Expectation Maximization Lecture 22

David Sontag
New York University

Slides adapted from Carlos Guestrin, Dan Klein, Luke Zettlemoyer, Dan Weld, Vibhav Gogate, and Andrew Moore

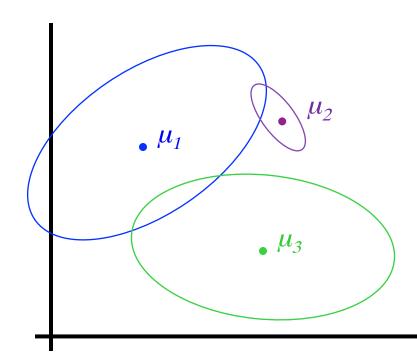
The General GMM assumption

- P(Y): There are k components
- P(X|Y): Each component generates data from a **multivariate** Gaussian with mean μ_i and covariance matrix Σ_i

Each data point is sampled from a generative process:

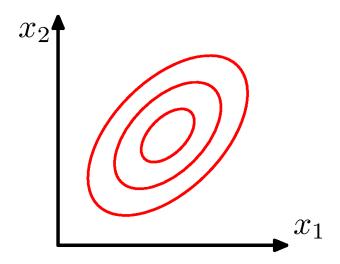
- 1. Choose component i with probability P(y=i)
- 2. Generate datapoint $\sim N(m_i, \Sigma_i)$

Gaussian mixture model (GMM)



Multivariate Gaussians

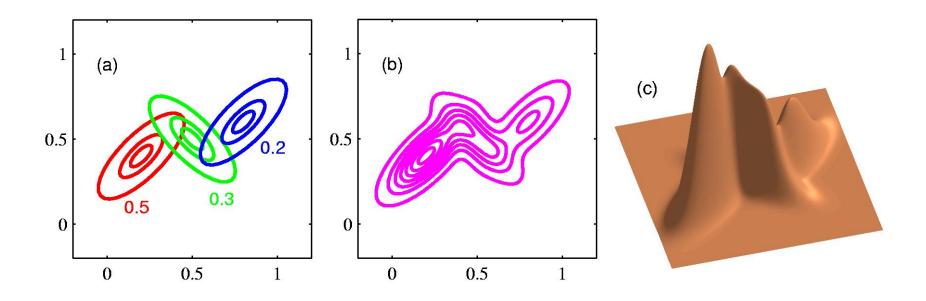
$$P(X=\mathbf{x}_{j}) = \frac{1}{(2\pi)^{m/2} \|\mathbf{\Sigma}\|^{1/2}} \exp\left[-\frac{1}{2}(\mathbf{x}_{j} - \mu_{j})^{T} \mathbf{\Sigma}_{j}^{-1}(\mathbf{x}_{j} - \mu_{j})\right]$$



 Σ = arbitrary (semidefinite) matrix:

- specifies rotation (change of basis)
- eigenvalues specify relative elongation

Mixtures of Gaussians



E.M. for General GMMs

 $p_k^{(t)}$ is shorthand for estimate of P(y=k) on t'th iteration

Iterate: On the *t*'th iteration let our estimates be

$$\lambda_t = \{ \mu_1^{(t)}, \mu_2^{(t)} \dots \mu_K^{(t)}, \sum_{i=1}^{L} (t), \sum_{i=1}^{L} (t), \sum_{i=1}^{L} (t), p_1^{(t)}, p_2^{(t)} \dots p_K^{(t)} \}$$

E-step

Compute "expected" classes of all datapoints for each class

$$P(Y_j = k | x_j, \lambda_t) \propto p_k^{(t)} p(x_j | \mu_k^{(t)}, \Sigma_k^{(t)})$$
Just evaluate a Gaussian at x_j

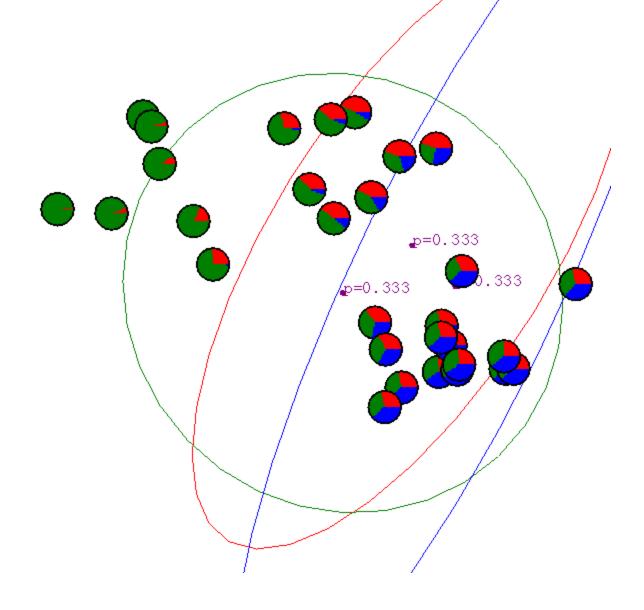
M-step

Compute weighted MLE for μ given expected classes above

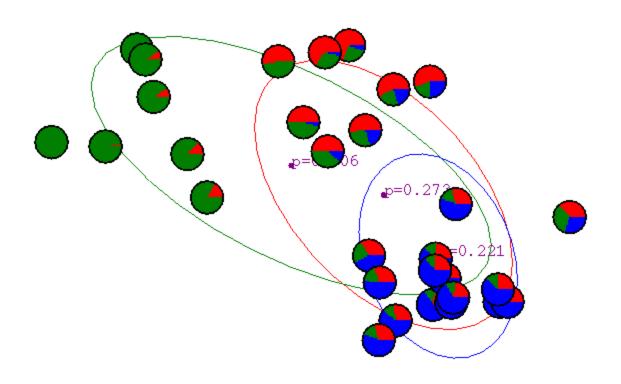
$$\mu_{k}^{(t+1)} = \frac{\sum_{j} P(Y_{j} = k \big| x_{j}, \lambda_{t}) x_{j}}{\sum_{j} P(Y_{j} = k \big| x_{j}, \lambda_{t})} \qquad \sum_{k} \frac{\sum_{j} P(Y_{j} = k \big| x_{j}, \lambda_{t}) \left[x_{j} - \mu_{k}^{(t+1)} \right] \left[x_{j} - \mu_{k}^{(t+1)} \right]^{T}}{\sum_{j} P(Y_{j} = k \big| x_{j}, \lambda_{t})}$$

$$p_{k}^{(t+1)} = \frac{\sum_{j} P(Y_{j} = k \big| x_{j}, \lambda_{t})}{m - m = \text{\#training examples}}$$

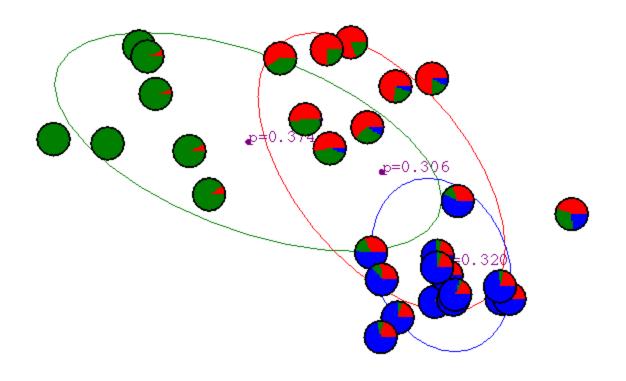
Gaussian Mixture Example: Start



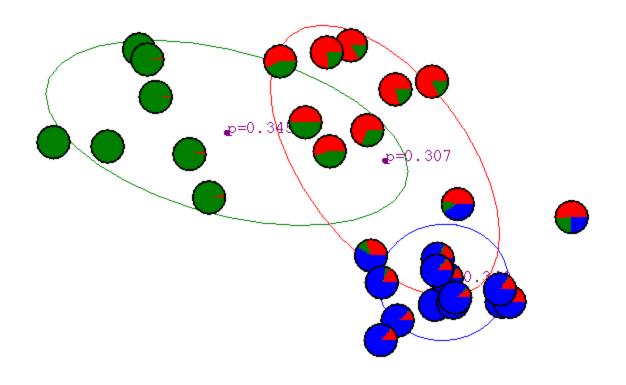
After first iteration



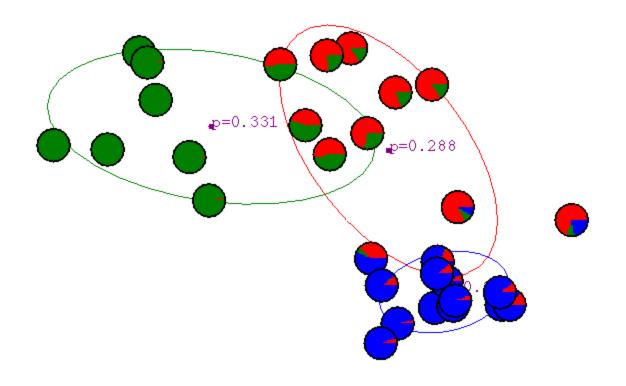
After 2nd iteration



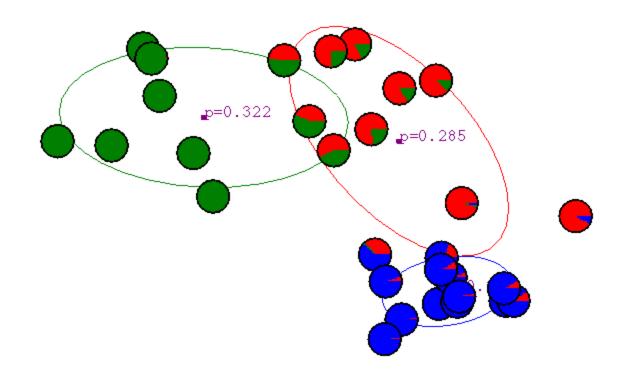
After 3rd iteration



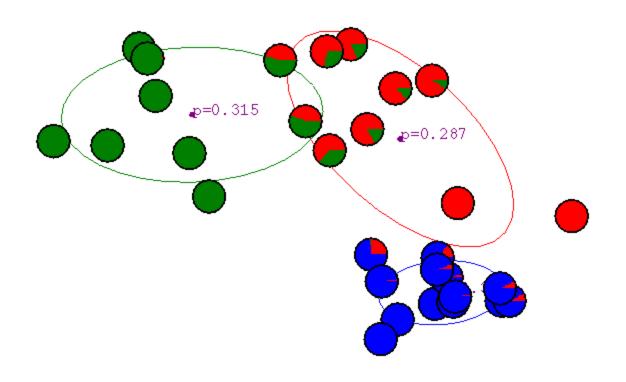
After 4th iteration



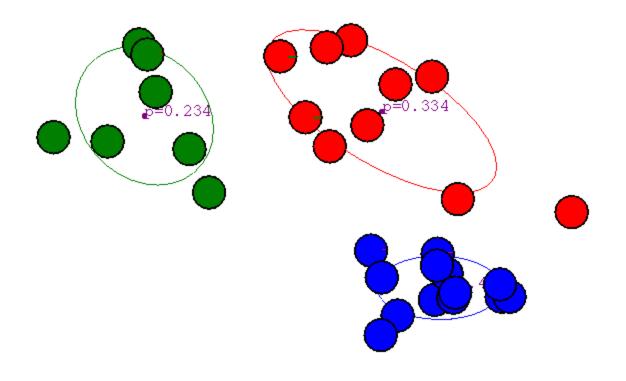
After 5th iteration



After 6th iteration



After 20th iteration



What if we do hard assignments?

Iterate: On the t'th iteration let our estimates be

$$\lambda_t = \{ \mu_1^{(t)}, \mu_2^{(t)} \dots \mu_K^{(t)} \}$$

E-step

Compute "expected" classes of all datapoints

$$P(Y_j = k | x_j, \mu_1 ... \mu_K) \propto \exp\left(-\frac{1}{2\sigma^2} ||x_j - \mu_k||^2\right) P(Y_j = k)$$

M-step

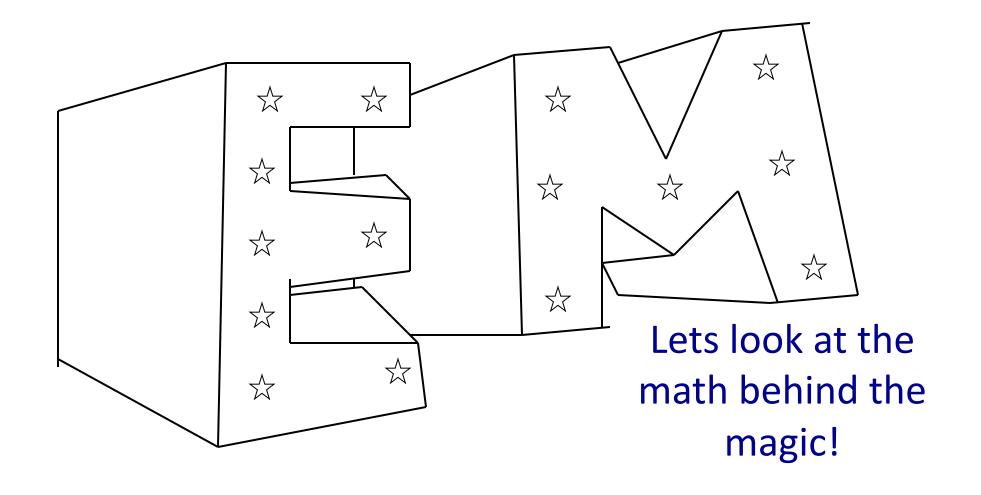
Compute most likely new μ s given class expectations

 δ represents hard assignment to "most likely" or nearest cluster

$$\mu_k = \frac{\sum_{j=1}^m P(Y_j = k | x_j) x_j}{\sum_{j=1}^m P(Y_j = k | x_j)}$$

$$\mu_{k} = \frac{\delta(Y_{j} = k, x_{j}) x_{j}}{\sum_{j=1}^{m} \delta(Y_{j} = k, x_{j})}$$

Equivalent to k-means clustering algorithm!!!



The general learning problem with missing data

Marginal likelihood: X is observed,

Z (e.g. the class labels **Y**) is missing:

$$\ell(\theta : \mathcal{D}) = \log \prod_{j=1}^{m} P(\mathbf{x}_{j} | \theta)$$

$$= \sum_{j=1}^{m} \log P(\mathbf{x}_{j} | \theta)$$

$$= \sum_{j=1}^{m} \log \sum_{\mathbf{z}} P(\mathbf{x}_{j}, \mathbf{z} | \theta)$$

Objective: Find argmax_θ I(θ:Data)

A Key Computation: E-step

- X is observed, Z is missing
- Compute probability of missing values given current choice of θ
 - $-Q(\mathbf{z}|\mathbf{x}_{j})$ for each \mathbf{x}_{j}
 - e.g., probability computed during classification step
 - corresponds to "classification step" in K-means

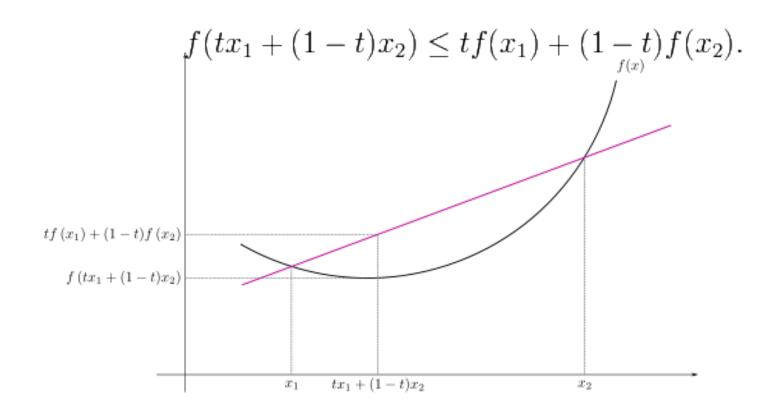
$$Q^{(t+1)}(\mathbf{z} \mid \mathbf{x}_j) = P(\mathbf{z} \mid \mathbf{x}_j, \theta^{(t)})$$

Properties of EM

- We will prove that
 - EM converges to a local minima
 - Each iteration improves the log-likelihood
- How? (Same as k-means)
 - E-step can never decrease likelihood
 - M-step can never decrease likelihood

Jensen's inequality

- Theorem: $\log \sum_{z} P(z) f(z) \ge \sum_{z} P(z) \log f(z)$
 - e.g., Binary case for convex function f:



Applying Jensen's inequality

• Use: $\log \sum_{z} P(z) f(z) \ge \sum_{z} P(z) \log f(z)$

$$\ell(\theta^{(t)}: \mathcal{D}) = \sum_{j=1}^{m} \log \sum_{\mathbf{z}} Q^{(t+1)}(\mathbf{z} \mid \mathbf{x}_j) \frac{P(\mathbf{z}, \mathbf{x}_j \mid \theta^{(t)})}{Q^{(t+1)}(\mathbf{z} \mid \mathbf{x}_j)}$$

$$\geq \sum_{j=1}^{m} \sum_{z} Q^{(t+1)}(z \mid x_j) \log \left(\frac{p(z, x_j \mid \theta^{(t)})}{Q^{(t+1)}(z \mid x_j)} \right)$$

$$= \sum_{j=1}^{m} \sum_{z} Q^{(t+1)}(z \mid x_j) \log \left(p(z, x_j \mid \theta^{(t)}) \right) - \sum_{j=1}^{m} \sum_{z} Q^{(t+1)}(z \mid x_j) \log \left(Q^{(t+1)}(z \mid x_j) \right)$$

$$\ell(\theta^{(t)}: \mathcal{D}) \ge \sum_{j=1}^{m} \sum_{\mathbf{z}} Q^{(t+1)}(\mathbf{z} \mid \mathbf{x}_j) \log P(\mathbf{z}, \mathbf{x}_j \mid \theta^{(t)}) + \sum_{j=1}^{m} H(Q^{(t+1), j})$$

The M-step

Lower bound:

$$\ell(\theta^{(t)} : \mathcal{D}) \ge \sum_{j=1}^{m} \sum_{\mathbf{z}} Q^{(t+1)}(\mathbf{z} \mid \mathbf{x}_j) \log P(\mathbf{z}, \mathbf{x}_j \mid \theta^{(t)}) + \sum_{j=1}^{m} H(Q^{(t+1),j})$$

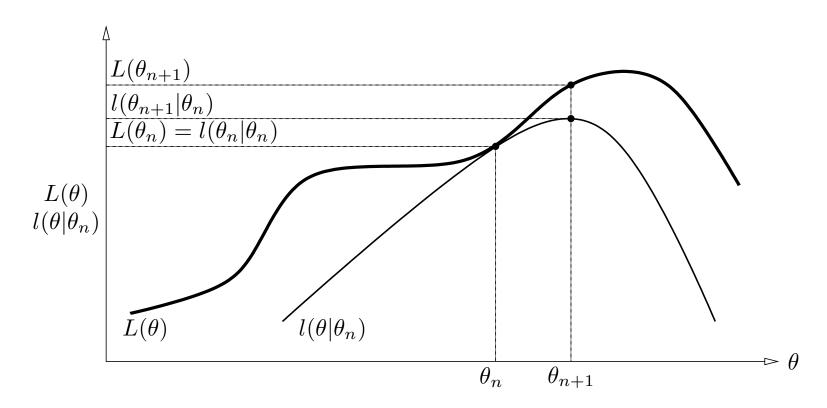
This term is a constant with respect to θ

• Maximization step:

$$\theta^{(t+1)} \leftarrow \arg\max_{\theta} \sum_{j=1}^{m} \sum_{\mathbf{z}} Q^{(t+1)}(\mathbf{z} \mid \mathbf{x}_j) \log P(\mathbf{z}, \mathbf{x}_j \mid \theta)$$

We are optimizing a lower bound!

EM pictorially



(Figure from tutorial by Sean Borman)

What you should know

- Mixture of Gaussians
- EM for mixture of Gaussians:
 - Coordinate ascent, just like k-means
 - How to "learn" maximum likelihood parameters (locally max. like.) in the case of unlabeled data
 - Relation to K-means
 - Hard / soft clustering
 - Probabilistic model
- Remember, E.M. can get stuck in local minima,
 - And empirically it *DOES*