @acissian. We will explain this in more detail below.
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Figure 2. A scatterplot of height and weight of various men (blue cegysand women (red circles) with fitted 2D Gaussians
superimposed. Figure produced lipmetric_plot

1 andX are callednoment parameters An alternative is to use theanonical parametersor information form ,
defined as follows

1
plalnA) = explat T 17 Aal 29)
A = 27! (30)
n o= X' (31)
a —3(nlog(2m) — log |[A| + " An (32)

whereA is called theprecision matrix or concentration matrix, anda is the normalization constant.
2.1 Bivariate Gaussians
In the 2D case, define trmrrelation coefficientbetweenX andY as

Cou(X,)Y
o= X, Y) (33)
VVar(X)Var(Y)
Hence the covariance matrix is
Y — ox POXOY (34)
pPOXOY oy

and the pdf (for the zero mean case) becomes
1 1 22 P 2pxy )>
T,y =——————F—exXp| 75 | 5+ =5 — 35
f(@9) 2wy oyy/1 — P> P < 2(1—p?) <U% 05 (Uway) (35)

It should be clear from this example that when doing multateranalysis, using matrices and vectors is easier than
working with scalar variables.

2.2 Eigenvectors and eigenvalues

To understand MVNSs, it is necessary to know sdimear algebra. Here we provide a quick review.
We can compute the eigenvectarsand eigenvalues; of any square matrid:

Aui = )\iui (36)

We can write this in matrix form as .
A=UANUT =" Nilyii; (37)

i=1
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Figure 3: Diagonalizing a square matrix = UAU ™.

where the columns o/ are theu;, and A = diag()\;). This is calleddiagonalizing A. (In matlab, just type
[U,Lam]=eig(A) .) See Figure 3.
If Aisreal and symmetric, then the eigenvalues are real and the eigenvectors a@orthal, so that

’U,ZTU,J' = Iij (38)
or
vtu =1 (39)

wherel is theidentity matrix . We say that/ is anorthogonal matrix.

To see why it is possible to writd = UAU ~!, supposed is a linear transformation. It can always be decomposed
into a rotation/, a scaling\ and a reverse rotatidid” = U 1.

Therank of A is the number of non-zero eigenvalues. If aJl > 0, then A is positive semi definite (psd)
i.e., 2T Az > 0 for all z. (If we consider the Mahalanobis distance for a 0-mean Gausad = 27Xz, it seems
reasonable to requid > 0.) Note that if all elements ofl are positive, it does not meahis psd. For example,

A= (;) i) (40)

has all positive elements, but is not psd, singe= 5.37 and\, = —0.37. Intuitively you can think of psd matrices
as defining concave “bowls”, since the correspondjogdratic form will satisfy 7 Az > 0, and therefore always
curve up.

2.3 Degenerate MVNs
A degeneratemultivariate Gaussian is one for which the covariance masrisingular,det > = 0. Consider for

example
2 0\ [(Z 0

Here the rank of. is 1 < p = 2, since the rows are linearly dependent. Hehice- LL” is also rank 1, and is
therefore not invertible. This corresponds to a 1D densitpedded in a 2D space.

2.4 Visualizing the covariance matrix
Letting®X = UAUT we find

P
1
ST =UTTATIUT = UATIU =) (42)
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Figure 4: Visualization of a 2 dimensional Gaussian density. The majal minor axes of the ellipse are defined by the first two
eigenvectors of the covariance matrix, namglyandi.. Source: [Bis06] Figure 2.7.

Hence
P .
@-@)'S N E -G = (f—ﬁ)T< A—uu> (@ — 1) (43)
i=1""
P9 .
- Zy(f— i)l (& — fi) (44)
i=1""
L)
= X% (45)
i=1 "

wherey; def ﬁf(f — [i). They variables define a new coordinate system that is shiftedilayd rotated (by/) with

respect to the originat coordinatesyy = U (% — [i).
Recall that the equation for an ellipse in 2D is
2 2
Y1 Y3
= 4+ = =1 46
N Ty (46)
Hence we see that the contours of equal probability dentayGaussian lie along ellipses: see Figure 4 and Figure 5.
The Matlab code to plot the 2D Gaussian in Figure 5 is showovbet uses some useful commandseshgrid
to generate a 2D array of poinsyrfc  to plot the surface, ancbntour to plot the contours.
function plotGauss2dDemo()
mu = [1 O]; % mean (must be row vector for mvnpdf)
S =1[4 3; 3 4] % covariance
figure(1); clf
plotSurf(mu, S, 1)
% Compute whitening transform:
[U,D] = eig(S); % U = eigenvectors, D= diagonal matrix of eigenvalues.
A = sqgrt(inv(D)) *U’;
mu2 = A-mu;
S2 = AASxA
plotSurf(mu2, S2, 3)
%%%%%%%%% %%
function plotSurf(mu, S, figndx)

[U,D] = eig(S); % U = eigenvectors, D= diagonal matrix of eigenvalues.
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Figure 5: Visualization of a 2 dimensional Gaussian density. ThisrBguas produced bplotGauss2dDemo .

% Evaluate p(x) on a grid.

stepSize = 0.5;

[x,y] = meshgrid(-5:stepSize:5,-5:stepSize:5); % Create grid.
[r,cl=size(x);

% data(k,:) = [x(k) y(k)] for pixel k
data = [x(:) y()I

p = mvnpdf(data, mu’, S);

p = reshape(p, r, c);

% scale density so it sums to 1
p=p* stepSize"2; % p2(x,y) defeq p(x: x+dx, y: y+ dy) approx p(xy) dx dy
assert(approxeq(sum(p(:)), 1, le-1))

subplot(2,2,figndx)

surfc(x,y,p); % 3D plot
view(-10,50);

xlabel(’x’,'fontsize’,15);

ylabel(y’,'fontsize’,15);

zlabel('p(x,y)’, fontsize’,15);

subplot(2,2,figndx+1)

contour(x,y,p); % Plot contours
axis('square’);

xlabel('x’,'fontsize’,15);

ylabel(y’, fontsize’,15);

% Plot first eigenvector

line([mu(1) mu(l)+sqrt(D(1,1)) *U(1,1)],[mu(2) mu(2)+sqrt(D(1,1)) *U(2,1)], linewidth’,3)
% Plot second eigenvector
line(fmu(1) mu(1)+sqrt(D(2,2)) *U(1,2)],[mu(2) mu(2)+sqrt(D(2,2)) *U(2,2)],'linewidth’,3)

A faster alternative to using trentour command is to just to realise thatif is a matrix of points on the circle,

thenY = UA%X is a matrix of points on the ellipse representedtby- UAU”. Hence we can use the code below
to plot ellipsoids of constant density.

Using the fact that the Mahalanobis distarce- (z — p)” X! (z — p) is a sum of squares gfGaussian random
variables, we hava ~ XI% (see Sectior??). Hence we can find the value &f that corresponds to a 95% confidence
interval by usingdelta = chi2inv(0.95, 2) where the 2 is becauge= 2. If we plot the locus of points for
which A = 4, we will enclose 95% of the probability mass.

function h=plot2dgauss(mu, Sigma, color)



% plot2dgauss, based on code by Mark Paskin
% function h=plot2dgauss(mu, Sigma, color)
% Plot an ellipse representing the covariance matrix of a Gau ssian

if size(Sigma) "= [2 2], error('Sigma must be a 2 by 2 matrix) ; end
%if length(mu) "= 2, error(mu must be a 2 by 1 vector); end
if nargin < 3, color = 'r'; end

mu = mu();

[U, D] = eig(Sigma);

n = 100;

t = linspace(0, 2 *pi, n);

xy = [cos(t); sin(t)];

%k = 1;

= sqrt(conf2mahal(0.95, 2));

= (k » U= sqrt(D))  * xy;
= repmat(mu, [1 n]) + w;
plot(z(1, :), z(2, :), color);

NS X

%%%%%%%%%

function m = conf2mahal(c, d)
m = chi2inv(c, d);

2.5 Whitening

Any Gaussian random variable can be transformed so its iema matrix is spherical. This is calleditening. Let
X ~ N(u,¥) andy = UAUT. Let

1
Yy =A20UTX (47)
1
whereA ™2 = diag(1/v/As;), Then
1
Coww¥ = A 2UTSUA 2 (48)
1 1
= A 2UTUAUTUA 2 (49)
1 1
A"2AA"2 (50)
- 7 (51)

using CoyAY] = ACoVY]|AT andUUT = UTU = I. and

1
EY = A 2UTE[X] (52)
So )
Y ~ N(A 20T, 1) (53)
has a spherical covariance. See Figure 5 for an example.
2.6 Sampling from a multivariate Gaussian
It is often necessary to sample from a multivariate Gaus3ian N (1, %), One way to do this is to useGholesky
decomposition > = L7 L. Specifically, we first sampl& ~ A/(0, ) and then seY = LT X + u. This is valid since
CoVY] = LTCoviX|L = LTIL =% (54)
(If you have the Matlab statistics toolbox, you can just aafivrnd , but it is useful to know this other method.) For
example, the code to generate the plot in Figure 6 is shovawbel

% gaussSampleDemo.m
% sample data from a spherical, diagonal and full cov Gaussia n in 2D

figure(1); clf
N = 500;
z = 10;
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Figure 6: Samples from a spherical, diagonal and full covariance &answith 95% confidence ellipsoid superimposed. This
figure was generated usiggussSampleDemo .

Sigma{1}
Sigma{2}
Sigma{3}
mu = [0

1001
4 0; 0 1];
4 3; 3 4];

i=]

for i=1:3
%x = mvnrnd(mu, Sigma{i}, N);
L = chol(Sigma{i});
x = (L' * randn(2, N)) + repmat(mu, N, 1);
subplot(1,3,i)
plot(x(:,1), x(:,2), .");
hold on
plot2dgauss(mu(:), Sigmaf{i}, 'r’);
axis([-z z -z z])
axis square

end

2.7 Parsimonious covariance matrices

A full covariance matrix hag(p + 1)/2 parameters. Hence it may be hard to estimate from data. Weestnict

¥ to be diagonal; this has parameters. Or we can usespherical (isotropic) covariancey = ¢%I. See Figure 6
for a visualization of these different assumptions. We wihsider otheparsimonious representationsfor high
dimensional Gaussian distributions later in the book. Thablem of estimating a structured covariance matrix is
calledcovariance selection

2.8 Independence and correlation

RVs X, Y have a joint Gaussian distributionif X, Y') is multivariate Gaussia,X,Y) ~ N (u, X). Inthis case, if
X andY are uncorrelated, then they are independent, i.e.,

EX,Y =0 << XL1Y (55)

To prove this, note that

s ) =N ((5) 1 (5 2)) = MOt RNy ) = p(X0p(Y) (56)

since the cross-product terms vanish when we multiply oatténms in the exponent. This is an exception to the
general rule established in Secti®® which showed that uncorrelated does not mean independernt

However, now suppos& andY are marginally Gaussian, baot jointly Gaussian. In particular, letX ~ A/(0,1)
andY = WX, wherep(lW = —1) = p(W = 1) = 0.5. ltis clear thatX andY are not independent, singéis a
function of X. However, we can show (Exerci8®) thatY ~ AN(0,1) and Co¥X,Y) = 0. So uncorrelated does not
mean independent even if the variables are Gaussian (athigyifaregointly Gaussian).

2.9 Sparse precision matrices encode conditional indepeadce

Zeros in the precision matrix correspond to conditionakjpehdences. More preciselyif; = 0, whereA = ¥71,
thenX; L X;|X,.s. To prove this, let = 1,5 = 2,rest = 3 : p and let us computg(z; »|x,). where block 1



denote variables j and block 2 denote the rest. Then using the Equations ind®e2tlL0, we have

p(riz|r,) = N(Nu\r,zu,u\r) (57)
Yigaor = Af21,12 (58)
M A
= 59
<)\21 )\22) (59)
1 Aoz —Aa1
= TN 2 60
AM1A22 — (A%,) <—/\12 /\11> (60)

The correlation coefficient betweery and X in this conditional distribution is called thgartial correlation coef-
ficient, and is given by

Y12,12r(1,2)

P (61)
12 V212001 D 12,1902, 2)
_)\12
_ 62
V /\11)\22 ( )

So we see that;;), = 0 <= A2 = 0. And since uncorrelated implies independent (for jointjuGsian variables),
we have shown that zeros in the precision matrix represertittonal independence.
Another way to see this is to expand out the canonical form

p(z) = expla +nTx — %xTAx] = expla + Z Nz — 3 Z Z Xijziz;] (63)
J it g
and to notice that if\;; = 0, this factorizes into independent terms involvingndj. By thefactorization theorem,
X L Y|Z iff the joint factorizes as follows

p(,y,z) = f(x,2)9(y, ) (64)
for some functiond, g.
2.10 Marginals and conditionals of a MVN

In Section??, we discussed how to compute marginals and conditionats joont distributions, i.e., how to compute
p(x1) = >_,, p(w1,72) andp(z:|z2) = p(x1, x2)/p(x2). For discrete random variables, this is straightforwardt B
for parametric distributions, one has to replace brutesfetanmation with integration, which can require some messy
algebra. Below we derive the relevant results for Gaussians

Supposer = (x1, x2) is jointly Gaussian with parameters

o Y1 Y12 —1 A Ag
= , U= , A=Y= , 65
: (Mz) (221 E22) <A21 Ago (65)
Below we will show that we can factorize the joint as

p(r1,22) = p(x2)p(21]72) (66)
= N(x2|p2, Boo)N (21]p1)2, 212 (67)

where the marginal parameters fa2) are just gotten by extracting rows and columnsaer and the conditional
parameters fop(z|2z2) are given by

prp = i+ T1aX (22 — o) (68)
S = S — T2 B (69)

Note that the new mean is a linear functionzef and the new covariance is independentof Note that both the
marginal and conditional distributions are themselvessSiam: see Figure 7.
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Figure 7: Marginalizing and conditionalizing a 2D Gaussian resuita iLD Gaussian. Source: Sam Roweis.

The equivalent results in canonical parameters are giviembeet

(M1 _ ov—1 All A12 _
Hn= <M2)a A=X% _<A21 A22)a W—AM (70)

Then the marginal is given by

p(z2) = N(za2n3',A3") (71)
ny = mp—AaA'm (72)
A" = Ago— AyA A (73)
and the conditional is given by
p(zi]ze) = N(w1;771|27 A1\2) (74)
me = m— Aoz (75)
Mg = An (76)

Note that marginalization is easier in moment form, but ¢towing is easier in canonical form.
2.11 Partitioned matrices

To derive the above results, it is helpful to know the follogiresults for manipulating block structured matrices.igTh
section is based on [Jor06, ch13].)
E F
M = < a H) (77)

Consider a general partioned matrix
where we assumg andH are invertible. The goal is to derive an expressionbr*. If we could block diagonalize
M, it would be easier, since then the inverse would be a didgoatix of the inverse blocks. To zero out the top
right we can pre-multiply as follows

I -FHY\ (E F E—-FH'G 0
<0 I )(G H>:< G H> (78)

11



Similarly, to zero out the bottom right we can post-multipkyfollows

I -FH Y\ (E F I 0\ (E-FH'G 0 (79)
0 1 G H)\-H'G 1)~ 0 H
The top left corner is called techur complementof M wrt H, and is denoted// H:
M/H=F—-FH'G (80)
If we rewrite the above as
XYZ=W (81)
whereY = M, we get the following expression for the determinant of dipp@aned matrix:
(X[[Y[z] = W] (82)
M| = |M/H|H| (83)
since|X| =|Z| =1and|W| = |M/H||H|. Also, we can derive the inverse as follows
z7Wvixt = w! (84)
y=! = Zzwlx (85)
hence
E F\ ' I 0\ ((M/H)™* 0\ (I —FH! (86)
G H a -H'G I 0 ! 0 I
_ (M/H)™! ~(M/H)"'FH! -
- \-H'G(M/H)' H'+GM/H)"'FH™!
Alternatively, we could have decomposed the maitixn terms of E and M/ E, yielding
E F\ ' _ (E'+E'F(M/E)'GE™'! E-'F(M/E)"! (©8)
G H a —(M/E)"*GE~! (M/E)~!

Equating these two expression yields the following two folae, the first of which is known as tineatrix inversion
lemma (akaSherman-Morrison-Woodbury formula)

(E-FH'G)™' = EF'4+E'F(H-GE'F)"'GE™! (89)
(E-FH'G)"'FH™' = E'F(H-GE'F)™! (90)
In the special case th&l = —1, F = u a column vector = v’ a row vector, we get the following formula for a
rank one update of an inverse
(E+w)™t = E '+ B u(-I—vE u) " WE™? (91)
E-lw/E~!
= - 2
1+vE-1u (92)

2.12 Marginals and conditionals of MVNSs: derivation

Armed with knowledge of Schur complements etc, we can déheeesults in Section 2.10.
Let us factor the joinp(z1, z2) asp(x2)p(x1|z2) by applying Equation 86 to the matrix inverse in the exponent

term.
1 (x1— T S T\ (2 — 1
—— 93
exp{ 2 <£U2 = p2 Yo1 Yo T — fi2 (33)
expd L (T1— M g 1 0\ ((Z/Z2)™" 0 I —%15%55," (21— m (94)
P 2 T2 — U2 —22_21221 I 0 22_21 0 I T2 — U2

= exp{—3(x1 — 1 — 1255 (32 — 12))" (/822) " (21 — i1 — L1235 (w2 — p12)) } (95)
x exp { =3 (x2 — p2) 55 (22 — p2) } (96)
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This is of the form
exp(quadratic form inzq, z2) x exp(quadratic form incs) (97)

Using Equation 83 we can also split up the normalization tzoris
1 1
@mPrI2Ss = (2m)PFD2 (| /S0 |[Saa])2 (98)
1 1
= (@m)P2S/S0|2 (21)77|Sy|2 (99)
Hence we have succesfully factorized the joint as

plar,x2) = p(a2)p(ar|rs) (100)
= N(x2|pa, Xo2)N (21|p1)2, X1)2) (101)

where the parameters of the marginal and conditional Higion can be read off from the above equations, using
(2/Z92) 7t =211 — B19855 Ty (102)

2.13 Bayes rule for MVNs
Consider representing the joint distribution &nandY” in linear Gaussianform:

p(z) = N(z|p, A7) (103)
plylr) = N(ylAz+b,57") (104)

whereA andS are precision matrices. It can be shown (see e.g., [Bis(f) f¢at we can invert this model as follows

ply) = N(y|lAp+0b,S~ 4+ ANTAT) (105)
plely) = N(@[S[ATS(y - b)] + Ap, %) (106)
Y = (A+ATsA)™! (107)

Consider the following 1D example, where we try to estimafeom a noisy observation, where the noise level
is 72. If the prior onz is Gaussian, and the likelihogdy|x) is Gaussian, then the posterjdrr|y) is also Gaussian:

p(z) = N(z|p,0?) (108)
plylr) = N(ylz,7%) (109)
py) = Nylp,o®+7%) (110)

2.14 Maximum likelihood parameter estimation
Given N iid datapointsz; stored in rows ofX, the log-likelihood is

1N

Np N - 1
logp(X|p, %) = ——~log(2m) - o log|x| -5 D (@ =) - p) (111)
=1

Below we drop the first term since it is a constant. Also, usiregfact that

—log|¥| = log|=7! (112)
we can rewrite this as
Np N 1
logp(X|[p, %) = ——log(2m)— log|A| = 5 (7 — W) A(Fi — p) (113)

i=1

whereA = X! is called theprecision matrix.
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2.15 Mean
Using the following results for taking derivatives wrt vers (wherez is a vector andd is a matrix)

T -
oaz _ (114)
ox
o Az) .
and using the substitutiajy = #; — p, we have
O sy = O
8M(xz p) XN @ ) = a9 97 i (116)
= -1zt + 2Ny, (117)
Hence
B 1
o oer(XlnT) = —5 > 257N @ ) (118)
=1
N
= ) (@ - p) (119)
=1
=0 (120)
SO 1
NML:NZfi (121)

which is just the empirical mean.
2.16 Covariance

To compute: 1, is a little harder We will need to take derivatives wrt a matif a quadratic form and a determinant.
We introduce the required algebra, since we will be usingirariate Gaussians a lot.

First, recall t{A) = 3 . A;; is thetrace of a matrix (sum of the diagonal elements). This satisfiesciuic
permutation property

tr(ABC) =tr(CAB) = tr(BCA) (122)
We can therefore derive thigace trick , which reorders the scalar inner produétAz as follows
o7 Az = tr(z” Az) = tr(zaT A) (123)
Hence the log-likelihood becomes
A N -1 1 Ty —1
(DIE,p) = 5 log [S71 = 3 (i — )" (@i — ) (124)
= N m 1 = LS (s : Tyt 125
= 30g| |_§Zr[(xl_/‘)(xz_ﬂ) ] ( )
= Nl PO . tr[ sy ! 126
= Sl = 5> uls¥] (126)
whereS is thescatter matrix
Y@ -n@ - = Q@) - Nez' (127)

14



We need to take derivatives of this expressiondrt. We use the following results

&%tr(BA) = BT (128)
a% log|lA] = AT (129)
Hence
oU(D|2 N 1
= 0 (131)
yields

1 XN: s 1
Yvr == Y (@ —pmr) (@ —pmr) = =95 (132)

N & N

> and) ", Z;z1 are callecsufficient statistics because if we know these, we do not need the original raw.Xlata
in order to estimate the parameters. In matlab, just 8igena = cov(X,1)
We can write the MLEs in matrix form as follows (wherés a vector ofN x 1 ones)

1 -
ML = NXTl (133)
Yur = %XT(I—TTT/N)X (134)

where(I — 117 /N) is the centering matrix, since it removes the mean from anyixnaf data it multiplies. If the
data is already centered, thER,;, = %XTX.

To find a MLE for a diagonal covariance matrix, we just comptite;, as above and set the off-diagonal elements
to 0. (We leave the proof of this fact as an exercise.) To firdNHLE for a spherical covariance matrix, we set
¥ = ¢21. Then the log-likelihood becomes

N
N o
log p(X[%) = ——plog(o?) — 3 Y (%) (T — )T (@ — BT (135)
i=1
Hence
0
0 = Wlogp(Xm) (136)
N
Np e
= —5t2) ()@ -pTE - DT (137)
i=1
1 N
= Fp 2@~ )@~ ) (138)

In the case = 1, this reduces to the standard result

1
2 _
oML =

2|

N
> (@i — )’ (139)
i=1

as required.
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