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The Evils of “Hard Assighments”?

* Clusters may overlap
* Some clusters may be

) qp “wider” than others

e Distances can be
deceiving!



Probabilistic Clustering

* Try a probabilistic model!

* allows overlaps, clusters of different -

Size, etc. 7?7 0.1 2.1
* Can tell a generative story for ? 05 -11
data ?? 00 3.0
— P(X]Y) P(Y)
. ?? -0.1 -2.0
* Challenge: we need to estimate
model parameters without SRR

labeled Ys



The General GMM assumption

e P(Y): There are k components

e P(X]|Y): Each component generates data from a multivariate
Gaussian with mean p;and covariance matrix 2

Each data point is sampled from a generative process:

1. Choose component i with probability P(y=i)

2. Generate datapoint ¥~ N(m,, %))

Gaussian mixture model
(GMM)
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What Model Should We Use?

* Depends on X! mu
* Here, maybe Gaussian Naive Bayes?
? 01 21

— Multinomial over clusters Y

— (Independent) Gaussian for each X e
given 'Y ?? 00 3.0
2?7 -0.1 -2.0
p(Yi = yi) = O
2?2 0.2 15
(o —pi)?
= p— p— e 7
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Could we make fewer assumptions?
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* What if the X; co-vary?
 What if there are multiple peaks?
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* Gaussian Mixture Models!
— P(Y) still multinomial L T IS

— P(X|Y) is a multivariate Gaussian distribution:
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P(X=x,1Y =i)=



Multivariate Gaussians

1 1 T
P(X:x]): (2.7_[)m/2 ” D ”1/2 expl_a(xj _‘U) 2 1(Xj —HU )
2132‘
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> « jdentity matrix



Multivariate Gaussians

1 I
P(X=x)= _(x,
A=)~ Gypris i =P l > (%,

2 = diagonal matrix
X. are independent ala Gaussian NB



Multivariate Gaussians

1 1 T 4
P(X:x]): (2ﬂ)m/2 1> ”1/2 €Xp!——(xj _‘U) ~ (XJ - )

@

> = arbitrary (semidefinite) matrix:
- specifies rotation (change of basis)
- eigenvalues specify relative elongation
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Multivariate Gaussians

»,  Eigenvalue, A, of 2

A u?

Y2 Covariance matrix, 2, =
n degree to which x; vary
together

\L/2
A2

P~ (x-0) = (5,0

Q)"



Mixtures of Gaussians (1)

Old Faithful Data Set
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Mixtures of Gaussians (1)

Old Faithful Data Set

100 . ' . ' 100
R0t R0t
60 | 60 |
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Single Gaussian Mixture of two Gaussians



Mixtures of Gaussians (2)

Combine simple models into a complex model:

% p(z)a
p(x) = Zﬁk‘/\f(x|ﬂka Ek?

k=1
Component

Mixing coefficient

K=3



Mixtures of Gaussians (3)
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Eliminating Hard Assignments to Clusters

Model data as mixture of multivariate Gaussians
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Eliminating Hard Assignments to Clusters

Model data as mixture of multivariate Gaussians

0.5




Eliminating Hard Assignments to Clusters

Model data as mixture of multivariate Gaussians

0.5

0 0.5 |
Shown is the posterior probability that a point was generated
from ith Gaussian: Pr(Y =i | )



ML estimation in supervised setting

e Univariate Gaussian

e Mixture of Multivariate Gaussians

ML estimate for each of the Multivariate Gaussians is given by:

[ & .
Mz@f;;xn S =%E(X1‘M@L)(XJ‘MAZL)T
n =

\ /

Just sums over x generated from the k’th Gaussian



That was easy!
But what if unobserved data?

* MLE:

—argmaxg | [; P(y;x;)
— 0: all model parameters

* eg, class probs, means, and
variances

* But we don’t know y;’s!!!

* Maximize marginal likelihood: —
— argmax, [, P(x) = argmax [, 3\, P(Y;=k, x)



How do we optimize? Closed Form?

* Maximize marginal likelihood.
—argmaxg | [; P(x;) = argmax | |, 3 P(Y;=k, x;)
* Almost always a hard problem!

— Usually no closed form solution
— Even when IgP(X,Y) is convex, IgP(X) generally isn’t...

— For all but the simplest P(X), we will have to do
gradient ascent, in a big messy space with lots of
local optimum...



Learning general mixtures of Gaussian

1 1 r__
P(y =k lXJ) x (2.777)”1/2 I ”1/2 eXpl_E(Xj _‘uk) Zkl(Xj _‘uk)]P(y - k)
k

Marginal likelihood:

HP(XJ)

j=1

EP(Xj,y=k)

k=1

[

1

I
=UE(2n)m’2 = 12 P| 72

2

(Xj _ Mk)Tzk—l(Xj - Mk)]P(y = k)

Need to differentiate and solve for y,, 2,, and P(Y=k) for k=1..K

There will be no closed form solution, gradient is complex, lots of
local optimum

Wouldn’t it be nice if there was a better way!?!
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Expectation
Maximization



The EM Algorithm

* A clever method for maximizing marginal
likelihood:

— argmaxg [ [; P(x;) = argmaxg [ [; -, P(Y;=k, x))
— A type of gradient ascent that can be easy to
implement (eg, no line search, learning rates, etc.)

e Alternate between two steps:
— Compute an expectation
— Compute a maximization
* Not magic: still optimizing a non-convex
function with lots of local optima

— The computations are just easier (often, significantly so!)



EM: Two Easy Steps

Objective: argmaxg Ig[ [; X\, P(Y;=k, x; |0) = 3, 1g >, P(Y;=k, x| 6)

Data: {x; | j=1.. n} Notation a bit inconsistent

Parameters = 0=\

* E-step: Compute expectations to “fill in” missing y values
according to current parameters, 0

— For all examples j and values k for Y;, compute: P(Y=k | x; 6)

* M-step: Re-estimate the parameters with “weighted” MLE
estimates

— Set 0 =argmaxg Y, 2, P(Y;=k | x; 8) log P(Y=k, x; | 6)

Especially useful when the E and M steps have closed form solutions!!!



EM algorithm: Pictorial View

Given a set of Parameters and training data

Class assignment is
probabilistic or
weighted (soft EM)

Class assignment is

Supervised learning hard (hard EM)

problem

Estimate the class of each
training example using the
parameters yielding new
(weighted) training data

Relearn the parameters

based on the new training
data




Simple example: learn means only!

Consider:

1D data

Mixture of k=2
Gaussians

Variances fixed to o=1
Distribution over

classes is uniform

Just need to estimate
W, and W,

ﬁiP(x,Yj =k) x ﬁizezxp

j=1 k=1 j=1 k=1

01 .03 .05 .07 .09

1 2
ol -l [P, =0



EM for GMMs: only learning means

Iterate: On the t'th iteration let our estimates be
}\'t = {’ul(t)’ 'uz(t) “K(t)}

E-step
Compute “expected” classes of all datapoints
1 2
P(Yj = k‘xj,ul...uK) x exp By ij — ‘ukH P(Y]. = k)
M-step

Compute most likely new us given class expectations
EP(YJ. = k‘xj) X

j=1

> P(Y; = x|

j=1

W, =



E.M. for General GMMS [, 4. oo

. . . estimate of P(y=k) on
Iterate: On the t'th iteration let our estimates be t'th iteration

A= {0, 0 o 0, 200 200 30 p ) p 0 pl0))

E-step
Compute “expected” classes of all datapoints for each class

(1) (1) (1
P(Yj = k‘xj,)»t) x p, p(xj‘/,tk 2 ‘%Z Just evaluate a
Gaussian at X;

M-step

Compute weighted MLE for p given expected classes above

EP(YJ. = k‘xj,)ut)xj EP(Y]. = k‘xj,)ut) [xj - uk(”l):[xj - /,Lk(”l)]T
(1+1) J ) J

T Sy, = kx,.2,) % Sy, = kx,.
J J

EP(YJ. = k‘xj,)»t)

(r+1) _ j

Pk m/

m = #training examples







After first iteration




After 2nd iteration




After 3rd iteration




After 4th iteration




After 5th iteration




After 6th iteration
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After 20th iteration




What if we do hard assignments?

Iterate: On the t'th iteration let our estimates be
}\'t = {’ul(t)’ 'uz(t) “K(t)}
E-step

Compute “expected” classes of all datapoints

1 2
P(Y]. = k‘xj,/,tl.../,LK) x exp(—2(72 ij — MkH )P <& k)

M-step

o represents hard

Compute most likely new ps given class expectations assignment to “most
likely” or nearest

cluster

6(YJ. =k,xj)xj
We = =

215(Yj =k,xj)

i

Equivalent to k-means clustering algorithm!!!
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—  Lets look at the
math behind the

magic!
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Next lecture, we will argue that EM:

 Optimizes a bound on the likelihood

* |satype of coordinate ascent

* |s guaranteed to converge to a (often local) optima



