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The General GMM assumption

e P(Y): There are k components

e P(X]|Y): Each component generates data from a multivariate
Gaussian with mean p;and covariance matrix 2

Each data point is sampled from a generative process:

1. Choose component i with probability P(y=i)

2. Generate datapoint ¥~ N(m,, %))

Gaussian mixture model
(GMM)

~—

o Ui

i

U,




Multivariate Gaussians
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> = arbitrary (semidefinite) matrix:
- specifies rotation (change of basis)
- eigenvalues specify relative elongation
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Mixtures of Gaussians
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E.M. for General GMMS [, 4. oo

. . . estimate of P(y=k) on
Iterate: On the t'th iteration let our estimates be t'th iteration

A= {0, 0 o 0, 200 200 30 p ) p 0 pl0))

E-step
Compute “expected” classes of all datapoints for each class

(1) (1) (1
P(Yj = k‘xj,)»t) x p, p(xj‘/,tk 2 ‘%Z Just evaluate a
Gaussian at X;

M-step

Compute weighted MLE for p given expected classes above

EP(YJ. = k‘xj,)ut)xj EP(Y]. = k‘xj,)ut) [xj - uk(”l):[xj - /,Lk(”l)]T
(1+1) J ) J

T Sy, = kx,.2,) % Sy, = kx,.
J J

EP(YJ. = k‘xj,)»t)

(r+1) _ j

Pk m/

m = #training examples







After first iteration




After 2nd iteration




After 3rd iteration




After 4th iteration




After 5th iteration




After 6th iteration
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After 20th iteration




What if we do hard assignments?

Iterate: On the t'th iteration let our estimates be
}\'t = {’ul(t)’ 'uz(t) “K(t)}
E-step

Compute “expected” classes of all datapoints

1 2
P(Y]. = k‘xj,/,tl.../,LK) x exp(—2(72 ij — MkH )P <& k)

M-step

o represents hard

Compute most likely new ps given class expectations assignment to “most
likely” or nearest

cluster

6(YJ. =k,xj)xj
We = =

215(Yj =k,xj)

i

Equivalent to k-means clustering algorithm!!!
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—  Lets look at the
math behind the
magic!
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The general learning problem with
missing data
* Marginal likelihood: X is observed,

Z (e.g. the class labels Y) is missing:

¢(0:D) = log ﬁ P(x; | 0)
j=1

m

> log P(x; | 6)
j=1

m

Z IogZP(Xj,z | 0)
=1 z

* Objective: Find argmaxg |(8:Data)



A Key Computation: E-step

 Xis observed, Z is missing
 Compute probability of missing values given
current choice of 0

— Q(z]x;) for each x;
* e.g., probability computed during classification step
* corresponds to “classification step” in K-means

QUTY(z|x;) = P(z]x;,00)



Properties of EM

 We will prove that
— EM converges to a local minima

— Each iteration improves the log-likelihood

* How? (Same as k-means)
— E-step can never decrease likelihood
— M-step can never decrease likelihood



Jensen’s inequality

* Theorem: log ), P(z) f(z) = ), P(z) log f(z)

— e.g., Binary case for convex function f:

f(tzy + (1 —t)xz) < tf(z1) + (1= t) f(22).




Applying Jensen’s inequality
* Use: log >, P(z) f(z) 2 D, P(z) log f(z)

m P(z,x; | 61)
(WD) = 3 logY QU (z | x;) 3
j; 2 QD )

m LT Q(t)

_ iZQ(t—I—l)(Z | CUj) log (p(Z,Q?j | 9(@)) _ iZQ(H_l)(Z | ij) log (Q(H_l)(z | 333))
j=1 = 7=t

(oW : D) ZZZQ(H” | x;)log P(z,x; | 00) + Y H(QUH1)
j=1 j=1



The M-step

Lower bound:
m

0(0® . D) > ZZQ(HU z | x;)log P(z,x; | ) + ZH(Q(t+1)’j)

o

This term is a constant
with respect to @

* Maximization step:

p(t+1) arg m9ax Z ZQ(t+1)(Z | x;) log P(z,x; | )
j=1 %

 We are optimizing a lower bound!
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EM pictorially
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(Figure from tutorial by Sean Borman)



What you should know

e Mixture of Gaussians

 EM for mixture of Gaussians:
— Coordinate ascent, just like k-means

— How to “learn” maximum likelihood parameters (locally max. like.) in the case
of unlabeled data

— Relation to K-means
* Hard / soft clustering

* Probabilistic model

e Remember, E.M. can get stuck in local minima,
— And empirically it DOES



