
EM initialisation for Bernoulli mixture learning?

Alfons Juan, José Garćıa-Hernández, and Enrique Vidal

DSIC, Universitat Politècnica de València, 46071 València, Spain
[ajuan,jogarcia,evidal]@dsic.upv.es

Abstract. Mixture modelling is a hot area in pattern recognition. This
paper focuses on the use of Bernoulli mixtures for binary data and, in
particular, for binary images. More specifically, six EM initialisation tech-
niques are described and empirically compared on a classification task
of handwritten Indian digits. Somehow surprisingly, we have found that
a relatively good initialisation for Bernoulli prototypes is to use slightly
perturbed versions of the hypercube centre.

Key words: Mixture Models, EM Algorithm, Multivariate Bernoulli Distribution,
Initialisation Techniques, Binary Data, Indian Digits

1 Introduction

Mixture modelling is a popular approach for density estimation in both super-
vised and unsupervised pattern classification [7]. On the one hand, mixtures are
flexible enough for finding an appropriate tradeoff between model complexity
and the amount of training data available. Usually, model complexity is con-
trolled by varying the number of mixture components while keeping the same
(often simple) parametric form for all components. On the other hand, maxi-
mum likelihood estimation of mixture parameters can be reliably accomplished
by the well-known Expectation-Maximisation (EM) algorithm.

Although most research in mixture modelling has focused on mixtures for
continuous data, there are many pattern recognition tasks for which binary or
discrete mixture models are better suited. This paper focuses on the use of (multi-
variate) Bernoulli mixtures for binary data and, in particular, for binary images.
EM-based maximum likelihood estimation of Bernoulli mixtures is known even
before the general statement of the EM algorithm in 1977 [3]. In fact, the basic
formulae appear in a proposed problem of the classic 1973 book by Duda and
Hart [4, pp. 256 and 257], who attribute to Wolfe their derivation in 1970 [4,
p. 249]. In spite of being known for more than three decades, Bernoulli mixtures
as such have seldom been assessed in practice. In [6], for instance, a more com-
plex yet closely-related model is successfully tested on a conventional OCR task,
but no comparative results are provided for the simpler, pure Bernoulli mixture

? Work supported by the Spanish “Ministerio de Ciencia y Tecnoloǵıa” under grant
DPI2001-0880-CO2-02.

model. It seems that this pure model has been only applied to non-conventional
tasks such as unsupervised modelling of electropalatographic data [2].

During the past few years, we have found that Bernoulli mixtures are really
effective in certain supervised text classification tasks [5, 9]. Moreover, since these
tasks can be considered somewhat non-conventional, we have recently tried out
Bernoulli mixtures on a more conventional pattern recognition task involving
binary images [8]. As in the case of text classification, the results obtained are
encouraging.

In view of their potential, we think that Bernoulli mixtures deserve more
attention. In particular, as with any kind of mixtures, it is important to take
care of EM initialisation in order to fine-tune Bernoulli mixture learning. This
paper compares six initialisation techniques, which are described in section 4,
after a review of the model and the basic theory on its EM-based maximum
likelihood estimation (sections 2 and 3). Then, experimental results are reported
on a classification task of handwritten Indian digits.

2 Bernoulli mixtures

A (finite) mixture model consists of a number of mixture components, I . It
generates a D-dimensional sample x = (x1, . . . , xD)t by first selecting the ith
component with prior probability p(i), and then generating x in accordance with
the ith component-conditional probability (density) function p(x | i). The priors
must satisfy the constraints:

I
∑

i=1

p(i) = 1 and p(i) ≥ 0 (i = 1, . . . , I). (1)

The posterior probability of x being actually generated by the ith component
can be calculated via the Bayes’ rule as

p(i |x) =
p(i) p(x | i)

p(x)
(2)

where

p(x) =
I
∑

i=1

p(i) p(x | i) (3)

is the (unconditional) mixture probability (density) function.

A Bernoulli mixture model is a particular case of (3) in which each component
i has a D-dimensional Bernoulli probability function governed by its own vector
of parameters or prototype pi = (pi1, . . . , piD)t ∈ [0, 1]D,

p(x | i) =

D
∏

d=1

p
xd

id (1 − pid)
1−xd (4)

Consider an arbitrary component p(x | i). It identifies a certain subclass of binary
vectors “resembling” its parameter vector or prototype pi. In fact, each pid is
the probability of bit xd to be one, whereas 1 − pid is the opposite.

Equation (4) is just the product of independent, unidimensional Bernoulli
probability functions. Therefore, a single multivariate Bernoulli component can
not capture any kind of dependencies or correlations between individual bits. As
with other types of mixtures, this is implicitly done by mixing several compo-
nents in the right proportions.

Also as with other types of mixtures, Bernoulli mixtures can be used as class-
conditional models in supervised classification tasks. Let C denote the number
of supervised classes. Assume that, for each supervised class c, we know its prior
p(c) and its class-conditional probability function p(x | c), which is a mixture of
Ic Bernoulli components,

p(x | c) =

Ic
∑

i=1

p(i | c) p(x | c, i) (5)

Then, the optimal Bayes decision rule is to assign each pattern vector x to a
class c∗(x) giving maximum a posteriori probability:

c∗(x) = arg max
c

p(c |x) (6)

= arg max
c

p(c) p(x | c) (7)

= arg max
c

log p(c) + log p(x | c) (8)

= arg max
c

log p(c) + log

Ic
∑

i=1

p(i | c)p(x | c, i) (9)

3 Maximum likelihood estimation

Let X = {x1, . . . , xN} be a set of samples available to learn a Bernoulli mixture
model. This is a statistical parameter estimation problem since the mixture is
a probability function of known functional form, and all that is unknown is a
parameter vector including the priors and component prototypes:

Θ = (p(1), . . . , p(I), p1, . . . , pI)
t. (10)

Here we are excluding the number of components from the estimation problem,
as it is a crucial parameter for controlling model complexity and receives special
attention in section 5.

Following the maximum likelihood principle, the best parameter values max-
imise the log-likelihood function of Θ,

L(Θ |X) =

N
∑

n=1

log

(

I
∑

i=1

p(i) p(xn | i)

)

. (11)

In order to find these optimal values, it is useful to think of each sample xn

as an incomplete component-labelled sample, which can be completed by an
indicator vector zn = (zn1, . . . , znI)

t with 1 in the position corresponding to the
component generating xn and zeros elsewhere. In doing so, a complete version
of the log-likelihood function (11) can be stated as

LC(Θ|X, Z) =

N
∑

n=1

I
∑

i=1

zni (log p(i) + log p(xn|i)) , (12)

where Z = {z1, . . . , zN} is the so-called missing data.
The form of the log-likelihood function given in (12) is generally preferred

because it makes available the well-known EM optimisation algorithm (for finite
mixtures) [3]. This algorithm proceeds iteratively in two steps. The E(xpectation)
step computes the expected value of the missing data given the incomplete data
and the current parameters. The M(aximisation) step finds the parameter values
which maximise (12), on the basis of the missing data estimated in the E step.
In our case, the E step replaces each zni by the posterior probability of xn being
actually generated by the ith component,

zni =
p(i) p(xn | i)

∑I

i′=1 p(i′) p(xn | i′)

(

n = 1, . . . , N

i = 1, . . . , I

)

, (13)

while the M step finds the maximum likelihood estimates for the priors,

p(i) =
1

N

N
∑

n=1

zni (i = 1, . . . , I), (14)

and the component prototypes,

pi =
1

∑N

n=1 zni

N
∑

n=1

znixn (i = 1, . . . , I). (15)

To start the EM algorithm, initial values for the parameters are required. To
do this, it is recommended to avoid “pathological” points in the parameter space
such as those touching parameter boundaries and those in which the same pro-
totype is used for all components [2]. Provided that a non-pathological starting
point is used, each iteration is guaranteed not to decrease the log-likelihood func-
tion and the algorithm is guaranteed to converge to a proper stationary point
(local maximum). Also, for the sake of robustness, it is important to introduce
some sort of model smoothing.

4 Initialisation techniques

As said above, the only condition for proper EM initialisation is to avoid “patho-
logical” points in the parameter space. Unfortunately, this does not say too much

about the actual technique we should use. So, to clarify ideas, let us first distin-
guish between mixture proportions and Bernoulli prototypes. Clearly, a natural
choice for the initialisation of mixture proportions is to be as impartial as pos-
sible, that is, to set them all to the same value:

p(i) =
1

I
(i = 1, . . . , I) (16)

The tricky problem is to devise an adequate initialisation technique for Bernoulli
prototypes. In this case, the simplest yet natural option is to randomly draw each
prototype from the open unit hypercube:

prand
i = rand

{

x ∈ [ε, 1− ε]D
}

(i = 1, . . . , I) (17)

where ε (0 < ε ≤ 0.5) is a positive constant intended to exclude extreme prob-
ability values. This random initialisation was used in [2]. Generally speaking,
each possible non-pathological prototype has the same chance of being chosen.

A possible drawback of initialisation (17) comes from the fact that almost all
potential prototypes have nothing in common with the training data. Therefore,
it is almost sure that it will pick a poor starting point in terms of likelihood. A
possible remedy to this drawback is to restrict the set of potential prototypes to
the training data,

p
proto
i = xrand{1,...,N} (i = 1, . . . , I) (18)

but these prototypes are completely pathological (made up of zeros and ones).
A straightforward solution to this pathological nature is to linearly combine (17)
and (18):

p
rproto
i = α prand

i + (1 − α) p
proto
i (i = 1, . . . , I) (19)

where α (0 ≤ α < 1) measures the “global randomness” of p
rproto
i , as opposed to

1−α, which measures its “closeness” to the training data. We call this technique
random prototypes. We used it in [5] (α ≈ 0) and [8] (α = 0.75).

Although (19) will usually provide acceptable initialisations in terms of like-
lihood, it may be improved in some cases, especially when initialising a mixture
of many prototypes. In this case, it is hardly likely that the prototypes chosen
will uniformly cover all regions in which training bit vectors appear. On the con-
trary, it is more likely that some of these regions will become “overpopulated” by
prototypes, while other regions will not be covered enough. This eventual failure
can be easily prevented by considering prototypes as “facilities” to be located
in a “maximally dispersed” way. More specifically, the following algorithm does
the job:

pmaxmin
i =







xrand{1,...,N} if i = 1

argmax
x∈X

min
i′=1,...,i−1

d(x, pmaxmin
i′) if i > 1 (20)

where d(·, ·) is an appropriate distance function for bit vectors (e.g. the Hamming
distance). The basic idea behind (20) is simple: the ith prototype chosen is the
training bit vector which is farthest away from its closest prototype among those

(i−1 prototypes) previously chosen. As with (18), some sort of randomisation or
smoothing is also required to avoid exact zeros and ones. We used this algorithm
in [9], where it was called maxmin initialisation.

The three initialisation techniques discussed so far (random, random proto-
types and maxmin) have been used in previous works but they have not been yet
compared on the same basis. Since this work is a good opportunity to consider
any reasonable initialisation heuristic, we have also considered three additional
techniques that can be interpreted as minor variations on the same idea: to use
the same vector for all mixture prototypes. The rationale behind this idea is that
we have to be as neutral as possible during EM initialisation and then rely on
the EM itself for the purpose of specialising each prototype in a different data
subclass. Of course, each prototype has to be (randomly) perturbed since the
use of the very same vector in all components leads to a well-known pathological
starting point [2]. The three minor variations we are talking about are:

1. Hypercube centre: all prototypes are slightly perturbed versions of 0.5.

2. Data mean: all prototypes are slightly perturbed versions of the data mean.

3. Class mean: all prototypes of the mixture for class c are perturbed versions
of the class c data mean.

5 Experiments

The experiments reported in this section correspond to an OCR task consisting in
the recognition of handwritten Indian digits. They were designed to compare, on
the same basis, the six initialisation techniques described in the previous section.
Also, they can be considered as a continuation of the experiments reported in [8].

The dataset used here comprises the 10425 digit samples included in the non-
touching part of the Indian digits database recently provided by CENPARMI [1].
Original digit samples are given as binary images of different sizes (minimal
bounding boxes). To obtain properly normalised images, both in size and posi-
tion, two simple preprocessing steps were applied. First, each digit image was
pasted onto a square background whose centre was aligned with the digit centre
of mass. This square background was a white image large enough (64×64) to ac-
commodate most samples though, in some cases, larger background images were
required. Second, given a size S, each digit image was subsampled into S × S

pixels, from which its corresponding binary vector of dimension D = S2 was
built. Figure 1 shows one preprocessed example of each Indian digit (S = 30).

0 1 2 3 4 5 6 7 8 9

Fig. 1. 30 × 30 examples of each Indian digit.

The standard experimental procedure for classification error rate estimation
in the CENPARMI Indian digits task is a simple partition with 7390 sam-
ples for training and 3035 for testing (excluding the extra classes delimiter
and comma). Using this procedure, we obtained the results shown in Figure 2.
This Figure includes six graphs arranged in a matrix of two columns and three
rows: the graphs in the left column correspond to the random, random proto-
types ((19) with α = 0.75) and maxmin initialisation techniques; while those
in the right column refer to the three minor variations of the “same-vector”
idea proposed in the preceding section. For each initialisation technique and
each I ∈ {1, 2, 5, 10, 15, 20, 25}, the standard experimental procedure was run
50 times, each one entailing an I-component Bernoulli mixture classifier trained
from a different random seed. Each graph includes four curves computed from
these runs: the (normalised) average log-likelihood of the classifier parameters
for both the training and test sets, and the average classification error rate,
also for both sets (error bars show standard error). Taking into account the re-
sults reported in [8] for this task, here we have only considered a resolution of
S = 20 pixels. Also, in order to allow direct comparison, only classifiers with
class-conditional mixtures of identical number of components, Ic = I , have been
considered.

From the results shown in Figure 2, it can be said that all techniques give
similar results, except random initialisation, which does not seem to be as good as
the others. An immediate consequence of this result is that maxmin initialisation
becomes less attractive since, in comparison with its alternatives, it is more
computationally demanding and difficult to implement. Let us compare random
prototypes with hypercube centre, which somehow surprisingly appears to be a
good choice among the three variations of the “same-vector” idea. For ease of
comparison, the error rate curves (for test data) of these techniques are plotted
together in Figure 3. Although standard error bars overlap, we would say that
hypercube centre is a bit superior to random prototypes.

6 Conclusions

The results presented in this paper can be considered as a continuation of previ-
ous work on the use of Bernoulli mixtures for binary data and, in particular, for
binary images. Six EM initialisation techniques have been described and com-
pared on an OCR task consisting in the recognition of handwritten Indian digits.
Three of these techniques have been already used in our previous works, though
here we have tried to provide a better description of them and, more importantly,
a common basis for empirical comparison. The other three techniques, which are
proposed here, can be interpreted as minor variations on a very simple idea (to
use the same vector for all prototypes). From the empirical results obtained in
the Indian digits recognition task, we can conclude that “random prototypes”
(linear combination of random parameters and randomly chosen training bit
vectors) and “hypercube centre” (all prototypes are slightly perturbed versions
of 0.5) are relatively good initialisation techniques.

 0

 1

 2

 3

 4

 5

 1 5 10 15 20 25
-50

-45

-40

-35

-30

-25

Er
ro

r r
at

e
(%

)

Lo
gL

ike
lih

oo
d

Number of mixture components (I)

Error rate (%) train

Error rate (%) test

LogLikelihood train

LogLikelihood test

 0

 1

 2

 3

 4

 5

 1 5 10 15 20 25
-50

-45

-40

-35

-30

-25

Er
ro

r r
at

e
(%

)

Lo
gL

ike
lih

oo
d

Number of mixture components (I)

Error rate (%) train

Error rate (%) test

LogLikelihood train

LogLikelihood test

Random Hypercube centre

 0

 1

 2

 3

 4

 5

 1 5 10 15 20 25
-50

-45

-40

-35

-30

-25

Er
ro

r r
at

e
(%

)

Lo
gL

ike
lih

oo
d

Number of mixture components (I)

Error rate (%) train

Error rate (%) test

LogLikelihood train

LogLikelihood test

 0

 1

 2

 3

 4

 5

 1 5 10 15 20 25
-50

-45

-40

-35

-30

-25

Er
ro

r r
at

e
(%

)

Lo
gL

ike
lih

oo
d

Number of mixture components (I)

Error rate (%) train

Error rate (%) test

LogLikelihood train

LogLikelihood test

Random prototypes Data mean

 0

 1

 2

 3

 4

 5

 1 5 10 15 20 25
-50

-45

-40

-35

-30

-25

Er
ro

r r
at

e
(%

)

Lo
gL

ike
lih

oo
d

Number of mixture components (I)

Error rate (%) train

Error rate (%) test

LogLikelihood train

LogLikelihood test

 0

 1

 2

 3

 4

 5

 1 5 10 15 20 25
-50

-45

-40

-35

-30

-25

Er
ro

r r
at

e
(%

)

Lo
gL

ike
lih

oo
d

Number of mixture components (I)

Error rate (%) train

Error rate (%) test

LogLikelihood train

LogLikelihood test

Maxmin Class mean

Fig. 2. Comparison of six initialisation techniques: log-likelihood and error rate (for
training and test data) of the I-component Bernoulli mixture classifier (I = 1, . . . , 25).

 2

 2.5

 3

 3.5

 4

 4.5

 5

 1 5 10 15 20 25

I

Error (%) Random prototypes

Hypercube center

Fig. 3. Comparison of “random prototypes” and “hypercube centre” initialisations:
error rate (for test data) of the I-component Bernoulli mixture classifier (I = 1, . . . , 25).

References

1. Y. Al-Ohali, M. Cheriet, and C. Suen. Databases for recognition of handwritten
Arabic cheques. Pattern Recognition, 36:111–121, 2003.

2. M. A. Carreira-Perpiñán and S. Renals. Practical identifiability of finite mixtures
of multivariate Bernoulli distributions. Neural Computation, 12(1):141–152, 2000.

3. A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete
data via the EM algorithm (with discussion). Journal of the Royal Statistical Society

B, 39:1–38, 1977.
4. R. O. Duda and P. E. Hart. Pattern Classification and Scene Analysis. Wiley, 1973.
5. J. González, A. Juan, P. Dupont, E. Vidal, and F. Casacuberta. A Bernoulli mixture

model for word categorisation. In Proc. of the IX Spanish Symposium on Pattern

Recognition and Image Analysis, volume I, pages 165–170, Benicàssim (Spain), May
2001.

6. J. Grim, P. Pudil, and P. Somol. Multivariate Structural Bernoulli Mixtures for
Recognition of Handwritten Numerals. In Proc. of the ICPR 2000, volume 2, pages
585–589, Barcelona (Spain), September 2000.

7. A. K. Jain, R. P. W. Duin, and J. Mao. Statistical Pattern Recognition: A Review.
IEEE Trans. on PAMI, 22(1):4–37, 2000.

8. A. Juan and E. Vidal. Bernoulli mixture models for binary images. In Proc. of the

ICPR 2004. Submitted.
9. A. Juan and E. Vidal. On the use of Bernoulli mixture models for text classification.

Pattern Recognition, 35(12):2705–2710, December 2002.

