State estimation in discrete graphical models

Kevin P. Murphy
Last updated November 16, 2006

* Denotes advanced sections that may be omitted on a firsingad
1 Introduction
Graphical models define joint probability distributions
p(X1:p|G, 0) 1)

whereG is the graph structure (either directed or undirected dnpandd are the parameters. In Bayesian modeling,
we treat the parameters as random variables as well, buaitieay turn conditioned on fixeldyper parametersa:

p(X1:D79|G7 a) (2)

Clearly this can be represented as in Equation 1 by apptefyrieedefiningX andé. It will also be notationally
helpful to distinguish the hidden nodés from the observed nodés. Without loss of generality, we may assume
there is aY; node for everyX; node; we sometimes cal} thelocal evidencefor X;. If X; is not observed, thek;
can be set to something non informative.

There are many quantities of interest we may be interestedarring. Broadly speaking, they are as follows

1. State estimation inferringp(X|y, 0, G).
2. Parameter estimation (learning} inferring p(6|y, G).
3. Model selection (structure learning) inferringp(G|y).

In this chapter, we focus on the first problem. Furthermore r@strict our attention to the case where figare
discrete random variables. (The obserygd may be continuous, however.)
The techniques we describe work equally well for directedl amdirected models. A directed model

p(X1.p) Hp Xi|Xx,) ©)
can always be written as an undirected model
Xl D Z H w(' (' (4)

by settingZ = 1 and identifying the cliques of the undirected graph with fdoailies in the original DAG. We will
use examples of both kinds.

2 Kinds of probabilistic queries

There are several different flavors of state estimationchviie review below using the “water sprinkler” model in
Figure 2 as an example.

2.1 Marginals
Often we want to estimate one set of variables given infoiomain another set, e.g.,

P(s:1|w:1):% -
Y., P=lLw=1,R=rC=0)
Y. PS=sw=1R=rC=0 (6)
o ZP(C’ =¢)P(S=1|C=¢)P(R=r|C=c)P(W=1|S=s,R=r) (7)

In general, computing margingi$z;) for some set involvessum-product type computations

plr) = 5 3 [T el (8)

r—; C

2.2 MAP estimation
Alternatively, we can compute thmost probable explanation (MPE)of the evidence

(s,r,c)" = argmaxP(S=s,R=7C=clw=1) 9

s,r,c

= argmax P(C =c¢)P(S=1/C=¢)P(R=7r|C=c)P(W=1|S=s,R=r7) (10)

s,7,C

which is the most likely setting ddill the hidden variables given the evidence. This is also (somes) called the

maximum a posteriori (MAP) estimate. In general, To compute the MAP estimate, wemuesse product computa-
tions

eMAP — argmax H Ye(ze) (12)
xr
c
The case where we max out over all but one of the variablefisasihemax marginals

pvm(z;) = arg max H Ye(ze) (12)

2.3 Marginal MAP

Instead of computing the marginal probabiliti&gS|1V = 1) and P(R|W = 1), we may want to compute the
marginal MAP estimate of these nodes:

s = argmax P(S =s|W =1) (13)
= argmaXZP(S:s,R:r,C’:dW: 1) (14)
= argmaxZP(C:c)P(S:1|C:c)P(R:7"|C=c)P(W= 11S=s,R=r) (15)

r,C
and similarly forr*. In general, this results inmax-sum-productformulation:
MMAP
x; = argmax Z H Ye(ze) (16)
Tr—g c

The MPE is when we max over all the (hidden) variables and isaamer problem than the mixed max-sum-product
case.

" /

a N\
? G Cran)7 /‘

(@) (b) (©)

Figure 1: (a) observe W, query S. (b) observe W, query R. (c) Observe \Ramjuery S.

2.4 Sampling from the distribution
Sometimes we want to draw samples from the distributioheeithe prior

x ~ p(z) (17)

or the posterior
z ~ p(z|y) (18)

Sampling from the prior for a DGM is straightforward: we caeancestral samplingto sample from root to leaves in
topological order. Sampling from the prior for a UGM is hdbdcause the potentials are not probability distributions,
so we need to take into accourit Sampling from the posterior for both DGMs and UGMs is alsmhagain because

of the partition function. (For a DGM, the partition funati@f the posterior i®(y) = > p(x,y).) However, most

of the techniques that are used for computing marginals-{stwduct algorithm) can be generalized to draw samples,
so the computational complexity is similar.

2.5 Predictive vs diagnostic reasoning in DGMs

Because of the directed/causal semantics of Bayes netspissible to classify probabilsitic queries into several
kinds. One kind igpredictive reasoning we observe a cause and want to predict its effects. For eeamp may
want to know the probability the grass becomes wet if we saeiths cloudy: we just computg(w = 1|c = 1).
The most common kind idiagnostic reasoning we observe effects and want to estimate the cause. For égamp
we observe the grass is wet and want to know if it was causetidogprinkler or the rain. We can simply compare
P(S =1lw=1)vsP(R = 1|w = 1): see Figure 1.

Now suppose we observe that the grass isamelit is raining. Intuitively, the probability the sprinkles bn should
be less than if we just observed the grass is wet, since théasexplained awaythe evidence that the grass is wet.
In other words, we expect

PS=1llw=1,r=1)<P(S=1w=1) (19)

This is indeed the case, as we show numerically below. Nate gpriori,S and R are independent (givei), but
once we condition ofl/, they become dependent, because they compete to explamitiemnce.

2.6 Computing the partition function

Since MRFs are undirected, there is no notion of predicts/@iggnostic reasoning, and no explaining away effect. It's
simply inferring one variable given evidence on anothere @sk that is unique to MRFs is computing the partition
function. (For DGMs,Z = 1.) Not all inference algorithms are capable of computihg (For example it is not
automatically computed by Gibbs sampling, although thezensrk arounds [Chi95].)

Being able to comput& is useful for model selection and for some gradient-baseahpeter learning algorithms,
which need to evaluate the objective function (likelihoits@lf. Other learning algorithms just require derivasived
Z, which turn out to be marginal probabilities.

P(C=F) P(C=T)

0.5 0.5
05 05 / F | 08 0.2

F . .
T 0.9 0.1
T 0.2 0.8

S R| P(W=F) P(W=T)
FF| 10 00

TF| 01 0.9
FT| 01 0.9
T T| 001 0.99

Figure 2: Water sprinkler Bayes net with CPDs shown.

3 Brute force enumeration (naive inference)

If all the nodes are discrete, we can represent this joini@tty by multiplying all the potentials together elemevrise
(taking care to match dimensions) and representing thét @sak x --- x K = K table, where there a® nodes
each withK states. Call thi¥'(z1,...,xp). The partition function is jusZ = >_ T(z1.p), and the joint is
p(z1.p0) = T(z1.0)/Z.

Of course, constructing the joint explicitly tak€ /) time and space, which defeats one of the main advantages
of using graphical models. (The other advantage — namelywieaneed many fewer tha@ (K) parameters to
define the model — is not affected by how we represent the.)diater we will discuss more efficient techniques for
inference that exploit the graph structure.

3.1 DGM example

If all the CPDs are tables, as in Figure 2, we can multiply ttedtogether to build the joint as a multidimensional
array, as in the code below.

T1:D

% Wat er sprinkler Bayes net
% C

% |\

%v Vv

%S R

% \/

% v

% W

C=1 S=2;, R=3;, W= 4
false = 1; true = 2;

% Specify the conditional probability tables as cell arrays
% The left-nost index toggles fastest, so entries are stored in this order:
o (i, 4,), (21,1, (1L,2,4), (22 1), &ic:

CPD{C} = reshape([0.5 0.5], 2, 1);

CPD{R} = reshape([0.8 0.2 0.2 0.8], 2, 2);

CPD{S} = reshape([0.5 0.9 0.5 0.1], 2, 2);

CPD{W = reshape([1 0.1 0.1 0.01 0 0.9 0.9 0.99], 2, 2, 2);

% nai ve net hod
joint = zeros(2,2,2,2);
for c=1:2
for r=1:2
for s=1:2
for w=1:2
joint(c,s,r,w) = CPD{C}(c) » CPD{S}(c,s) » CPD{R}(c,r) * CPD{W(s,r,w);
end
end
end
end

% vectori zed net hod

joint2 = repnat (reshape(CPD{C}, [2 11 1]), [1222]) .*
repmat (reshape(CPD{S}, [2 2 1 1]), [1 12 2]) .~
repmat (reshape(CPD{R}, [2 1 2 1]), [1 2 1 2]) .=
repmat (reshape(CPD{W, [1 2 2 2]), [2 11 1]);

assert (approxeq(joint, joint2));

pSandW = sunv(joint(:,true,:,true), [CR]); %0.2781
pW = sumv(joint(:,:,:,true), [CSR); %0.6471
pSgi venW = pSandW/ pW % 0. 4298

pRandW = sunmv(joint(:,:,true,true), [C S]); % 0. 4581
pRgi venW = pRandW/ pW % 0. 7079

% P(R=t | Wet) > P(S=t|Wtt), so
% Rain nore likely to cause the wet grass than the sprinkler

pSandRandW = sunv(joint(:,true,true,true), [C); %0.0891
pSgi venV\R = pSandRandW/ pRandW % 0. 1945

% P(S=t| Wit , R=t) << P(S=t|Wt)

% Sprinkler is less likely to be on if we know that

%it is raining, since the rain can "explain away" the fact
%that the grass is wet.

Having computed the joint, we can answer any probabilisierg we want. For example, we can compute

p(S=2,W=2)
o |) p(W = 2) (20)
Ec,rp(CzC7R:T,S:2,W:2) 2
- 2677,7SP(CZC,R:’I‘,S:S,W:Q) ()
0.2781
0.Ga71 04298 (22)
(where 2 denotes true and 1 denotes false).
Similarly, we can compute
p(R=2,W =2)
p(|) p(W = 2) ()
0.4581
= o6 0707 (24)

Since0.7079 = P(R = t|W =1t) > P(S = t|W = t) = 0.4298, rain is more likely the cause of the wet grass than

the sprinkler. Finally, we can illustrate explaining awaydhowingP(S = t|IW = t,R = t) = 0.1945 <« P(S =
tW = t) = 0.4298.

Figure 3: A simple MRF

3.2 UGM example

Now consider the MRF in Figure 3. All nodes are binary (havees 1 or 2). The model defines the following joint
distribution

p(X14) = %?/1123(X17X2,X3)¢24(X27X4) (25)

where the potentials are defined as follows

X1 Xo X3 | Upa
1 1 1 1
2 1 1 2
1 2 1 3
2 2 1 4
1 1 2 5
2 1 2 6
1 2 2 7
2 2 2 8
Xy Xy | Uy
1 1 0.5
2 1 1
1 2 1.5
2 2 2

Hence the unnormalized joint (z1.4) and the normalized joinp(z1.4) = p'(x1.4)/Z is given below, where
Z = 94.

Figure 4: The “flattened” joint distribution encoded by the MRF in Figi8. This represents a distribution o2 & 2 x 2 x 2 table.

5x1.5=75 0.0798
6x1.5=9 0.0957
Tx2=14 0.1489
8x2=16 0.1702

The corresponding joint distribution is shown in Figure 4.

We could write code to multiply these tables together, batmid the need for all theepnat 's andr eshape’s,
I have developed some Matlab code that automates these dfimdéculations. The classabul ar Pot represents
discrete potentials, and is basically an array in which efictension has a 'tag’ associated with it, representing the
'domain’ of the array, so that when we multiply two poterditdgether, the corresponding dimensions can be lined up.
The class has a constructor and various methods, whichlastrdited below. We omit the implementation of these
functions since they involve a lot of uninteresting bookgieg. (See [HD96] for some of the details.) However, we
illustrate how to use them below by constructing the joind @sdimensional table.

X1 Xo Xz Xy | p/(Xi4) p(X1.4)
1 1 1 1 1x0.5=0.5 0.0053
2 1 1 1 2x05=1 0.0106
1 2 1 1 3x1=3 0.0319
2 2 1 1 4x1=4 0.0426
1 1 2 1 5x0.5=25 0.0266
2 1 2 1 6x05=3 0.0319
1 2 2 1 TX1=7 0.0745
2 2 3 1 8x1=28 0.0851
1 1 1 2 1x1.5=15 0.0160
2 1 1 2 2x15=3 0.0319
1 2 1 2 3X2=6 0.0638
2 2 1 2 4x2=8 0.0851
1 1 2 2

2 1 2 2

1 2 2 2

2 2 2 2

% nr f Joi nt Deno. m

%

% Constructor is pot = tabul arPot (donain, sizes, T)
% domain = variables in the potential

% si zes = nunber of states for each variable

% T = table of nunbers

fl1 =tabularPot([1 2 3], [22 2], [1:8]);

f2 = tabularPot([2 4], [2 2], [0.51 1.5 2]);

% Combi ne potential s

J = tabularPot(1:4, [2 2 2 2]);
J mul tiplyByPot (f, f1);

J mul tiplyByPot (f, f2);

% O nore directly
J = multiplyPots(fl, f2)

% Convert object to array
unnor mal i zedJoint = J.T(:)’

% Nor mal i ze the array
[joint, Z] = nornalize(unnornalizedJoint) % Z=94
bar (j oi nt)

% al ternative nmethod of conputing Z
m = marginalizePot(f, []);
Z=mT, %mT = 58

Given the joint, we can easily find the MAP assignments

2z € argmax p(x) (26)

We can also draw samples from the joint by treating it as agisim with X ” bins. Finally, we can compute any
marginal or conditional we want. For example, the code belomputes

Emg,mg p(x124)

D er aa,zs P(T1:4) (27)

p(x1|zs) =

% nr f Joi nt Denp2
% run nrfJointDeno first!

% find the MAP state
[junk, xMAP] = max(joint) % 16
xMAPbi t s = ind2subv(2*ones(1,4), xXMAP) % 2,2,2,2

% sanpl e fromthe distribution (with replacenent)
S = 1000;

K = length(joint);

%sanpl es = randsanpl e(1: K, S, true, joint)

sanpl es = sanple_discrete(joint, 1, S);

h = hi st (sanpl es, 1: K);

bar (nornal i ze(h))

% conput e condl4(x4, x1) = p(x1|x4)

J14 = marginalizePot(J, [1 4]);

condl4 = nk_stochastic(J14.T'); %satisfies sumx1l condl4(x4,x1) = 1
sun{cond14, 2) % col urm of 1s

4 Variable elimination

The variable elimination algorithm uses the principle ¢hon-serial) dynamic programming and can be much
more efficient than the naive approach of brute force enutio@raDynamic programming is applicable whenever
the optimal solution to a problem can be divided into piebas tan be solved separately and then reused. A classic
example isDijkstra’s shortest path algorithm. Later we will see thdorwards backwards algorithm, which is
closely related.

Consider the example model in Figure 5. This can either erpnéted as a directed graphical model (i.e., a
Bayesian network)

PC,D,1,G,S,L,J,H) = P(C)P(D|C)P(I)P(G|I,D)P(S|I)P(L|G)P(J|L,S)P(H|G,J) (28)
or as an undirected graphical model (i.e., as an MRF)
P(C7D717G7‘S’7L7']7H) = wC(C)17/}D(D7C)¢I(I)¢G(G7I7D)U}S(S?I)U}L(L;G)wJ(J;L;S)¢H(H7G7@9)

where the potentials (factors) ate-(C) = p(C), vp(D,C) = p(D|C), etc. (Since all the potentials are locally
normalied (sum to one), we find = 1. This is always the case when we convert from a Bayes net toRiR M

Coherence

Coherence

Intelligence

Figure 5: Left: The student Bayes net. Right: the equivalent Markawoek. \We add moralization arcs D-I, G-J and L-S. Note
that this graph is not triangulated. Source: [KF06].

Suppose we want to compui¥.J), the marginal probability that a person will get a job. Thg kdea of variable
elimination is topush sum inside productswhich is valid because of thdistributive law of sums and products.

P(7) = > 33333 > P(C,D,IG,S,L,J H) (30)
D C

L S G H 1

ZZZZZZZwC(C)U}D(DvC)U}I(I)?/}G(Gv IvD)U}S(Sv 1)1/}L(La G)w.](JaLa S)Q/}H(H7 G(‘?ﬂ))
D C

L S G H 1

SN (LS n(L,G)Y $u(H G, J) > ws(S, Dvr(1) Y (G, 1,D) Y 1o (C)ibp(D(E2)
L S G H I D C

Now we work right to left (this is callegeeling), as shown in Figure 6. At stepwe create an intermediate factor
7; which gets combined with the original factors. We can thifkach)_ term as @ucket containing all the factors
immediately to its right (in its immediate lexical scopdjeh ther; factors act asnessageshat are sent from bucket
to bucket. Hence the variable eliminatio algorithm is alatbezl bucket elimination.

We explain these steps in more detail below.

e We first multiply together all factors that menti6hto createy; (C, D), and store the result i6’s bucket:

P(J) = V(S L,S)) ¥o(L,G)) vu(H,G,J) Y vs(S,Dvi(l)) G, 1,D)) ve(C)p(D,C)
(40)

e Then we sum ouf’ to maker; (D):

P =301 LSS Wi(L,G)Y bu(H,G,J) > vs(S, Dwr(I)Y G, 1,D) Y 41 (C, D)
L S G H I D C
Tl(D)

(41)

P() = DD %s(LL,S) Y (L, G) Y wu(H,G,J) Y $s(S, Dr(I) Y G, 1,D) Y ve(C)en(D,C) (33)
L S G H I D C
71 (D)
= > > %L LS YL, G)ZwH(H G, J)Zws(s Dy (1 Zw(e 1,D)r(D) (34)
L S G
T2 (G,T)
= >3 UL L)Y WL(L,G) D> ¢u(H,G,)Y ws(S, Dpr(I)72(G, T) (35)
L S G H I
3(G,S)
= > D> s LS) Y $r(L,G) Y vu(H,G,J)73(G,S) (36)
L S G H
T4(G,J)
= D D s L,S) Y wn(L, G)ra(G, J)m3(G, S) (37)
L S G
75(J,L,S)
= > > %L S, L,S) (38)
L S
76 (J,L)
= > w(LL) (39)
N
77(J)

Figure 6: Eliminating variables from Figure 5 in the ord€t D, I, H, G, S, L.

and multiply intoD’s bucket to make), (G, I, D):

J) = Yy(J, L, S) Y (L, Q) vy (H,G,J) s(S, Dy (I UG, 1,D)r (D) (42)
ST Tl O T i 0. E s 10 L1 D00

$2(G,1,D)
e Then we sum oub to makery (G, I):

=Y (L)Y (L, G) Y du(H, G,)Y $s(S,Der(I) Y (G, 1,D) (43)
L S G H

I D

TQ(G,I)

and multiply into/’s bucket to make)s (G, S, I), etc.
e And so on.

4.1 Dealing with evidence

So far we have computed the unconditional distribufit{ty). To compute conditional distributions, we take the ratios

of unconditionals e.g.

P(J,I=1,H=0)
P(I=1,H=0)

whereP(I = 1,H = 0) = >, P(J = j,I = 1,H = 0) is the normalizing constant. The numerator is gotten by
running VE where we have evidence on nodesyd H. There are two methods.

In the first method, we instantiate observed variables tio tiserved values, by taking the appropriate “slices” of
the factors (only works for discrete observations):

P(JI=1,H=0)= (44)

10

P = D 3 wnD,O)3 3> wu (L L, 8) Y wr(Dys (S,)Y e (G, I, D)L (L,)$u (H,G, J) (49)
D C H L S I

G

71(I,D,L,J,H)

= > > w0, DD s L,S) D i(Dps (S,)i(I, D, L, J, H) (50)
D C H L S I
79(D,L,S,J,H)
= > > vpD,0)> D> ¢s(J, L, S)r2(D, L, S, J, H) (51)
D C H L S
73(D,L,J,H)
= > > 4pD,0)> > 73(D,L,J H) (52)
D C H L
T4(D,J,H)
= > > ¢p(D,0)Y m(D,J, H) (53)
D C H
75(D,J)
= > Y ¥p(D,C)rs(D,J) (54)
D C
T6(D,J)
= D (D, J) (55)
g
T7(J)

Figure 7: Eliminating variables from Figure 5in the ordér I, S, L, H,C, D.

P(J,I=1,H=0)= (45)
SN Wi (LL,S)Y wn(L,G)u(H = 0,G, J)ws(S, Do (I Zwa I=1,D)>"tc(C)p(D(4B)
L S G C
In the second method, we multiply in local evidence factg(sY;) for each node.
P(J,I=1H=0)= (47)
ZszJLSZ¢LLszHHGJ¢H Zwsswz Zw<G1D ch)¥p (D(48)

If X, is observed to have valug, we sety,;(X;) = I(X; = z}). If y; is a noisy observaton of;;, we setp, (X;) =
p(y:|X;) (sometimes calledoft evidenceor virtual evidence).

4.2 Computational complexity

The time to answer any query is exponential in the size (numbirms) in the largest factor (table) that is encoun-
tered. The factors come from the original model, but newciacare created in the process of summing out. The order
in which we perform the summation (tdimination order) can have a large impact on the size of the intermediate
factors. For example, consider the ordering in Figure 6idhgest factor is5(J, L, S). Now consider the ordering in
Figure 7: now the largest facter (I, D, L, J, H) or »(D, L, S, J, H).

We can determine the size of the largest factor graphicaityyout worrying about the actual numerical values
of the factors. When we eliminate a variablg, we connect it to all variables that share a factor with(to reflect
new factorr;). Such edges are calldill-in edges For example, Figure 8 shows the fill-in edges introducedrwhe
we eliminate in the ordef’, D, I, The first two steps do not introduce any fill-ins, but when \iieate 7, we

11

Coherence

7 Coherence

/(_Coherence D |
ii i
/ i P
i <SIT
’\.\‘

—

Figure 9: Maximal cliques. Source [KFO06].

connect andsS, since they co-occur in facteg (G, S):
73(G,8) =Y s(S, Dpr ()2 (G, 1) (56)
I

Let I - be the (undirected) graph induced by applying variable iaktion toG using ordering<. The factors
generated by VE corresponddbiquesin I ~ and vice versa. For example, with orderif@ D, I, H, G, S, L), the
maximal cliques shown in Figure 9, are

{C,D},{D,1,G},{G,L,S,J},{G,J,H} {G,I,S} (57)

Let us define thenduced width of a graph given elimination ordering, denotell; , as the size of the largest
factor (induced clique) minus 1. Then it is easy to show

Theorem 1 The complexity of VarElim with ordering is O(DK"We.<+1), where we assume ald nodes haves
possible states each.

12

Note that if the graph is chordal (triangulated), then Ja@daelimination not introduce any extra fill-in egdes, and
WG7_< - WG
We define theree width of a graph as the minimal induced width:

We = m<in max |1;| — 1 (58)

What is the order that produces this minimal tree width? ofately, one can show
Theorem 2 Finding an elimination ordering< which minimizes$V_ is NP-hard.

A standard approach to finding is greedy search. Thain-fill heuristic says: choose as the next node to eliminate
the one that introduces the least number of fill-in edgesatbing ties randomly). Thenin-weight heuristic says:
choose as the next node to eliminate the one that introdbedadtor of smallest weight, where the weight of a factor
is the size of its state space (product of the cardinalitiedl @ariables within it).

5 Belief propagation *

If the graph is a tree or a chain (so there are no undirectddsyone can use@namic programming algorithm
calledbelief propagation (BP)to perform exact inference. For a chain in which all (hiddeodles are discrete, BP
inference take® (D K?) time, whereD is the number of nodes arid is the number of states. This algorithm is also
called theforwards backwards algorithm. (The max-product version is called th@erbi algorithm .) For a chain
in which all nodes are Gaussian, inference také® (2K)?) time, where all (vector valued) nodes have size(The
cubic terms arises because we have to invert matrices oRéize 2/K.) This algorithm is also called th€alman
filter/ RTS smoother algorithm (RTS = Rauch Tung Streibel). We will discuss thalg@rithms later.

If the graph is not a tree (so it has loops), but all nodes @& éiie or Gaussian, one can still run the BP algorithm;
this is calledloopy belief propagation Although it often works well, it is not guaranteed to workdge it may
oscillate); see [YFWOL1] for details.

6 Junction tree algorithm *

If the graph is decomposable, then it is possible to conterta ajunction tree (jtree), also called goin tree, whose
nodes correspond to cliques in the triangulated graphl ifaaes are discrete or Gaussian, one can then perform BP
on the jtree. (Some modifications are required to handleabethat the variables in the tree correspond to sets of
variables in the original model.) If all hidden nodes aredige, then the jtree algorithm take@$D K1) time, where
w is the treewidth of the graph. If all hidden nodes are Gaussieen the jtree algorithm také3(D (K (w + 1))?)
time. See [CDLS99, Jor06, KF06] for details.

If the graph is not decomposable, it can always be made sddmgtrlating it, but the resulting treewidilhhmay be
so large that inference becomes intractable. For exangle,1f00 x 100 grid, we havew = 100, so inference takes
0O(21%) time for binary nodes. In cases where the treewidth is togelabne must resort to approximate inference
techniques. The other situation in which approximate #rfiee is necessary is when not all the nodes are discrete or
Gaussian (e.g., in hierarchical Bayesian models). We dgssame approximation methods below.

7 Gibbs sampling

One general purpose technique for sampling from distidmsti(discrete or continuous or mixed) which are hard to
normalize is MCMC. (MRFs can be hard to normalize since campw takesO (K™) time, wherew is the treewidth
of the graph. DGMs are hard to normalize when there is eviglesiace computing(y) = > p(z,y) also takes
O(K™) time.) Although one can use Metropolis Hastings, it is ususimpler and more efficient to use Gibbs
sampling. Gibbs sampling for graphical models is partidylaimple because the full conditiongl$z;|z_;) only
depend on the state of the nodeg'®Markov blanket, where: _; are all the other nodes except

Gibbs sampling can be applied to DGMs or UGMs. For simpljaitg consider a pairwise MRF. Lé{; be the

13

O-0-0-0-0

Figure 10: The Markov blanket of the central dark node in a 2D grid MRFigr@earest neighbors (shaded).

neighbors (Markov blanket) of nodeandF; = NV;U{i} be the family of nodé (node and its neighbors). Then

pX= o) = LR (59
_ WD en, ¥i(Xs = £ o) cjus jngr Yir (25, 2x)] (60)

(1/2) Yoo en, ¥is(Xs = O, x)] T < ks g kgr Yin(@s,)]
_ e ¥i(Xs = £,35) (61)

2o jen, i (Xi =0, z5)

The notation _,,.. ; .« Means a product over all edges- k where neithey nork is in F;. See Figure 10.
In the special case of an Ising model, wheie:;, z;) = e/®i%4, this simplifies to
jen, Vig(Xi = +1,2;
p(Xi=+1z_;) = e ¥ J) (62)
[lien, ¥i(Xi = +1,25) + [Lien, i (Xi = =1, 25)

expld X jen, 24

- 63
explJ Y icn, Tj] +exp[—J 37 e v, 7] (63)

_ exp[Jw;]

— explJw;] + exp|[—Jw;] (64)

wherew; = 3.y, z; ando(u) = 1/(1 +e~*) is the sigmoid function.
When we combine an Ising prior with a local evidence term ifahé image denoising example), the full condi-
tional becomes

expl[Jw;]¢; (+1,y:)

P(Xi = +llz—iy) exp[Jwi]i(+1, 9:) + exp[—Jwi]di (1, ys)

(66)

For the case of a Gaussian observation maglék;;, v;) = N (y:|zi, o).

Thus implementing Gibbs sampling on a 2D lattice is paréidyleasy: the code below is all that is needed to
produce the image denoising example in Fige®e (Note that a pixel at locatiof, j) in a D x D grid corresponds
to a linear index of + (D — 1) x j.)

% gi bbsDenoDenoi si ng
% Denoi sing of letter A using G bbs sanpling

% w th an Ising Prior and a Gaussian |ikelihood
% Based on code originally witten by Brani Vidakovic

seed = 3;

randn(’ state’, seed)

rand (’'state’, seed)

sigma = 2; %noise |evel

% input matrix consisting of letter A. The body of letter

%A is made of 1's while the background is made of -1's.
ing = inread(’lettera.bnp’);

14

[MN = size(ing);

ing = doubl e(ing);

m = nmean(ing(:));

im2 = +1x(inmg>m + -1x(ing<m; % -1 or +1

y = ing2 + sigmarrandn(size(ing2)); % = noise signal

% observati on nodel
offState = 1; onState = 2;
mus = zeros(1,2);
mus(of fState) = -1; nus(onState) = +1;
sigmas = [sigma signa];
Npi xel s = MN,
| ocal Evi dence = zeros(Npi xels, 2);
for k=1:2
| ocal Evi dence(:, k) = normpdf(y(:), mus(k), sigmas(k));
end

[junk, guess] = nmax(local Evidence, [], 2); %start with best l|ocal guess
X = ones(M N);

X(find(guess==of f State)) = -1;

X(find(guess==onState)) = +1;

Xinit =X

doPrint = 0;

figure;

i mgesc(y); colormap gray; axis square; axis off
title(sprintf(’sigma=%.1f’, signm))

fname = sprintf(’figures/gi bbsDenoDenoi si ngOri gS¥2. 1f. eps’, signa);
if doPrint, print(gcf, ’'-depsc’, fname); end

figure;

imagesc(Xinit);colormap gray; axis square; axis off

title("initial guess’)

fname = sprintf(’figures/gi bbsDenoDenoi singlnitSW2. 1f . eps’, sigm);
if doPrint, print(gcf, ’'-depsc’, fname); end

fig = figure; clf

pause
J =1,

avgX = zeros(M N);
X = Xinit;

maxlter = 100000;
for iter =1:maxlter
% sel ect a pixel at random
ix =ceil(Nx rand(1)); iy = ceil(Mx rand(1));
pos =iy + M(ix-1);
nei ghbor hood = pos + [-1,1,-MM;
nei ghbor hood(find([iy==1,iy==Mix==1,ix==N])) = [];
% conmput e | ocal conditional
wi = sum(X(nei ghborhood));
pl exp(J*wi) = |ocal Evi dence(pos, onState);
p0o exp(-J*wi) =* |ocal Evidence(pos, offState);
prob = pl/(pO+pl);
if rand < prob

X(pos) = +1;

el se
X(pos) = -1;

end

avgX = avgXtX;

% plotting

if ren(iter,10000) == O,
figure(fig);

imagesc(X); axis(’'square’); colormap gray; axis off;
title(sprintf('sanple %', iter));
dr awnow

end

if doPrint %iter==10000 | iter==50000 | iter==100000
figure;
i mgesc(X); colormap gray; axis square; axis off
title(sprintf('sanple %', iter))

fname = sprintf(’figures/gi bbsDenoDenoi singlter%lJ93. 2f S%2. 1f . eps’, iter,
print(gcf, ’'-depsc’, fnane);
end
end

15

J

si gma) ;

Aggrwr {/!/C

Stockashic }Emw sl
(/‘fdnl't,drrld) >

Loplace
fe rf-ecl— l \
Camp l”'_j % Jff.:“" L T‘?f\n)

Parkicte
/"l(b”(ék; F\‘“‘Gﬁq_’

d?}].}'("l’w"
FEETL, X~]

Cills SmAmet onlle,
s
Mip kLCG?{/P) ru KL(PY &)

o

[Cr mem l/ar
{m }_ s piew Bayer t’oejﬂf A0 R

Sth,§) Asgnned

o /) = y nr lwedy e
[TACLE ack") da(e,h)J 2 en g
é-"—"se] tc‘{) Tk} [] Qo) T &{L!)I .'rJu_"I'I{ [) = Iree
‘ : Propespbion

£ 9 D Her

Figure 11: A taxonomy of different methods for approximate inferen®ds the true distribution() is an approximate distribution,
KL(P||Q) is the KL-divergence from truth to approximation, aRd.(Q||P) is the KL-divergence from approximation to truth.
EM = expectation maximization. ICM = iterative conditiomabdes. VarBayes = variational Bayes. EP = expectation gedjn.
BP = belief propagation. ADF = assumed density filtering. BRayen-Koller algorithm.

figure;

i mgesc(avgX); col ormap gray; axis square; axis off

title(sprintf(’ posterior nean after %l sanples’, iter))

fname = sprintf(’figures/gi bbsDenoDenoi si ngMean%aJ¥8. 2f S¥2. 1f . eps’, iter, J, sigm);
if doPrint, print(gcf, ’'-depsc’, fname); end

8 Approximate inference *

We saw above that exact inference using the variable eltiimalgorithm take®) (K™) time, whereK is the number
of discrete states per node amds the treewidth of the graph. Is there a better algorithrhdioas not take exponential
time? In general, no, because of the following theorem.

Theorem 3 Exact inference in discrete graphical models is NP-hard.

Proof (sketch): Just show that 3-SAT is equivalent to inference in a deteistirBayes net.

16

A large variety of approximate inference algorithms haverb@eveloped and this is a very active research area. A
few methods have formal guarantees on solution qualityit most are just heuristics whose quality is hard to assess
We list a few examples below and provide a bigger picture guFe 11.

8.1 Loopy belief propagation

As mentioned above, one can always run BP on a graph evena§ildops. However, it may not always work well,
or even converge. LBP is an examplevafiational inference. Themean fieldis another example. See [YFWO01] for
a discussion.

8.2 Graph cuts

In general, itis NP-hard to compute the minimal energy (rposbable) state in an Ising model, but it can be solved ex-
actly in polynomial time in the ferromagnetic case, i.eJ;if > 0, using linear programming @rapchuts [BVZ01].

For the multi-state case (Potts models/ associative Manktworks), one can get good approximate answers using
similar techniques.

8.3 MCMC

What if we want to draw samples instead of computing the MAsest This is strictly harder than finding the MAP
state, e.g., it is #P-hard, even in the ferromagnetic ca$e réason is that it is eounting problem: to compute
probabilities (or samples), we have to kndv= > _p'(z,y), which requires summing over atl Whereas finding
the MAP state just means a single best stateDespite the #P-hardness, we can use MCMC to get apppraximat
answers.

References

[BVZ01] Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast apgdmate energy minimization via graph cutSEE
Trans. on Pattern Analysis and Machine Intelligey2z&(11), 2001.
[CDLS99] R. G. Cowell, A. P. Dawid, S. L. Lauritzen, and D. pi&yelhalter. Probabilistic Networks and Expert
SystemsSpringer, 1999.
[Chi95] S. Chib. Marginal likelihood from the Gibbs output.of the Am. Stat. Asse®0:1313-1321, 1995.
[DL93] P. Dagum and M. Luby. Approximating probabilistidémence in Bayesian belief networks is NP-hard.
Artificial Intelligence 60:141-153, 1993.
[HD96] C. Huang and A. Darwiche. Inference in belief netwsar procedural guidelntl. J. Approx. Reasoning
15(3):225-263, 1996.
[Jor06] M. 1. JordanAn Introduction to Probabilistic Graphical Model2006. In preparation.
[KFO6] D. Koller and N. FriedmanBayesian networks and beyar2D06. To appeatr.
[YFWO1] J. Yedidia, W. T. Freeman, and Y. Weiss. Understagdielief propagation and its generalizationslnith.
Joint Conf. on Al2001.

10ne can also show it is NP-hard to approximate inference tliwany fixed constant, either additive or multiplicati2Lp3]. So any formal
guarantees must come with additional assumptions.

17

