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1 Univariate Gaussians

1.1 Basic properties

Recall the one dimensional Gaussian (normal) distribution

N (x|µ, σ)
def
=

1√
2πσ2

e−
1

2σ
2
(x−µ)2 (1)

whereµ is the mean andσ is the standard deviation.

µ
def
= EX =

∫ ∞

−∞
xp(x)dx (2)

σ2 def
= VarX = E(X − µ)2 (3)

=

∫

(x − µ)2p(x)dx (4)

=

∫

x2p(x)dx + µ2

∫

p(x)dx − 2µ

∫

xp(x)dx (5)

= E[X2] − µ2 (6)

(from which we infer the useful resultE[X2] = µ2 + σ2). See Figure 1 for an example. The term1√
2πσ2

is a

normalization constant. Note that it is possible thatN (x|µ, σ) > 1 for somex, as long as
∫

N (x|µ, σ)dx = 1, since
this is aprobability density function (pdf) .

If Z ∼ N (0, 1), we sayZ follows astandard normal distribution. Itscumulative distribution function (cdf) is
defined as

Φ(x) =

∫ x

−∞
p(z)dz (7)

which is called theprobit distribution . This has no closed form expression, but is built in to most software packages
(eg.normcdf in the matlab statistics toolbox). In particular, we can compute it in terms of theerror (erf) function

Φ(x; µ, σ) = 1
2 [1 + erf(z/

√
2)] (8)

wherez = (x − µ)/σ and

erf(x)
def
=

2√
pi

∫ x

0

e−t2dt (9)

Let us see how we can use the cdf to compute how much probability mass is contained in the intervalµ ± 2σ. If
X ∼ N (µ, σ2), thenZ = (X − µ)/σ ∼ N (0, 1). The amount of mass contained inside the2σ interval is given by

p(a < X < b) = p(
a − µ

σ
< Z <

b − µ

σ
) (10)

= Φ(
b − µ

σ
) − Φ(

a − µ

σ
) (11)
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Figure 1: A standard normal pdf and cdf. The matlab code used to producethese plots isxs=-3:0.01:3;
plot(xs,normpdf(xs,mu,sigma)); plot(xs,normcdf(xs,mu ,sigma)); , where xs =
[−3,−2.99,−2.98, . . . , 2.99, 3.0] is a vector of points at which the density is evaluated.

Function Matlab R
density normpdf dnorm
cdf normcdf pnorm
inverse cdf (quantiles) norminv qnorm
sampling randn rnorm

Table 1: Translation between Matlab and R for common functions related to univariate gaussians.

Since
p(Z ≤ −1.96) = normcdf(−1.96) = 0.025 (12)

we have
p(−1.96σ < X − µ < 1.96σ) = 1 − 2 × 0.025 = 0.95 (13)

Often we approximate this by replacing 1.96 with 2, and saying that the intervalµ ± 2σ contains 0.95 mass. See
Figure?? for an illustration.

It is also useful to compute quantiles of a distribution. Aα-quantile is the valuefα = x s.t.,f(X ≤ x) = α,
wheref is the pdf. For example, the median is the 50%-quantile. Also, if Z ∼ N (0, 1), then the 2.5% quantile is
N0.025 = Φ−1(0.025) = −1.96, whereΦ−1 is the inverse of the Gaussian cdf:

z = norminv(0.025) = −1.96 (14)

p(Z ≤ z) = normcdf(z) = 0.025 (15)

By symmetry of the Gaussian,Φ−1(0.025) = −Φ−1(1 − 0.025) = Φ−1(0.975).

1.2 Maximum likelihood estimation

Let Xi ∼ N (µ, σ2). Then

p(D|µ, σ2) =

N
∏

i=1

N (xi|µ, σ2) (16)

`(µ, σ2) = − 1

2σ2

N
∑

i=1

(xi − µ)2 − N

2
lnσ2 − N

2
ln(2π) (17)
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To find the maximum, we set the partial derivatives to 0 and solve. Starting with the mean, we have

∂L

∂µ
= − 2

2σ2

∑

i

(xi − µ) = 0 (18)

µML =
1

N

N
∑

i=1

xi (19)

which is just the empirical mean. Similarly, lettingv = σ2, andµ = µ̂ML,

∂L

∂v
=

1

2
v−2

∑

i

(xi − µ) − N

2v
= 0 (20)

σ̂2
ML =

1

N

N
∑

i=1

(xi − µML)2 (21)

=
1

N

[

∑

i

x2
i +

∑

i

µ̂2 − 2
∑

i

xiµ̂

]

(22)

=
1

N

∑

i

(x2
i ) − (

1

N

∑

i

xi)
2 (23)

since
∑

i xi = Nµ̂ML. This is just the empirical variance. Note that we divide byN and not byN − 1. We shall
discuss this issue in Section??.

Since we can express the MLEs in terms of
∑

i xi and
∑

i(x
2
i ), we say these are thesufficient statisticsfor the

data. In other words, if we know the sufficient statistics, wecan “throw the data away” without losing any information.

2 Multivariate Gaussians
Let Z = (Z1, . . . , Zr) consist ofr iid N (0, 1) random variables,L be anp × r matrix and~µ ap × 1 vector. Then

X = (X1, . . . , Xp) = LZ + ~µ (24)

has amultivariate Gaussianor multivariate normal (MVN) distribution given by

N (~x|~µ, Σ)
def
=

1

(2π)p/2|Σ|1/2
exp[− 1

2 (~x − ~µ)T Σ−1(~x − ~µ)] (25)

where~µ is ap × 1 vector,Σ is ap × p symmetric positive definite (pd)matrix, andp is the dimensionality of~x. It
can be shown thatE[X ] = ~µ and Cov[X ] = Σ (see e.g., [Bis06, p82]). (Note that in the 1D case,σ is the standard
deviation, whereas in the multivariate case,Σ is the covariance matrix.) In fact we have

CovX = Σ = L Cov ZL = LLT (26)

So a MVN is a linear combination of scalar iid Gaussians. We can also show that linear combinations of MVN are
MVN:

A ∼ N(µ, Σ) ⇒ AX ∼ N(Aµ, AΣA′) (27)

This implies that marginals of a MVN are also Gaussian. To seethis, suppose thatX ∈ IR4 and we want to compute
p(X1, X2): we can just use the projection matrix

A =

(

1 0 0 0
0 1 0 0

)

(28)

Thequadratic form ∆ = (~x − ~µ)T Σ−1(~x − ~µ) in the exponent is called theMahalanobis distancebetween~x
and~µ. The equation∆ = const defines an ellipsoid, which are the level sets of constant density: see Figure 2, where
the region inside the ellipses contains 95% of the mass of each Gaussian. We will explain this in more detail below.
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Figure 2: A scatterplot of height and weight of various men (blue crosses) and women (red circles) with fitted 2D Gaussians
superimposed. Figure produced bybiometric_plot .

µ andΣ are calledmoment parameters. An alternative is to use thecanonical parametersor information form ,
defined as follows

p(x|η, Λ) = exp[a + ηT x − 1

2
xT Λx] (29)

Λ = Σ−1 (30)

η = Σ−1µ (31)

a = − 1
2 (n log(2π) − log |Λ| + ηT Λη (32)

whereΛ is called theprecision matrix or concentration matrix, anda is the normalization constant.

2.1 Bivariate Gaussians

In the 2D case, define thecorrelation coefficientbetweenX andY as

ρ =
Cov(X, Y )

√

V ar(X)V ar(Y )
(33)

Hence the covariance matrix is

Σ =

(

σX ρσXσY

ρσXσY σY

)

(34)

and the pdf (for the zero mean case) becomes

f(x, y) =
1

2πσxσy

√

1 − ρ2
exp

(

− 1

2(1 − ρ2)

(

x2

σ2
x

+
y2

σ2
y

− 2ρxy

(σxσy)

))

(35)

It should be clear from this example that when doing multivariate analysis, using matrices and vectors is easier than
working with scalar variables.

2.2 Eigenvectors and eigenvalues

To understand MVNs, it is necessary to know somelinear algebra. Here we provide a quick review.
We can compute the eigenvectorsui and eigenvaluesλi of any square matrixA:

Aui = λiui (36)

We can write this in matrix form as

A = UΛUT =

p
∑

i=1

λi~ui~u
T
i (37)
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Figure 3: Diagonalizing a square matrixA = UΛUT .

where the columns ofU are theui and Λ = diag(λi). This is calleddiagonalizing A. (In matlab, just type
[U,Lam]=eig(A) .) See Figure 3.

If A is real and symmetric, then the eigenvalues are real and the eigenvectors are orthonormal, so that

uT
i uj = Iij (38)

or
UT U = I (39)

whereI is theidentity matrix . We say thatU is anorthogonal matrix .
To see why it is possible to writeA = UΛU−1, supposeA is a linear transformation. It can always be decomposed

into a rotationU , a scalingΛ and a reverse rotationUT = U−1.
The rank of A is the number of non-zero eigenvalues. If allλi ≥ 0, thenA is positive semi definite (psd),

i.e.,xT Ax ≥ 0 for all x. (If we consider the Mahalanobis distance for a 0-mean Gaussian,∆ = xT Σ−1x, it seems
reasonable to require∆ ≥ 0.) Note that if all elements ofA are positive, it does not meanA is psd. For example,

A =

(

1 2
3 4

)

(40)

has all positive elements, but is not psd, sinceλ1 = 5.37 andλ2 = −0.37. Intuitively you can think of psd matrices
as defining concave “bowls”, since the correspondingquadratic form will satisfy xT Ax ≥ 0, and therefore always
curve up.

2.3 Degenerate MVNs

A degeneratemultivariate Gaussian is one for which the covariance matrix is singular,detΣ = 0. Consider for
example

X =

(

2 0
5 0

)(

Z1

Z2

)

+

(

0
0

)

(41)

Here the rank ofL is 1 < p = 2, since the rows are linearly dependent. HenceΣ = LLT is also rank 1, and is
therefore not invertible. This corresponds to a 1D density embedded in a 2D space.

2.4 Visualizing the covariance matrix

LettingΣ = UΛUT we find

Σ−1 = U−T Λ−1U−1 = UΛ−1U =

p
∑

i=1

1

λi
~ui~u

T
i (42)
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Figure 4: Visualization of a 2 dimensional Gaussian density. The major and minor axes of the ellipse are defined by the first two
eigenvectors of the covariance matrix, namely~u1 and~u2. Source: [Bis06] Figure 2.7.

Hence

(~x − ~µ)T Σ−1(~x − ~µ) = (~x − ~µ)T

(

p
∑

i=1

1

λi
~ui~u

T
i

)

(~x − ~µ) (43)

=

p
∑

i=1

1

λi
(~x − ~µ)T ~ui~u

T
i (~x − ~µ) (44)

=

p
∑

i=1

y2
i

λi
(45)

whereyi
def
= ~uT

i (~x− ~µ). They variables define a new coordinate system that is shifted (by~µ) and rotated (byU ) with
respect to the originalx coordinates:~y = U(~x − ~µ).

Recall that the equation for an ellipse in 2D is

y2
1

λ1
+

y2
2

λ2
= 1 (46)

Hence we see that the contours of equal probability density of a Gaussian lie along ellipses: see Figure 4 and Figure 5.
The Matlab code to plot the 2D Gaussian in Figure 5 is shown below. It uses some useful commands:meshgrid

to generate a 2D array of points,surfc to plot the surface, andcontour to plot the contours.

function plotGauss2dDemo()

mu = [1 0]’; % mean (must be row vector for mvnpdf)
S = [4 3; 3 4]; % covariance
figure(1); clf
plotSurf(mu, S, 1)

% Compute whitening transform:
[U,D] = eig(S); % U = eigenvectors, D= diagonal matrix of eigenvalues.
A = sqrt(inv(D)) * U’;
mu2 = A* mu;
S2 = A* S* A’;

plotSurf(mu2, S2, 3)

%%%%%%%%%%%

function plotSurf(mu, S, figndx)

[U,D] = eig(S); % U = eigenvectors, D= diagonal matrix of eigenvalues.
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Figure 5: Visualization of a 2 dimensional Gaussian density. This figure was produced byplotGauss2dDemo .

% Evaluate p(x) on a grid.
stepSize = 0.5;
[x,y] = meshgrid(-5:stepSize:5,-5:stepSize:5); % Create grid.
[r,c]=size(x);

% data(k,:) = [x(k) y(k)] for pixel k
data = [x(:) y(:)];
p = mvnpdf(data, mu’, S);
p = reshape(p, r, c);

% scale density so it sums to 1
p=p* stepSizeˆ2; % p2(x,y) defeq p(x: x+dx, y: y+ dy) approx p(x,y) dx dy
assert(approxeq(sum(p(:)), 1, 1e-1))

subplot(2,2,figndx)
surfc(x,y,p); % 3D plot
view(-10,50);
xlabel(’x’,’fontsize’,15);
ylabel(’y’,’fontsize’,15);
zlabel(’p(x,y)’,’fontsize’,15);

subplot(2,2,figndx+1)
contour(x,y,p); % Plot contours
axis(’square’);
xlabel(’x’,’fontsize’,15);
ylabel(’y’,’fontsize’,15);
% Plot first eigenvector
line([mu(1) mu(1)+sqrt(D(1,1)) * U(1,1)],[mu(2) mu(2)+sqrt(D(1,1)) * U(2,1)],’linewidth’,3)
% Plot second eigenvector
line([mu(1) mu(1)+sqrt(D(2,2)) * U(1,2)],[mu(2) mu(2)+sqrt(D(2,2)) * U(2,2)],’linewidth’,3)

A faster alternative to using thecontour command is to just to realise that ifX is a matrix of points on the circle,

thenY = UΛ
1
2 X is a matrix of points on the ellipse represented byΣ = UΛUT . Hence we can use the code below

to plot ellipsoids of constant density.
Using the fact that the Mahalanobis distance∆ = (x−µ)T Σ−1(x−µ) is a sum of squares ofp Gaussian random

variables, we have∆ ∼ χ2
p (see Section??). Hence we can find the value of∆ that corresponds to a 95% confidence

interval by usingdelta = chi2inv(0.95, 2) where the 2 is becausep = 2. If we plot the locus of points for
which∆ = δ, we will enclose 95% of the probability mass.

function h=plot2dgauss(mu, Sigma, color)
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% plot2dgauss, based on code by Mark Paskin
% function h=plot2dgauss(mu, Sigma, color)
% Plot an ellipse representing the covariance matrix of a Gau ssian

if size(Sigma) ˜= [2 2], error(’Sigma must be a 2 by 2 matrix’) ; end
%if length(mu) ˜= 2, error(’mu must be a 2 by 1 vector’); end
if nargin < 3, color = ’r’; end

mu = mu(:);
[U, D] = eig(Sigma);
n = 100;
t = linspace(0, 2 * pi, n);
xy = [cos(t); sin(t)];
%k = 1;
k = sqrt(conf2mahal(0.95, 2));
w = (k * U * sqrt(D)) * xy;
z = repmat(mu, [1 n]) + w;
h = plot(z(1, :), z(2, :), color);

%%%%%%%%%

function m = conf2mahal(c, d)
m = chi2inv(c, d);

2.5 Whitening

Any Gaussian random variable can be transformed so its covariance matrix is spherical. This is calledwhitening. Let
X ∼ N (µ, Σ) andΣ = UΛUT . Let

Y = Λ−1
2 UT X (47)

whereΛ−1
2 = diag(1/

√
Λii), Then

CovY = Λ−1
2 UT ΣUΛ−1

2 (48)

= Λ−1
2 UT UΛUT UΛ−1

2 (49)

= Λ−1
2 ΛΛ−1

2 (50)

= I (51)

using Cov[AY ] = ACov[Y ]AT andUUT = UT U = I. and

EY = Λ−1
2 UT E[X ] (52)

So

Y ∼ N (Λ− 1
2 UT µ, I) (53)

has a spherical covariance. See Figure 5 for an example.

2.6 Sampling from a multivariate Gaussian

It is often necessary to sample from a multivariate Gaussian, Y ∼ N (µ, Σ),. One way to do this is to use aCholesky
decomposition, Σ = LT L. Specifically, we first sampleX ∼ N (0, I) and then setY = LT X +µ. This is valid since

Cov[Y ] = LT Cov[X ]L = LT IL = Σ (54)

(If you have the Matlab statistics toolbox, you can just callmnvrnd , but it is useful to know this other method.) For
example, the code to generate the plot in Figure 6 is shown below.

% gaussSampleDemo.m
% sample data from a spherical, diagonal and full cov Gaussia n in 2D

figure(1); clf
N = 500;
z = 10;
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Figure 6: Samples from a spherical, diagonal and full covariance Gaussian, with 95% confidence ellipsoid superimposed. This
figure was generated usinggaussSampleDemo .

Sigma{1} = [1 0; 0 1];
Sigma{2} = [4 0; 0 1];
Sigma{3} = [4 3; 3 4];
mu = [0 0];

for i=1:3
%x = mvnrnd(mu, Sigma{i}, N);
L = chol(Sigma{i});
x = (L’ * randn(2, N))’ + repmat(mu, N, 1);
subplot(1,3,i)
plot(x(:,1), x(:,2), ’.’);
hold on
plot2dgauss(mu(:), Sigma{i}, ’r’);
axis([-z z -z z])
axis square

end

2.7 Parsimonious covariance matrices

A full covariance matrix hasp(p + 1)/2 parameters. Hence it may be hard to estimate from data. We canrestrict
Σ to be diagonal; this hasp parameters. Or we can use aspherical (isotropic) covariance,Σ = σ2I. See Figure 6
for a visualization of these different assumptions. We willconsider otherparsimonious representationsfor high
dimensional Gaussian distributions later in the book. The problem of estimating a structured covariance matrix is
calledcovariance selection.

2.8 Independence and correlation

RVs X, Y have a joint Gaussian distribution ifp(X, Y ) is multivariate Gaussian,(X, Y ) ∼ N (µ, Σ). In this case, if
X andY are uncorrelated, then they are independent, i.e.,

ΣX,Y = 0 ⇐⇒ X⊥Y (55)

To prove this, note that

p(X, Y ) = N
((

X
Y

)

|µ,

(

σ2
X 0
0 σ2

Y

))

= N (X, µX , σ2
X)N (Y, µY , σ2

Y ) = p(X)p(Y ) (56)

since the cross-product terms vanish when we multiply out the terms in the exponent. This is an exception to the
general rule established in Section??, which showed that uncorrelated does not mean independernt.

However, now supposeX andY are marginally Gaussian, butnot jointly Gaussian. In particular, letX ∼ N (0, 1)
andY = WX , wherep(W = −1) = p(W = 1) = 0.5. It is clear thatX andY are not independent, sinceY is a
function ofX . However, we can show (Exercise??) thatY ∼ N (0, 1) and Cov(X, Y ) = 0. So uncorrelated does not
mean independent even if the variables are Gaussian (only ifthey arejointly Gaussian).

2.9 Sparse precision matrices encode conditional independence

Zeros in the precision matrix correspond to conditional independences. More precisely, ifΛij = 0, whereΛ = Σ−1,
thenXi ⊥ Xj|Xrest. To prove this, leti = 1, j = 2, rest = 3 : p and let us computep(x1,2|xr). where block 1
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denote variablesi, j and block 2 denote the rest. Then using the Equations in Section 2.10, we have

p(x12|xr) = N (µ12|r, Σ12,12|r) (57)

Σ12,12|r = Λ−1
12,12 (58)

=

(

λ11 λ12

λ21 λ22

)−1

(59)

=
1

λ11λ22 − (λ2
12)

(

λ22 −λ21

−λ12 λ11

)

(60)

The correlation coefficient betweenX1 andX2 in this conditional distribution is called thepartial correlation coef-
ficient, and is given by

ρ12|r =
Σ12,12|r(1, 2)

√

Σ12,12|r(1, 1)Σ12,12|r(2, 2)
(61)

=
−λ12√
λ11λ22

(62)

So we see thatρ12|r = 0 ⇐⇒ λ12 = 0. And since uncorrelated implies independent (for jointly Gaussian variables),
we have shown that zeros in the precision matrix represent conditional independence.

Another way to see this is to expand out the canonical form

p(x) = exp[a + ηT x − 1
2xT Λx] = exp[a +

∑

j

ηjxj − 1
2

∑

i

∑

j

λijxixj ] (63)

and to notice that ifλij = 0, this factorizes into independent terms involvingi andj. By thefactorization theorem,
X ⊥ Y |Z iff the joint factorizes as follows

p(x, y, z) = f(x, z)g(y, z) (64)

for some functionsf, g.

2.10 Marginals and conditionals of a MVN

In Section??, we discussed how to compute marginals and conditionals from joint distributions, i.e., how to compute
p(x1) =

∑

x2
p(x1, x2) andp(x1|x2) = p(x1, x2)/p(x2). For discrete random variables, this is straightforward. But

for parametric distributions, one has to replace brute force summation with integration, which can require some messy
algebra. Below we derive the relevant results for Gaussians.

Supposex = (x1, x2) is jointly Gaussian with parameters

µ =

(

µ1

µ2

)

, Σ =

(

Σ11 Σ12

Σ21 Σ22

)

, Λ = Σ−1 =

(

Λ11 Λ12

Λ21 Λ22

)

, (65)

Below we will show that we can factorize the joint as

p(x1, x2) = p(x2)p(x1|x2) (66)

= N (x2|µ2, Σ22)N (x1|µ1|2, Σ1|2 (67)

where the marginal parameters forp(x2) are just gotten by extracting rows and columns forx2, and the conditional
parameters forp(x1|x2) are given by

µ1|2 = µ1 + Σ12Σ
−1
22 (x2 − µ2) (68)

Σ1|2 = Σ11 − Σ12Σ
−1
22 Σ21 (69)

Note that the new mean is a linear function ofx2, and the new covariance is independent ofx2. Note that both the
marginal and conditional distributions are themselves Gaussian: see Figure 7.

10



Figure 7: Marginalizing and conditionalizing a 2D Gaussian results in a 1D Gaussian. Source: Sam Roweis.

The equivalent results in canonical parameters are given below. Let

µ =

(

µ1

µ2

)

, Λ = Σ−1 =

(

Λ11 Λ12

Λ21 Λ22

)

, η = Λµ (70)

Then the marginal is given by

p(x2) = N (x2|ηm
2 , Λm

2 ) (71)

ηm
2 = η2 − Λ21Λ

−1
11 η1 (72)

Λm
2 = Λ22 − Λ21Λ

−1
11 Λ12 (73)

and the conditional is given by

p(x1|x2) = N (x1; η1|2, Λ1|2) (74)

η1|2 = η1 − Λ12x2 (75)

Λ1|2 = Λ11 (76)

Note that marginalization is easier in moment form, but conditioning is easier in canonical form.

2.11 Partitioned matrices

To derive the above results, it is helpful to know the following results for manipulating block structured matrices. (This
section is based on [Jor06, ch13].)

Consider a general partioned matrix

M =

(

E F
G H

)

(77)

where we assumeE andH are invertible. The goal is to derive an expression forM−1. If we could block diagonalize
M , it would be easier, since then the inverse would be a diagonal matrix of the inverse blocks. To zero out the top
right we can pre-multiply as follows

(

I −FH−1

0 I

)(

E F
G H

)

=

(

E − FH−1G 0
G H

)

(78)
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Similarly, to zero out the bottom right we can post-multiplyas follows
(

I −FH−1

0 I

)(

E F
G H

)(

I 0
−H−1G I

)

=

(

E − FH−1G 0
0 H

)

(79)

The top left corner is called theSchur complementof M wrt H , and is denotedM/H :

M/H = E − FH−1G (80)

If we rewrite the above as
XY Z = W (81)

whereY = M , we get the following expression for the determinant of a partitioned matrix:

|X ||Y ||Z| = |W | (82)

|M | = |M/H ||H | (83)

since|X | = |Z| = 1 and|W | = |M/H ||H |. Also, we can derive the inverse as follows

Z−1Y −1X−1 = W−1 (84)

Y −1 = ZW−1X (85)

hence
(

E F
G H

)−1

=

(

I 0
−H−1G I

)(

(M/H)−1 0
0 H−1

)(

I −FH−1

0 I

)

(86)

=

(

(M/H)−1 −(M/H)−1FH−1

−H−1G(M/H)−1 H−1 + G(M/H)−1FH−1

)

(87)

Alternatively, we could have decomposed the matrixM in terms ofE andM/E, yielding
(

E F
G H

)−1

=

(

E−1 + E−1F (M/E)−1GE−1 E−1F (M/E)−1

−(M/E)−1GE−1 (M/E)−1

)

(88)

Equating these two expression yields the following two formulae, the first of which is known as thematrix inversion
lemma (akaSherman-Morrison-Woodbury formula )

(E − FH−1G)−1 = E−1 + E−1F (H − GE−1F )−1GE−1 (89)

(E − FH−1G)−1FH−1 = E−1F (H − GE−1F )−1 (90)

In the special case thatH = −1, F = u a column vector,G = v′ a row vector, we get the following formula for a
rank one update of an inverse

(E + uv′)−1 = E−1 + E−1u(−I − v′E−1u)−1v′E−1 (91)

= E−1 − E−1uv′E−1

1 + v′E−1u
(92)

2.12 Marginals and conditionals of MVNs: derivation

Armed with knowledge of Schur complements etc, we can derivethe results in Section 2.10.
Let us factor the jointp(x1, x2) asp(x2)p(x1|x2) by applying Equation 86 to the matrix inverse in the exponent

term.

exp

{

−1

2

(

x1 − µ1

x2 − µ2

)T (
Σ11 Σ12

Σ21 Σ22

)−1(
x1 − µ1

x2 − µ2

)

}

(93)

= exp

{

− 1
2

(

x1 − µ1

x2 − µ2

)T (
I 0

−Σ−1
22 Σ21 I

)(

(Σ/Σ22)
−1 0

0 Σ−1
22

)(

I −Σ12Σ
−1
22

0 I

)(

x1 − µ1

x2 − µ2

)

}

(94)

= exp
{

− 1
2 (x1 − µ1 − Σ12Σ

−1
22 (x2 − µ2))

T (Σ/Σ22)
−1(x1 − µ1 − Σ12Σ

−1
22 (x2 − µ2))

}

(95)

× exp
{

− 1
2 (x2 − µ2)

T Σ−1
22 (x2 − µ2)

}

(96)
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This is of the form
exp(quadratic form inx1, x2) × exp(quadratic form inx2) (97)

Using Equation 83 we can also split up the normalization constants

(2π)(p+q)/2|Σ|
1
2 = (2π)(p+q)/2(|Σ/Σ22||Σ22|)

1
2 (98)

= (2π)p/2|Σ/Σ22|
1
2 (2π)q/2|Σ22|

1
2 (99)

Hence we have succesfully factorized the joint as

p(x1, x2) = p(x2)p(x1|x2) (100)

= N (x2|µ2, Σ22)N (x1|µ1|2, Σ1|2) (101)

where the parameters of the marginal and conditional distribution can be read off from the above equations, using

(Σ/Σ22)
−1 = Σ11 − Σ12Σ

−1
22 Σ21 (102)

2.13 Bayes rule for MVNs

Consider representing the joint distribution onX andY in linear Gaussianform:

p(x) = N (x|µ, Λ−1) (103)

p(y|x) = N (y|Ax + b, S−1) (104)

whereΛ andS are precision matrices. It can be shown (see e.g., [Bis06, p93]) that we can invert this model as follows

p(y) = N (y|Aµ + b, S−1 + AΛ−1AT ) (105)

p(x|y) = N (x|Σ[AT S(y − b)] + Λµ, Σ) (106)

Σ = (Λ + AT SA)−1 (107)

Consider the following 1D example, where we try to estimatex from a noisy observationy, where the noise level
is τ2. If the prior onx is Gaussian, and the likelihoodp(y|x) is Gaussian, then the posteriorp(x|y) is also Gaussian:

p(x) = N (x|µ, σ2) (108)

p(y|x) = N (y|x, τ2) (109)

p(y) = N (y|µ, σ2 + τ2) (110)

2.14 Maximum likelihood parameter estimation

GivenN iid datapoints~xi stored in rows ofX , the log-likelihood is

log p(X |µ, Σ) = −Np

2
log(2π) − N

2
log |Σ| − 1

2

N
∑

i=1

(~xi − µ)T Σ−1(~xi − µ) (111)

Below we drop the first term since it is a constant. Also, usingthe fact that

− log |Σ| = log |Σ−1| (112)

we can rewrite this as

log p(X |µ, Σ) = −Np

2
log(2π)

N

2
log |Λ| − 1

2

N
∑

i=1

(~xi − µ)T Λ(~xi − µ) (113)

whereΛ = Σ−1 is called theprecision matrix.
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2.15 Mean

Using the following results for taking derivatives wrt vectors (where~a is a vector andA is a matrix)

∂(~aT ~x)

∂~x
= ~a (114)

∂(~xT A~x)

∂x
= (A + AT )~x (115)

and using the substitution~yi = ~xi − µ, we have

∂

∂µ
(~xi − µ)T Σ−1(~xi − µ) =

∂

∂y

∂y

∂µ
~yT

i Σ−1~yi (116)

= −1(Σ−1 + Σ−T )~yi (117)

Hence

∂

∂µ
log p(X |µ, Σ) = −1

2

N
∑

i=1

−2Σ−1(~xi − µ) (118)

= Σ−1
N
∑

i=1

(~xi − µ) (119)

= 0 (120)

so

µML =
1

N

∑

i

~xi (121)

which is just the empirical mean.

2.16 Covariance

To computeΣML is a little harder We will need to take derivatives wrt a matrix of a quadratic form and a determinant.
We introduce the required algebra, since we will be using multivariate Gaussians a lot.

First, recall tr(A) =
∑

i Aii is the trace of a matrix (sum of the diagonal elements). This satisfies thecyclic
permutation property

tr(ABC) = tr(CAB) = tr(BCA) (122)

We can therefore derive thetrace trick , which reorders the scalar inner productxT Ax as follows

xT Ax = tr(xT Ax) = tr(xxT A) (123)

Hence the log-likelihood becomes

`(D|Σ, µ̂) =
N

2
log |Σ−1| − 1

2

∑

i

(xi − µ)T Σ−1(xi − µ) (124)

=
N

2
log |Σ−1| − 1

2

∑

i

tr[(xi − µ)(xi − µ)T Σ−1] (125)

=
N

2
log |Σ−1| − 1

2

∑

i

tr[SΣ−1] (126)

whereS is thescatter matrix

S
def
=
∑

i

(~xi − x)(~xi − x)T = (
∑

i

~xi~x
T
i ) − NxxT (127)
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We need to take derivatives of this expression wrtΣ−1. We use the following results

∂

∂A
tr(BA) = BT (128)

∂

∂A
log |A| = A−T (129)

Hence

∂`(D|Σ)

∂Σ−1
=

N

2
Σ − 1

2
S (130)

= 0 (131)

yields

ΣML =
1

N

N
∑

i=1

(~xi − µML)(~xi − µML)T =
1

N
S (132)

∑

i ~xi and
∑

i ~xi~x
T
i are calledsufficient statistics, because if we know these, we do not need the original raw dataX

in order to estimate the parameters. In matlab, just typeSigma = cov(X,1) .
We can write the MLEs in matrix form as follows (where~1 is a vector ofN × 1 ones)

µML =
1

N
XT~1 (133)

ΣML =
1

N
XT (I −~1~1T /N)X (134)

where(I − ~1~1T /N) is the centering matrix, since it removes the mean from any matrix of data it multiplies. If the
data is already centered, thenΣML = 1

N XT X .

To find a MLE for a diagonal covariance matrix, we just computeΣ̂ML as above and set the off-diagonal elements
to 0. (We leave the proof of this fact as an exercise.) To find the MLE for a spherical covariance matrix, we set
Σ = σ2I. Then the log-likelihood becomes

log p(X |Σ) = −N

2
p log(σ2) − 1

2

N
∑

i=1

(σ2)−1(~xi − ~µ)T (~xi − ~µ)T (135)

Hence

0 =
∂

∂σ2
log p(X |Σ) (136)

= −Np

2σ2
+ 1

2

N
∑

i=1

(σ2)−2(~xi − ~µ)T (~xi − ~µ)T (137)

σ2
ML =

1

Np

N
∑

i=1

(~xi − ~µ)T (~xi − ~µ) (138)

In the casep = 1, this reduces to the standard result

σ2
ML =

1

N

N
∑

i=1

(xi − µ)2 (139)

as required.
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