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The class of finite mixtures of multivariate Bernoulli distributions is
known to be nonidentifiable; that is, different values of the mixture pa-
rameters can correspond to exactly the same probability distribution. In
principle, this would mean that sample estimates using this model would
give rise to different interpretations. We give empirical support to the
fact that estimation of this class of mixtures can still produce meaningful
results in practice, thus lessening the importance of the identifiability
problem. We also show that the expectation-maximization algorithm is
guaranteed to converge to a proper maximum likelihood estimate, owing
to a property of the log-likelihood surface. Experiments with synthetic
data sets show that an original generating distribution can be estimated
from a sample. Experiments with an electropalatography data set show
important structure in the data.

1 Introduction

Finite mixtures of multivariate Bernoulli distributions have been extensively
used in diverse fields (such as bacterial taxonomy) to model a popula-
tion of binary, multivariate measurements in terms of a few latent classes
(see Everitt & Hand, 1981; Gyllenberg, Koski, Reilink, & Verlaan, 1994
and references therein). However, it has been recently proved that this
class of mixture models is nonidentifiable (Gyllenberg et al., 1994), which
potentially undermines the interpretation of sample estimates, since the
same sample could be equally attributed to a number of different
estimates.

We consider a finite mixture distribution (Everitt & Hand, 1981) defined
on the D-dimensional binary space {0, 1}D:

p(t) =
M∑

m=1

πmp(t|m),

where M is the number of components, t = (t1, . . . , tD)
T is a binary D-

dimensional vector, the πm = p(m) are the mixture proportions, and p(t|m)
is a multivariate Bernoulli distribution with parameters (called prototypes)
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pm = (pm1, . . . , pmD)
T, that is,

p(t|m) =
D∏

d=1

ptd
md

(
1− pmd

)1−td
.

These parameters must obey the following constraints:

M∑
m=1

πm = 1; πm ∈ (0, 1) ∀m = 1, . . . ,M;

pmd ∈ [0, 1] ∀m = 1, . . . ,M, d = 1, . . . ,D.

It has been proved (Gyllenberg et al., 1994) that this class of mixtures is
nontrivially nonidentifiable1 for all dimensions D. This means that there are
many combinations of values of the parameter tuple £ = {M, {πm,pm}Mm=1}
that produce an identical distribution p(t): there exist at least two tuples £,
£′ for which p(t|£) = p(t|£′) ∀t ∈ {0, 1}D. For example, it can be readily
verified that the four mixtures given by the following parameter tuples
represent the same distribution (here D = 3):

£:
{

M = 1,
{
π1 = 1, p1 =

( 1
2

1
2

1
2

)T}}
£′:

{
M = 2,

{
π1 = 1

2 , p1 =
( 1

2 0 1
2

)T}
,

{
π2 = 1

2 , p2 =
( 1

2 1 1
2

)T}}
£′′:

{
M = 2,

{
π1 = 1

4 , p1 =
( 1

2 0 1
2

)T}
,

{
π2 = 3

4 , p2 =
( 1

2
2
3

1
2

)T}}
£′′′:

{
M = 2,

{
π1 = 1

4 , p1 =
(
1 1

2
1
2

)T}
,

{
π2 = 3

4 , p2 =
( 1

3
1
2

1
2

)T}}
.

However, it does not mean that for every parameter tuple £ there must exist
at least one different £′ representing the same distribution. Identifiability
is a property of the class of mixtures rather than of a particular parameter
tuple.

Hence, in principle there are many tuples in parameter space that are
completely equivalent but would give rise to different interpretations. This
may seem an insurmountable difficulty for parameter estimation, but our
practical studies have produced promising results. We will show that, given
a sample from a mixture of multivariate Bernoulli distributions, maximum
likelihood estimates of the parameters, obtained by an expectation-maxi-
mization (EM) algorithm, can still be interpretable.

Before giving some experimental results to support this claim, we give
some properties of the log-likelihood surface of mixtures of multivariate
Bernoulli distributions and introduce an EM algorithm for them.

1 As opposed to trivial nonidentifiability, which is given by permutations of the mixture
components or by coincident component distributions p(t|m) for several components.
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2 Maximum Likelihood Parameter Estimation

We assume a fixed number of components M. Maximum likelihood esti-
mation can be achieved by an EM algorithm. Define π = (π1, . . . , πM)

T

and P = (p1, . . . ,pM). The log-likelihood of the parameters {π,P} given a
sample {tn}Nn=1 is

l(π,P) =
N∑

n=1

log p(tn;π,P) =
N∑

n=1

log

(
M∑

m=1

πm

D∏
d=1

ptnd
md(1− pmd)

1−tnd

)
(2.1)

and its gradient is easily seen to be

∂l
∂πm
= 1
πm

N∑
n=1

p(m|tn;π,P)−N m = 1, . . . ,M (2.2)

∂l
∂pmd

= 1
pmd(1− pmd)

N∑
n=1

p(m|tn;π,P)(tnd − pmd)

m = 1, . . . ,M d = 1, . . . ,D, (2.3)

where

p(m|tn;π,P) = p(tn|m;π,P)p(m)∑M
m′=1 p(tn|m′;π,P)p(m′)

= πm
∏D

d=1 ptnd
md(1− pmd)

1−tnd∑M
m′=1 πm′

∏D
d=1 ptnd

m′d(1− pm′d)
1−tnd

(2.4)

is the posterior probability (or responsibility) that component m gener-
ated data point tn. The term −N in equation 2.2 results from the constraint∑M

m=1 πm = 1 introduced in the log-likelihood via a Lagrange multiplier.
Derivation of the EM algorithm for finite mixtures of multivariate Ber-

noulli distributions is straightforward and can be found elsewhere (Everitt
& Hand, 1981; Wolfe, 1970). Here we give the basic equations:

• E-step: Computation of the responsibilities using equation 2.4 from the
current parameter estimates {π(τ ),P(τ )}at iteration τ , p(m|tn;π(τ ),P(τ )).

• M-step: Reestimation of {π(τ+1),P(τ+1)}:

π(τ+1)
m = 1

N

N∑
n=1

p(m|tn;π(τ ),P(τ ))

p(τ+1)
m = 1

Nπ(τ+1)
m

N∑
n=1

p(m|tn;π(τ ),P(τ ))tn. (2.5)
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The sequence of parameters obtained for τ = 0, 1, 2, . . . by iterating be-
tween the E- and M-steps from any starting point {π(0),P(0)} produces a
monotonically increasing sequence of values for the log-likelihood.

A common problem of estimation in mixture distributions is that of sin-
gularities, that is, points in parameter space whose log-likelihood tends
to positive infinity (e.g., a mixture of gaussians in which one of the com-
ponents is located on a data point and its variance tends to zero, thereby
becoming a Dirac delta). Such singularities are undesirable because they
give rise to degenerate distributions. Fortunately, the log-likelihood surface
of a finite mixture of multivariate Bernoulli distributions has no singular-
ities of value +∞ (although it does have singularities of value −∞). The
reason is that both the log-likelihood (see equation 2.1) and its gradient (see
equations 2.2 and 2.3) are bounded above in the whole parameter space,
including its boundaries.2 This means that estimation by the above EM al-
gorithm from any nonpathological starting point, which is always possible
by choosing pmd in (0, 1), will always lead to a proper stationary point of
the log-likelihood.

3 Stationary Points of the Log-Likelihood

We note that the second derivatives of the log-likelihood with respect to the
mixing proportions are always negative (for clarity, we omit the dependence
on the parameters):

∂2l
∂πm∂πm′

= − 1
πmπm′

N∑
n=1

p(m|tn)p(m′|tn) ≤ 0.

Therefore the Hessian of the log-likelihood has negative numbers in its
diagonal, and it cannot be positive definite. Hence, no stationary point of
the log-likelihood is a minimum. Note that this is a general property of finite
mixtures.

At any stationary point of the log-likelihood, equations 2.5 hold, so that
we have

Ep(t){t} =
M∑

m=1

πm Ep(t|m){t}

=
M∑

m=1

πmpm =
M∑

m=1

1
N

N∑
n=1

p(m|tn)tn = 1
N

N∑
n=1

tn = t̄,

2 When pmd → 0 for some m, d, the log-likelihood gradient in equation 2.3 remains
bounded above, because for each n, either tnd − pmd → k1pmd (if tnd = 0) or p(m|tn) ∝
p(tn|m) → k2pmd (if tnd = 1), where k1 and k2 are constants. The same is true in the
case pmd → 1. Therefore the log-likelihood is differentiable for pmd ∈ [0, 1], except in
pathological situations where |pmd−tnd| = 1 for all m and fixed n. In these cases p(tn|m) = 0
for all m and l({πm,pm}Mm=1) → −∞. Since the EM algorithm always climbs the log-
likelihood surface, it will not be attracted by such singularities.
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and so the mean of the mixture coincides with the sample mean at any
stationary point. The converse does not hold generally.

The point in parameter space where pm = t̄ for all m = 1, . . . ,M and
any distribution of the mixing proportions πm is a stationary point of the
log-likelihood, because p(tn|m) =

∏D
d=1 t̄tnd

d (1− t̄d )
(1−tnd) is independent of

m and therefore p(m|tn) = πm and the gradient is zero there. This point
is equivalent to a single multivariate Bernoulli distribution and should be
avoided because experience shows that its log-likelihood,

l
(
{πm,pm = t̄}Mm=1

)
= N log

D∏
d=1

t̄t̄d
d

(
1− t̄d

)1−t̄d
,

is much smaller than that of other local maxima (an intuitive fact since the
mixture is trivial). Observe that a starting point of the EM algorithm in
which pm is the same for all components (e.g., the apparently innocuous
starting point pmd = 1/2 for all m and d) will lead to the mentioned trivial
mixture after one EM iteration for any original distribution of the πm. Our
experiments showed that random starting points in (0, 1) were less prone
to leading to trivial mixtures.

4 Experimental Results

4.1 Synthetic Data. We generated N = 10,000 vectors in a binary space
of D = 16 dimensions from a fixed mixture of M = 8 16-variate Bernoulli
distributions, whose parameters are shown in Figure 1. We call these the
original parameters and denote them with an “o” superscript (e.g., po

m).
From the sample alone, 10 maximum likelihood estimates were found for
mixtures of M = 4, M = 8, and M = 10 components. We used the above EM
algorithm with random starting values of the parameters pmd in the range
[ 1

4 ,
3
4 ], stopping it when the relative change in log-likelihood was smaller

than 10−6. The starting values for the πm parameters were fixed to 1/M, thus
giving each component the same weight at the beginning. The results were
as follows:3

• Using the original number of components (M = 8), EM found the
original parameters (both pm and πm) 9 out of 10 times; the normal-
ized distance between the original and the estimated parameters was
smaller than 0.0013 in those cases, and the log-likelihood was−94,990
(to four significant digits). However, the remaining estimate was a sub-
optimal maximum of the log-likelihood in which two of the compo-

3 We quantify the distance between two vectors p, q in the D-dimensional rectangle
[0, 1]D with the normalized undirected distance 1

D ‖p− q‖22, where ‖ · ‖2 is the Euclidean
norm. This distance is a real number in [0, 1] that averages to 1/6 for two uniformly random
vectors. Observe that if pd = qd+ε for d = 1, . . . ,D, then 1

D ‖p−q‖22 = |ε| independent of D.
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Figure 1: Parameters of the mixture of M = 8 16-variate Bernoulli distributions
used to generate the sample in section 4.1. For m = 1, . . . , 8, each 16-dimensional
pm vector is represented as a 4 × 4 image in which the area of each pixel is
proportional to the value of its associated pmd parameter; for example, for the
leftmost image, p1d is 0.8 for d ≤ 4 (row 1) and 0.2 for d ≥ 5 (rows 2–4).

nents had the same pm parameter (p5 ≈ p8 ≈ po
5) and a log-likelihood

of −95,201. The difference between the log-likelihood values of both
kinds of estimates was 0.2%.

• Using fewer components than necessary (M = 4) produced an esti-
mate in which each prototype pm was approximately either one of
the original prototypes or a linear combination of several of the orig-
inal prototypes (normalized distance smaller than 0.0023). Figure 2
shows the situation, for a particular estimate in which pm ≈ po

m for
m = 1, 2, 3 and p4 ≈ 2

3 po
4 + 1

3 po
5. As in the previous case, estimates

having different prototypes also had very close log-likelihood values
(differing by 0.5%).

Figure 2: Parameters of a mixture of M = 4 16-variate Bernoulli distributions
estimated by maximum likelihood from the sample. Observe that p1, p2, p3, and
p4 coincide very closely with po

1, po
2, po

3, and 2
3 po

4 + 1
3 po

5, respectively.



Practical Identifiability of Finite Bernoulli Mixtures 147

• Using more components than necessary (M = 10) always produced
the eight original po

m vectors (normalized distance smaller than 0.0022)
plus two extra ones, typically either repeated instances of some of the
original ones or linear combinations of them. The log-likelihood value
of each estimate did not differ from any of the others in more than
0.02%, indicating that once the eight original prototypes are found,
the remaining ones are largely irrelevant and reflect peculiarities of
the sample used.

Experiments performed with other synthetic data sets produced the same
results. We propose the following interpretation of the experimental facts.
Given a large sample generated from a known mixture of multivariate
Bernoulli distributions, let us construct another mixture in this way. First,
pick up freely the number of components M; then choose its p1, . . . ,pM
prototypes either as some of the original ones or as linear combinations of
them. We claim that for certain values of the mixing proportions, such a
point in parameter space is very close to a maximum of the log-likelihood
surface. However, we do not have theoretical support for this and do not
have a valid interpretation for the values of the mixing proportions.

These results also suggest a procedure to follow when estimating an
unknown mixture of multivariate Bernoulli distributions from a sample.
Choose freely a number of components M, and, using EM from random
starting points, find several (say, 10) maximum likelihood estimates for it.
Inspect the prototypes obtained. If they look the same for every estimate,
then M is probably the right number of components, and the estimate is
very close to the true generating distribution. If a fixed group of prototypes
appears in each estimate, and the rest of the prototypes are repetitions of
those in the group, then M is probably too big; reduce it and start again.
However, if there are different prototypes in different estimates, then M is
probably too small; increase it and start again.

4.2 EPG Data. The technique of electropalatography (Hardcastle, Jones,
Knight, Trudgeon, & Calder, 1989) records the presence or absence of con-
tact between the tongue and the hard palate in a number of fixed locations
of the latter and at fixed intervals during continuous speech. The result is a
stream of two-dimensional binary patterns, or electropalatograms (EPGs),
which can be used in speech therapy and assessment. We used a subset
of electropalatography data from the EUR-ACCOR database (Marchal &
Hardcastle, 1993) containing 11,852 different 62-dimensional vectors (EPGs),
obtained from 12 different utterances by a native English speaker. We esti-
mated the density of its distribution in 62-dimensional space using a finite
mixture of multivariate Bernoulli distributions with M = 6 components.
A number of estimates were found with the EM algorithm. As with the
synthetic data set, the starting parameter values were 1/M for the πm pa-
rameters and a random number in

[ 1
4 ,

3
4

]
for the parameters pmd, and EM
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Figure 3: The nine prototypes p1, . . . ,p9 for a mixture of M = 9 multivariate
Bernoulli distributions trained with the EPG data set. Each pm vector, consist-
ing of D = 62 values in the range [0, 1], is customarily displayed as an image
resembling the palate. The top row (alveolar part) contains parameters pm1 to
pm6 from left to right, row 2 contains pm7 to pm14, and so on until the bottom row
(velar part), always from left to right. The area of each pixel is proportional to
the value of its associated pmd parameter.

was stopped when the relative change in log-likelihood was smaller than
10−6. Examination of the parameter values at this point showed that:

• Several different kinds of estimates were found, each characterized by
a subset of the prototypes shown in Figure 3 and by specific values
for the mixing proportions. Prototypes p1, p2, p5, and p9 appeared in
almost every estimate (the normalized distance between correspond-
ing prototypes did not exceed 0.02), and p3 and p8 were very common
too.

• The log-likelihood of these mixtures was quite close, varying from
−138,341 for the combination {p1,p2,p5,p7,p8,p9} to −141,697 for
the combination {p1,p2,p3,p5,p6,p9}.
• Occasionally a prototype was found that could be expressed as a linear

combination of some of the prototypes of Figure 3, for example, 1
2 p8+

1
2 p9.

We also found estimates for mixtures of M components, where M varied
from 1 to 15. This made apparent the fact that for M & 9, some prototypes
appeared several times (with slight differences) in the same mixture, which
therefore becomes trivial. This suggested selecting M = 9 as the optimum
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Figure 4: Log-likelihood of the mixture of multivariate Bernoulli distributions
model for the EPG data as a function of the number of components M. Each
value plotted corresponds to an average over 10 independent estimates.

number of components for this data set,4 with typical values for the optimal
parameters (both pm and πm) given in Figure 3. Considering a sequence of
mixture estimates starting from M = 1 to M = 15, prototypes with high
mixture proportions tended to appear early in the sequence, although at
times somewhat distorted due to the interference with other prototypes.
For example, prototype p1 in Figure 3 was present in all mixtures, while p6
starts to appear only (very unfrequently) for M ≥ 6. However, prototype p9
appears very frequently for M ≥ 4. Also, the log-likelihood for the data set
considered increases with M and reaches a plateau for M ≈ 9 (see Figure 4).

An interesting fact is that these prototypes are highly interpretable, corre-
sponding to physically feasible EPGs and in fact assimilable to well-known
quasi-static patterns in EPG studies (e.g., velar, alveolar; Hardcastle et al.,
1989), thus revealing important structure patterns in the data. These proto-
types are similar to those produced by other methods, in particular latent
variable models (Carreira-Perpiñán & Renals, 1998).

4 An alternative way to select the critical M is to examine the log-likelihood curves for
a validation set.
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5 Conclusion

We have shown that for the class of finite mixtures of multivariate Bernoulli
distributions, the EM algorithm always converges to a proper stationary
point of the log-likelihood, provided it is not started from a pathological
point in parameter space (which is always possible). The reasons are the
absence of singularities of value +∞ in the log-likelihood surface and the
fact that the EM algorithm always climbs that surface.

We have given empirical evidence that for this particular class of finite
mixture models, sensible and interpretable maximum likelihood estimates
can be found even though that class of mixtures is not identifiable. This
would suggest that the lack of identifiability might not be important from
the practical point of view in some cases. Let us analyze the possible reasons
with some detail.

First, we note that the nonidentifiability result is not surprising if one
considers that a distribution defined over a discrete domain can be speci-
fied by a finite number of equations, one for each point of the domain. In
our case, this means 2D− 1 equations (plus another one linearly dependent
with them due to all the equations adding to one). Since the mixture has
MD+M− 1 free parameters (one of the mixing proportions being linearly
dependent on the others), making M larger than 2D

D+1 would yield an un-
derdetermined system of equations with multiple solutions. However, even
for small dimensions D, this number is extremely large, and the number of
components employed in practice will be much smaller. We restrict the rest
of this discussion to a situation where the maximum number of components
is much smaller than 2D

D+1 , which yields an overdetermined system (where
multiple solutions can still exist).

One reason for the apparent sparseness of the nonidentifiability effect
may be a low population of equivalent parameter tuples. Let us call equiv-
alent to two different parameter tuples £, £′ that produce the same distri-
bution. Although we know that for any dimension D, there exist equivalent
parameter tuples, this does not mean that for each parameter tuple £ there
will exist an equivalent, different one £′ (always for the case M ¿ 2D

D+1 ).
For example, it is easily seen that for the mixture in D dimensions with
parameters given by,

£:
{

M = 2,
{
π1 ∈ (0, 1), p1 = (1 1 . . . 1)T

}
,
{

1− π1, p2 = (0 0 . . . 0)T
}}
,

which produces a distribution

p(t|£) =

π1, t = (1 1 . . . 1)
1− π1, t = (0 0 . . . 0)
0, otherwise,
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there does not exist any equivalent parameter tuple £′ for M < 2D

D+1 (dis-
regarding, as usual, permutations of mixture components and coincident
component distributions). Thus, the actual practical problem of identifia-
bility is which parameter tuples £ have equivalent parameter tuples, or,
considering the partition of the space of parameter tuples into classes of
equivalence (each class of equivalence consisting of all equivalent parame-
ter tuples), what is the cardinality of each class. This is a difficult question
to answer analytically with generality, but the experimental results suggest
that nontrivial equivalence classes (consisting of more than one element)
may be rare, perhaps pathological.

Another reason for the possibility of estimating a sensible parameter tu-
ple seems to be that every estimate contains some of the original prototypes
and that the original number of components may be selected by inspection
of a collection of maximum likelihood estimates obtained with the EM algo-
rithm (as we did in section 4.1). Note that the likelihood function associated
with a small sample (compared to the total number of possible different
vectors, usually 2D) need not be maximized by the original mixture.

Finally, a reciprocal situation to the one described here may also be pos-
sible, as the following example in D = 1 dimension shows. Consider the
class of mixtures of normal distributions, which is known to be identifiable
for all dimensions (Everitt & Hand, 1981). It can be readily verified that the
two-component equiprobable mixture with component means at ±1 and
standard deviations of 1.5 is virtually equal to a norm of mean 0 and stan-
dard deviation 1.85 (e.g., the distance between both mixture distributions
in the L2-norm sense is 50 times smaller than the L2-norm of any of the mix-
tures). A sample of enormous size would be necessary to tell one mixture
from the other in terms of likelihood of the parameters. Thus, theoretical
identifiability does not guarantee practical identifiability, and interpretation
problems may still arise.

Acknowledgments

This work was supported by ESPRIT Long Term Research Project SPRACH
(20077) and by a scholarship from the Spanish Ministry of Education and
Science. M. A. C.-P. acknowledges helpful comments from Zoubin Ghahra-
mani.

References
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