
EM Demystified: An Expectation-Maximization Tutorial

Yihua Chen and Maya R. Gupta
Department of Electrical Engineering

University of Washington
Seattle, WA 98195

{yhchen,gupta}@ee.washington.edu

ElectricalElectrical
EngineeringEngineering

UWUW
UWEE Technical Report

Number UWEETR-2010-0002

February 2010

Department of Electrical Engineering
University of Washington
Box 352500
Seattle, Washington 98195-2500
PHN: (206) 543-2150
FAX: (206) 543-3842
URL: http://www.ee.washington.edu

EM Demystified: An Expectation-Maximization Tutorial

Yihua Chen and Maya R. Gupta
Department of Electrical Engineering

University of Washington
Seattle, WA 98195

{yhchen,gupta}@ee.washington.edu

University of Washington, Dept. of EE, UWEETR-2010-0002

February 2010

Abstract

After a couple of disastrous experiments trying to teach EM, we carefully wrote this tutorial to give you an
intuitive and mathematically rigorous understanding of EM and why it works. We explain the standard applications
of EM to learning Gaussian mixture models (GMMs) and hidden Markov models (HMMs), and prepare you to apply
EM to new problems. This tutorial assumes you have an advanced undergraduate understanding of probability and
statistics.

1 Introduction
Expectation-maximization (EM) is a method to find the maximum likelihood estimator of a parameter ✓ of a probability
distribution. Let’s start with an example. Say that the probability of the temperature outside your window for each
of the 24 hours of a day x 2 R24 depends on the season ✓ 2 {summer, fall, winter, spring}, and that you know the
seasonal temperature distribution p(x | ✓). But say you can only measure the average temperature y = x̄ for the day,
and you’d like to guess what season ✓ it is (for example, is spring here yet?). The maximum likelihood estimate of ✓

maximizes p(y | ✓), but in some cases this may be hard to find. That’s when EM is useful – it takes your observed data
y, iteratively makes guesses about the complete data x, and iteratively finds the ✓ that maximizes p(x | ✓) over ✓. In
this way, EM tries to find the maximum likelihood estimate of ✓ given y. We’ll see in later sections that EM doesn’t
actually promise to find you the ✓ that maximizes p(y | ✓), but there are some theoretical guarantees, and it often does
a good job in practice, though it may need a little help in the form of multiple random starts.

First, we go over the steps of EM, breaking down the usual two-step description into a six-step description. Table 1
summarizes the key notation. Then we present a number of examples, including Gaussian mixture model (GMM) and
hidden Markov model (HMM), to show you how EM is applied. In Section 4 we walk you through the proof that the
EM estimate never gets worse as it iterates. To understand EM more deeply, we show in Section 5 that EM is iteratively
maximizing a tight lower bound to the true likelihood surface. In Section 6, we provide details and examples for how
to use EM for learning a GMM. Lastly, we consider using EM for maximum a posteriori (MAP) estimation.

2 The EM Algorithm
To use EM, you must be given some observed data y, a parametric density p(y | ✓), a description of some complete
data x that you wish you had, and the parametric density p(x | ✓). Later we’ll show you how to define the complete
data x for some standard EM applications. At this point, we’ll just assume you’ve already decided what the complete
data x is, and that it can be modeled as a continuous1 random variable X with density p(x | ✓), where ✓ 2 ⇥.2 You do

1The treatment of discrete random variables is very similar: one only need to replace the probability density function with probability mass
function and integral with summation.

2We assume that the support X of X , where X is the closure of the set
�
x

��
p(x | ✓) > 0

, does not depend on ✓, for example, we do not

address the case that ✓ is the end point of a uniform distribution.

1

Table 1: Notation Summary

y 2 Rd1 measurement or observation you have
Y 2 Rd1 random measurement; we assume you have a realization y of Y

x 2 Rd2 complete data you wish you had, but instead you have y = T (x)

X 2 Rd2 random complete data; a realization of X is x

z 2 Rd3 missing data; in some problems x = (y, z)

Z 2 Rd3 random missing data; a realization of Z is z

✓ 2 ⇥ parameter you’d like to estimate
✓

(m) 2 ⇥ mth estimate of ✓

p(y | ✓) density of y given ✓, sometimes we more explicitly but equivalently write: p

Y

(Y = y | ✓)
X support of X , that is, the closure of the set of x such that p(x | ✓) > 0

X (y) support of X conditioned on y, that is, the closure of the set of x such that p(x | y, ✓) > 0

, means “is defined to be”
E

X|y[X] =

R
X (y) xp(x | y)dx, you will also see this integral denoted by E

X|Y [X |Y = y]

DKL(P kQ) Kullback-Leibler divergence between probability distributions P and Q

not observe X directly; instead, you observe a realization y of the random variable Y = T (X) for some function T .
For example, the function T might map a set X to its mean, or if X is a complex number you see only its magnitude,
or T might return only the l1 norm of some vector X , etc.

Given that you only have y, you may want to form the maximum likelihood estimate (MLE) of ✓:

ˆ

✓MLE = arg max

✓2⇥
p(y | ✓). (2.1)

It is often easier to calculate the ✓ that maximizes the log-likelihood of y,

ˆ

✓MLE = arg max

✓2⇥
log p(y | ✓). (2.2)

and because log is monotonic, the solution to (2.2) will be the same as the solution to (2.1).
However, for some problems it is difficult to solve either (2.1) or (2.2). Then we can try EM: we make a guess

about the complete data X and solve for the ✓ that maximizes the (expected) log-likelihood of X . And once we have
a guess for ✓, we can make a better guess about the complete data X , and iterate.

EM is usually described as two steps (the E-step and the M-step), but we think it’s helpful to think of EM as six
distinct steps:

Step 1: Pick an initial guess ✓

(m=0) for ✓.

Step 2: Given the observed data y and pretending for the moment that your current guess ✓

(m) is correct, calculate
how likely it is that the complete data is exactly x, that is, calculate the conditional distribution p(x | y, ✓

(m)
).

Step 3: Throw away your guess ✓

(m), but keep Step 2’s guess of the probability of the complete data p(x | y, ✓

(m)
).

Step 4: In Step 5 we will make a new guess of ✓ that maximizes (the expected) log p(x | ✓). We’ll have to maximize
the expected log p(x | ✓) because we don’t really know x, but luckily in Step 2 we made a guess of the probability
distribution of x. So, we will integrate over all possible values of x, and for each possible value of x, we weight
log p(x | ✓) by the probability of seeing that x. However, we don’t really know the probability of seeing each x,
all we have is the guess that we made in Step 2, which was p(x | y, ✓

(m)
). The expected log p(x | ✓) is called the

Q-function:3

Q(✓ | ✓(m)
) = expected log p(x|✓) = E

X|y,✓

(m) [log p(X | ✓)] =

Z

X (y)
log p(x | ✓)p(x | y, ✓

(m)
)dx, (2.3)

3Note this Q-function has NOTHING to do with the sum of the tail of a Gaussian, which is sometimes also called the Q-function. In EM it’s
called the Q-function because the original paper [1] used a Q to notate it. We like to say that the Q stands for quixotic because it’s a bit crazy and
hopeful and beautiful to think you can find the maximum likelihood estimate of ✓ this way.

UWEETR-2010-0002 2

where you integrate over the support of X given y, X (y), which is the closure of the set {x |p(x | y) > 0}. Note
that ✓ is a free variable in (2.3), so the Q-function is a function of ✓, and also depends on your old guess ✓

(m).

Step 5: Make a new guess ✓

(m+1) for ✓ by choosing the ✓ that maximizes the expected log-likelihood given in (2.3).

Step 6: Let m = m + 1 and go back to Step 2.

Note in Section 1 we said EM tries to find not that EM finds, because the EM estimate is only guaranteed to never
get worse (see Section 4 for details), which often means it can find a peak in the likelihood p(y | ✓), but if the likelihood
function p(y | ✓) has multiple peaks, EM won’t necessarily find the global optimum of the likelihood. In practice, it is
common to start EM from multiple random initial guesses, and choose the one with the largest likelihood as the final
guess for ✓.

The traditional description of the EM algorithm consists of only two steps. The above steps 2, 3, and 4 combined
are called the E-step, and Step 5 is called the M-step:

E-step: Given the estimate from the mth iteration ✓

(m), form for ✓ 2 ⇥ the Q-function given in (2.3).

M-step: The (m + 1)th guess of ✓ is:

✓

(m+1)
= arg max

✓2⇥
Q(✓ | ✓(m)

).

It is sometimes helpful to write the Q-function integral in a different way. Note that

p(x | y, ✓) =

p(x, y | ✓)
p(y | ✓) by Bayes rule

=

p(x | ✓)
p(y | ✓) because Y = T (X) is a deterministic function.

If the last line isn’t clear, note that because Y = T (X) is a deterministic function, knowing x means you know y, and
thus asking for the probability of the pair (x, y) is like asking for the probability that your favorite composer is x =

Bach and y = male – it’s equivalent to the probability that your favorite composer is x = Bach. Thus, (2.3) can be
written as:

Q(✓ | ✓(m)
) =

Z

X (y)
log p(x | ✓)p(x | ✓(m)

)

p(y | ✓(m)
)

dx.

2.1 A Toy Example
We work out an example of EM that is heavily based on an example from the original EM paper [1].4

Imagine you ask n kids to choose a toy out of four choices. Let Y =

⇥
Y1 . . . Y4

⇤
T denote the histogram

of their n choices where Y1 is the number of kids that chose toy 1, etc. We can model this random histogram Y

as being distributed according to a multinomial distribution. The multinomial has two parameters: the number of
trials n 2 N and the probability that a kid will choose each of the four toys, which we’ll call p 2 (0, 1)

4, where
p1 + p2 + p3 + p4 = 1. Then the probability of seeing some particular histogram y is:

P (y | ✓) =

n!

y1!y2!y3!y4!
p

y1
1 p

y2
2 p

y3
3 p

y4
4 .

For this example we assume that the unknown probability p of choosing each of the toys is parameterized by some
hidden value ✓ 2 (0, 1) such that

p

✓

=

⇥
1
2 +

1
4✓

1
4 (1� ✓)

1
4 (1� ✓)

1
4✓

⇤
T

, ✓ 2 (0, 1).

The estimation problem is to guess the ✓ that maximizes the probability of the observed histogram of toy choices.
Because we assume Y is multinomial, we can write the probability of seeing the histogram y =

⇥
y1 y2 y3 y4

⇤
as

P (y | ✓) =

n!

y1!y2!y3!y4!

✓
1

2

+

✓

4

◆
y1 ✓

1� ✓

4

◆
y2 ✓

1� ✓

4

◆
y3 ✓

✓

4

◆
y4

.

4There were some historical precedents to EM before [1], but [1] is generally considered the original EM paper, and we leave a full discussion
of the historical development of EM to others.

UWEETR-2010-0002 3

For this simple example, one could directly maximize the log-likelihood log P (y | ✓), but here we will instead illustrate
how to use the EM algorithm to find the maximum likelihood estimate of ✓.

To use EM, we need to specify what the complete data X is. We will choose the complete data to enable us to
specify the probability mass function (pmf) in terms of only ✓ and 1 � ✓. To that end, we define the complete data
to be X =

⇥
X1 . . . X5

⇤
T , where X has a multinomial distribution with number of trials n and the probability of

each event is:
q

✓

=

⇥
1
2

1
4✓

1
4 (1� ✓)

1
4 (1� ✓)

1
4✓

⇤
T

, ✓ 2 (0, 1).

By defining X this way, we can then write the observed data Y as:

Y = T (X) =

⇥
X1 + X2 X3 X4 X5

⇤
T

.

Then the likelihood of a realization x of the complete data is

P (x | ✓) =

n!

Q5
i=1 x

i

!

✓
1

2

◆
x1 ✓

✓

4

◆
x2+x5 ✓

1� ✓

4

◆
x3+x4

. (2.4)

For EM, we must maximize the Q-function:

✓

(m+1)
= arg max

✓2(0,1)
Q(✓ | ✓(m)

)

⌘ arg max

✓2(0,1)
E

X|y,✓

(m) [log p(X | ✓)] (2.5)

To solve (2.5) we actually only need the terms of log p(x | ✓) that depend on ✓, because the other terms are irrelevant
as far as maximizing over ✓ is concerned. Take the log of (2.4) and ignore terms that don’t depend on ✓ to make (2.5)
into:

✓

(m+1)
= arg max

✓2(0,1)
E

X|y,✓

(m) [(X2 + X5) log ✓ + (X3 + X4) log(1� ✓)]

⌘ arg max

✓2(0,1)

�
log ✓

�
E

X|y,✓

(m) [X2] + E

X|y,✓

(m) [X5]
�

+ log(1� ✓)

�
E

X|y,✓

(m) [X3] + E

X|y,✓

(m) [X4]
��

.

(2.6)

To solve (2.6) we need the conditional expectation of the complete data X conditioned on already knowing the incom-
plete data y, which only leaves the uncertainty about X1 and X2. Since we do know that X1 + X2 = y1, we can say
that given y1 the pair X1, X2 is binomially distributed as follows:

P (x | y, ✓) =

y1!

x1!x2!

✓
2

2 + ✓

◆
x1 ✓

✓

2 + ✓

◆
x2

1{x1+x2=y1}

5Y

i=3

1{xi=yi�1}, (2.7)

where the 1{·} is the indicator function. Recognizing that (2.7) is a binomial distribution over the first two events, we
know that the binomial mean (which is the expectation we need to solve (2.6)) is

E

X|y,✓

[X] =

⇥
2

2+✓

y1
✓

2+✓

y1 y2 y3 y4

⇤
T

,

and thus (2.6) becomes

✓

(m+1)
= arg max

✓2(0,1)

✓
log ✓

✓
✓

(m)
y1

2 + ✓

(m)
+ y4

◆
+ log(1� ✓)(y2 + y3)

◆
=

✓

(m)

2+✓

(m) y1 + y4

✓

(m)

2+✓

(m) y1 + y2 + y3 + y4

.

If we choose the initial estimate as ✓

(0)
= 0.5, then the algorithm reaches ˆ

✓MLE to numerical precision on the 18th
iteration.

2.2 Can Y = T (X) be a Random Function?
Can Y = T (X) be a random function? No, to get the EM guarantees, Y has to be a deterministic function of X .
But that doesn’t mean you can’t deal with cases like Y = X + N , where N is some random noise drawn from some
distribution. The trick is to treat ˜

X = (X,N) as the complete data, then Y = T (

˜

X) is a deterministic function of ˜

X ,
and all is well.

UWEETR-2010-0002 4

3 EM for Missing Data
A common use of EM is to let the complete data X be the observed data Y plus some missing (also called latent or
hidden) data Z, so that X = (Y,Z). Two examples of EM for missing data are fitting a Gaussian mixture model
(GMM) and fitting a hidden Markov model (HMM). We describe how to apply EM to these two problems in the next
subsections.

In general when using EM with missing data, one can write the Q-function as an integral over the domain of Z

because the only random part of X is Z:

Q(✓ | ✓(m)
) = E

X|y,✓

(m) [log p

X

(X | ✓)]
= E

Z|y,✓

(m) [log p

X

(y, Z | ✓)]

=

Z

Z
log p

X

(y, z | ✓)p
Z|Y (z | y, ✓

(m)
)dz.

3.1 Specifying the Complete Data X for Fitting a Gaussian Mixture Model
In this section we explain how to specify the complete data X for the problem of fitting a GMM using EM. This
is sometimes called EM clustering. In words, you observe a bunch of points that you pretend were generated by k

Gaussians, and you want to find the means and covariances of the Gaussians, and the probability (weight) that a point
comes from each of the Gaussians. To make this estimation problem easier, you probabilistically assign each of the
observed points to each of the generating Gaussians – this is the hidden information.

Now we will say the same thing in math. For a GMM with k components, the density of Y 2 Rd is a sum of
weighted Gaussian densities {�(µ

i

,⌃

i

)}k

i=1:

p(y | ✓) =

kX

i=1

w

i

�(µ

i

,⌃

i

)

=

kX

i=1

w

i

exp

�
� 1

2 (y � µ

i

)

T

⌃

�1
i

(y � µ

i

)

�

(2⇡)

d/2|⌃
i

|1/2
, (3.1)

where w

i

> 0, i = 1, . . . , k, and
P

k

i=1 w

i

= 1. To fit the model, one must estimate the set of k means and k

covariance matrices, so one sets ✓ = {(w
i

, µ

i

,⌃

i

)}k

i=1.
Usually when fitting a GMM you have n observations of d-dimensional vectors drawn from (3.1), including hope-

fully a few observations from each Gaussian component. But since each of these samples is assumed independent, we
can consider for simplicity the case of just one random observation Y from the GMM.

For one observation, we let the complete data be X = (Y,Z), where Z 2 {1, . . . , k} is a discrete random
variable that defines which Gaussian component the data Y came from, so P (Z = i) = w

i

, i = 1, . . . , k, and
(Y |Z = i) ⇠ N

d

(µ

i

,⌃

i

), i = 1, . . . , k. Then the density of the complete data X is

p

X

(Y = y, Z = i | ✓) = w

i

exp

�
� 1

2 (y � µ

i

)

T

⌃

�1
i

(y � µ

i

)

�

(2⇡)

d/2|⌃
i

|1/2
.

If you then marginalize p

X

(y, i | ✓) over Z, you get

p(y | ✓) =

kX

i=1

w

i

p

X

(Y = y, Z = i | ✓),

which is in fact (3.1), as it should be.
The details for how to fit a GMM with EM are given in Section 6.

3.2 Specifying the Complete Data X for Fitting a Hidden Markov Model
A hidden Markov model (HMM) is used to model random sequences [2]. Here we explain how to specify the complete
data X to fit an HMM. For a more detailed description of EM for HMMs, see for example Bilmes’ tutorial [3].

UWEETR-2010-0002 5

Just like with a GMM, to fit an HMM you need many observations, in this case, many observed sequences. But
each of these observed sequences is considered independent and identically distributed, so we can consider the case of
just one sequence.

Say you observe one sequence of length T :

Y =

⇥
Y1 Y2 . . . Y

T

⇤
,

where each observation in the sequence is a d-dimensional vector: Y

t

2 Rd, t = 1, . . . , T . Then the complete data
X = (Y,Z) is the observed sequence Y plus the (hidden) state sequence Z:

Z =

⇥
Z1 Z2 . . . Z

T

⇤
,

where Z

t

2 {1, 2, . . . , k}, t = 1, . . . , T .
For example, in genomics one might be modeling a DNA sequence as an HMM, where there are two possible

hidden state values: coding region or non-coding region. Thus each Z

t

2 {coding, non-coding}, k = 2, and each
observation is Y

t

2 {A, T, C,G}.
In phoneme recognition, usually the first step of speech recognition, it is common to process the original time signal

into MFCC (mel-filtered cepstral coefficients) features Y

t

2 Rd, and then model the sequence of MFCC features for
each phoneme as a realization of an HMM, where the hidden states are the more detailed sub-phone units.

An HMM makes two assumptions. First, the conditional probability distribution of each hidden state z

t

given all
its previous states is equal to its conditional probability distribution given only its immediately previous state z

t�1 (this
is called the Markov property). Second, the observation y

t

at time t is conditionally independent of other observations
and states given the hidden state z

t

at time t. These two assumptions can be formalized by stating:

p(x) = p(y, z) =

TY

⌧=1

p(y

⌧

| z
⌧

)P (z1)

TY

t=2

P (z

t

| z
t�1).

To completely specify an HMM, we need three things:

1. An initial probability distribution over the k states: ⇡ =

⇥
⇡1 . . . ⇡

k

⇤
T , where ⇡

i

= P (Z1 = i).

2. A transition probability matrix P 2 Rk⇥k that specifies the probability of transitioning from state i to state j:
P

ij

= P (Z

t

= j |Z
t�1 = i).

3. The probability distribution of observations Y 2 Rd given hidden state i; we parameterize this with parameter
set ✓

i

, such that one can write p(Y

t

= y |Z
t

= i) = p(y | ✓
i

). For example, in modeling a DNA sequence, the ✓

i

is a pmf parameter that specifies the probabilities of A, T, C, and G being observed if the hidden state is Z

t

= i.
In modeling speech sequences, it is common to assume that given a particular hidden state, the observed MFCC
feature vector Y

t

is drawn from a GMM that corresponds to that hidden state. Then the parameter set ✓

i

for the
ith hidden state includes all the parameters for the corresponding GMM, so ✓

i

= {(w
ij

, µ

ij

,⌃

ij

)}Mi
j=1, where

M

i

is the number of components for the ith hidden state’s GMM.

Thus for an HMM the complete set of parameters to estimate is ✓ = {⇡,P, ✓1, . . . , ✓k

}.

4 Monotonicity
What theoretical guarantees does EM have? Here’s what you can prove: as the EM algorithm iterates, the (m + 1)th
guess ✓

(m+1) will never be less likely than the mth guess ✓

(m). This property is called the monotonicity of the EM
algorithm, and follows from the following theorem, which states that improving the Q-function will at least not make
the log-likelihood worse:

Theorem 4.1. Let L(✓) = log p(y | ✓) be the log-likelihood function. For ✓ 2 ⇥, if Q(✓ | ✓(m)
) � Q(✓

(m) | ✓(m)
),

then L(✓) � L(✓

(m)
).

UWEETR-2010-0002 6

We first discuss the theorem, then prove it. For the EM algorithm, the M-step ensures that

✓

(m+1)
= arg max

✓2⇥
Q(✓ | ✓(m)

),

and hence it must be that
Q(✓

(m+1) | ✓(m)
) � Q(✓

(m) | ✓(m)
).

Therefore we can apply Theorem 4.1 and conclude that

L(✓

(m+1)
) � L(✓

(m)
).

The monotonicity of the EM algorithm guarantees that as EM iterates, its guesses won’t get worse in terms of
their likelihood, but the monotonicity alone cannot guarantee the convergence of the sequence {✓(m)}.5 Indeed, there
is no general convergence theorem for the EM algorithm: the convergence of the sequence {✓(m)} depends on the
characteristics of L(✓) and Q(✓ | ✓0), and also the starting point ✓

(0). Under certain regularity conditions, we can
prove that {✓(m)} converges to a stationary point (not necessarily a local maximum) of L(✓). See [4] for a detailed
discussion; other discussions on the convergence can be found in [1, 5, 6].

We have seen that instead of solving the potentially difficult problem of directly maximizing L(✓), the EM algo-
rithm chooses to repeatedly maximize Q(✓ | ✓(m)

), but sometimes this maximization problem is still difficult. There
are many ways to deal with a hard or intractable M-step [7], and one of them is to merely seek to increase Q(✓ | ✓(m)

)

by finding a ✓

(m+1) 2 ⇥ that satisfies Q(✓

(m+1) | ✓(m)
) > Q(✓

(m) | ✓(m)
). This is called the generalized EM or GEM

algorithm. By Theorem 4.1, the GEM algorithm retains the monotonicity.
We encourage you to read the proof of Theorem 4.1 below, which we have written in a tutorial style:

Proof. We first derive a lower bound on the log-likelihood function:6

L(✓) = log p(y | ✓) by definition

= log

Z

X (y)
p(x, y | ✓)dx by the law of total probability

= log

Z

X (y)
p(x | ✓)dx because y = T (x) is deterministic

= log

Z

X (y)

p(x | ✓)
p(x | y, ✓

(m)
)

p(x | y, ✓

(m)
)dx multiply top and bottom by the same thing

= log E

X|y,✓

(m)


p(X | ✓)

p(X | y, ✓

(m)
)

�
rewrite as an expectation

� E

X|y,✓

(m)


log

p(X | ✓)
p(X | y, ✓

(m)
)

�
by Jensen’s inequality

= E

X|y,✓

(m) [log p(X | ✓)]

+ E

X|y,✓

(m)

h
� log p(X | y, ✓

(m)
)

i

= Q(✓ | ✓(m)
) + E

X|y,✓

(m)

h
� log p(X | y, ✓

(m)
)

i
(4.1)

where in the last line we used the definition of the Q-function in (2.3). The second term of (4.1) is called the differential
entropy of X given Y = y and ✓

(m), which we denote as h(X | y, ✓

(m)
), and thus we can conclude the first part of the

proof by restating (4.1) as a lower bound on the log-likelihood:

L(✓) � Q(✓ | ✓(m)
) + h(X | y, ✓

(m)
). (4.2)

Notice that in this lower bound, Q(✓ | ✓(m)
) is the only term that depends on ✓.

5If L(✓) is bounded above on ⇥, then the monotonicity implies the convergence of the sequence {L(✓(m))}, but not of the sequence {✓(m)}.
6This proof is one place where we need the previous assumption (see footnote 2 on page 1) that the parameter ✓ does not affect the support of

X , because (for example) in the 4th line of the proof you multiply top and bottom by the same factor, but if the support depends on ✓ then you could
get a 0/0 factor when you do that, and the rest of the proof won’t follow.

UWEETR-2010-0002 7

Next, consider the lower bound given by (4.2) for the special case that ✓ = ✓

(m):

Q(✓

(m) | ✓(m)
) + h(X | y, ✓

(m)
)

= E

X|y,✓

(m)

h
log p(X | ✓(m)

)

i
+ E

X|y,✓

(m)

h
� log p(X | y, ✓

(m)
)

i

=

Z

X (y)
p(x | y, ✓

(m)
) log p(x | ✓(m)

)dx�
Z

X (y)
p(x | y, ✓

(m)
) log p(x | y, ✓

(m)
)dx

=

Z

X (y)
p(x | y, ✓

(m)
) log

p(x | ✓(m)
)

p(x | y, ✓

(m)
)

dx

=

Z

X (y)
p(x | y, ✓

(m)
) log p(y | ✓(m)

)dx because p(x | ✓(m)
) = p(x, y | ✓(m)

)

= log p(y | ✓(m)
) because log p(y | ✓(m)

) can be pulled out of integral

, L(✓

(m)
) by definition. (4.3)

The theorem assumes that Q(✓ | ✓(m)
) � Q(✓

(m) | ✓(m)
), and thus we can conclude that:

L(✓) � Q(✓ | ✓(m)
) + h(X | y, ✓

(m)
) by (4.2)

� Q(✓

(m) | ✓(m)
) + h(X | y, ✓

(m)
) by theorem’s assumption

= L(✓

(m)
) by (4.3),

which completes the proof.

5 Maximization-Maximization
Another way to view the EM algorithm is as a joint maximization procedure that iteratively maximizes a better and
better lower bound F to the true likelihood L(✓) you would like to maximize [8]. Specifically, let ˜

P denote a distri-
bution of X with support X (y) and density p̃(x). Let P

✓

denote the conditional distribution with density p(x | y, ✓).
Then we will show that EM maximizes the following objective function alternately with respect to ˜

P and ✓:

F (

˜

P , ✓) = L(✓)�DKL(

˜

P kP

✓

),

where DKL(

˜

P kP

✓

) is the Kullback-Leibler divergence (a.k.a. relative entropy) between our current guess of the
distribution over the complete data ˜

P and the likelihood of the complete data given the parameter ✓.
The alternating maximization steps are:

Max Step 1: Given the estimate from the previous iteration ✓

(m�1), maximize F (

˜

P , ✓

(m�1)
) over ˜

P to find

˜

P

(m)
= arg max

P̃

F (

˜

P , ✓

(m�1)
). (5.1)

Max Step 2: Maximize F (

˜

P

(m)
, ✓) over ✓ to find

✓

(m)
= arg max

✓2⇥
F (

˜

P

(m)
, ✓). (5.2)

Since both steps perform maximization, this view of the EM algorithm is called maximization-maximization. This
joint maximization view of EM is useful as it has led to variants of the EM algorithm that use alternative strategies to
maximize F (

˜

P , ✓), for example by performing partial maximization in the first maximization step (see [8] for details).
Next we show that this really is the same as the EM algorithm. First, note that (5.1) can be simplified:

˜

P

(m)
= arg max

P̃

⇣
L(✓

(m�1)
)�DKL(

˜

P kP

✓

(m�1))

⌘
= arg min

P̃

DKL(

˜

P kP

✓

(m�1)) = P

✓

(m�1) ,

UWEETR-2010-0002 8

−6 −4 −2 0 2 4 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

x

p
(
x
)

(a) (b)

Figure 1: (a) Probability density of a 1-dimensional GMM with three components: µ1 = �2, µ2 = 1, µ3 = 3,
�

2
1 = 0.8, �

2
2 = 0.1, �

2
3 = 0.4, w1 = w2 = w3 = 1/3. (b) Probability density of a 2-dimensional GMM with two

components: µ1 = [1 2]

T , µ2 = [�3 � 5]

T , ⌃1 = diag(4, 0.5), ⌃2 = I2, w1 = w2 = 0.5.

that is, ˜

P

(m) has density p(x | y, ✓

(m�1)
). Second, (5.2) can be rewritten as the Q-function:

✓

(m)
= arg max

✓2⇥
L(✓)�DKL(

˜

P

(m) kP

✓

)

= arg max

✓2⇥

Z

X (y)
p(x | y, ✓

(m�1)
) log p(y | ✓)dx�DKL(

˜

P

(m) kP

✓

)

= arg max

✓2⇥

Z

X (y)
p(x | y, ✓

(m�1)
) log

p(x | ✓)
p(x | y, ✓)

dx�
Z

X (y)
p(x | y, ✓

(m�1)
) log

p(x | y, ✓

(m�1)
)

p(x | y, ✓)

dx

= arg max

✓2⇥

Z

X (y)
p(x | y, ✓

(m�1)
) log p(x | ✓)dx�

Z

X (y)
p(x | y, ✓

(m�1)
) log p(x | y, ✓

(m�1)
)dx

= arg max

✓2⇥

Z

X (y)
p(x | y, ✓

(m�1)
) log p(x | ✓)dx

= arg max

✓2⇥
E

X|y,✓

(m�1) [log p(X | ✓)]

= arg max

✓2⇥
Q(✓ | ✓(m�1)

),

which is just the standard M-step shown in Section 2.

6 Gaussian Mixture Model
We have introduced GMM in Section 3.1. Figure 1 shows the probability density funcitions of a 1-dimensional GMM
with three components and a 2-dimensional GMM with two components, respectively. In this section, we illustrate
how to use the EM algorithm to estimate the parameters of a GMM.

6.1 A Helpful Proposition
Before we proceed, we need to mention a proposition that can help simplify the computation of Q(✓ | ✓(m)

).

Proposition 6.1. Let the complete data X consist of n i.i.d. samples: X1, . . ., X

n

, that is, p(x | ✓) =

Q
n

i=1 p(x

i

| ✓)
for all x 2 X and for all ✓ 2 ⇥, and let y

i

= T (x

i

), i,= 1, . . . , n, then

Q(✓ | ✓(m)
) =

nX

i=1

Q

i

(✓ | ✓(m)
),

UWEETR-2010-0002 9

where
Q

i

(✓ | ✓(m)
) = E

Xi|yi,✓
(m) [log p(X

i

| ✓)] , i = 1, . . . , n.

Proof. This is because

Q(✓ | ✓(m)
) = E

X|y,✓

(m) [log p(X | ✓)]

= E

X|y,✓

(m)

"
log

nY

i=1

p(X

i

| ✓)
#

by the i.i.d. assumption

= E

X|y,✓

(m)

"
nX

i=1

log p(X

i

| ✓)
#

=

nX

i=1

E

Xi|y,✓

(m) [log p(X

i

| ✓)]

=

nX

i=1

E

Xi|yi,✓
(m) [log p(X

i

| ✓)] because p(x

i

| y, ✓

(m)
) = p(x

i

| y
i

, ✓

(m)
),

where p(x

i

| y, ✓

(m)
) = p(x

i

| y
i

, ✓

(m)
) is because of the i.i.d. assumption, y

i

= T (x

i

), and Bayes’ rule.

6.2 Derivation of EM for GMM Fitting
Now given n i.i.d. samples y1, y2, . . . , yn

2 Rd from a GMM with k components, consider the problem of estimating
its parameter set ✓ = {(w

j

, µ

j

,⌃

j

)}k

j=1. Let

�(y |µ,⌃) , 1

(2⇡)

d/2|⌃|1/2
exp

✓
�1

2

(y � µ)

T

⌃

�1
(y � µ)

◆
,

and define �

(m)
ij

to be your guess at the mth iteration of the probability that the ith sample belongs to the jth Gaussian
component, that is,

�

(m)
ij

, P (Z

i

= j |Y
i

= y

i

, ✓

(m)
) =

w

(m)
j

�(y

i

|µ(m)
j

,⌃

(m)
j

)

P
k

l=1 w

(m)
l

�(y

i

|µ(m)
l

,⌃

(m)
l

)

,

which satisfies
P

k

j=1 �

(m)
ij

= 1.
First, we have

Q

i

(✓ | ✓(m)
) = E

Zi|yi,✓
(m) [log p

X

(y

i

, Z

i

| ✓)]

=

kX

j=1

�

(m)
ij

log p

X

(y

i

, j | ✓)

=

kX

j=1

�

(m)
ij

log w

j

�(y

i

|µ
j

,⌃

j

)

=

kX

j=1

�

(m)
ij

✓
log w

j

� 1

2

log|⌃
j

|� 1

2

(y

i

� µ

j

)

T

⌃

�1
j

(y

i

� µ

j

)

◆
+ constant.

Then according to Proposition 6.1, we obtain7

Q(✓ | ✓(m)
) =

nX

i=1

kX

j=1

�

(m)
ij

✓
log w

j

� 1

2

log|⌃
j

|� 1

2

(y

i

� µ

j

)

T

⌃

�1
j

(y

i

� µ

j

)

◆
,

7We drop the constant term in Qi(✓ | ✓(m)) when we sum Qi(✓ | ✓(m)) to get Q(✓ | ✓(m)).

UWEETR-2010-0002 10

which completes the E-step. Let

n

(m)
j

=

nX

i=1

�

(m)
ij

,

and we can rewrite Q(✓ | ✓(m)
) as

Q(✓ | ✓(m)
) =

kX

j=1

n

(m)
j

✓
log w

j

� 1

2

log|⌃
j

|
◆
� 1

2

nX

i=1

kX

j=1

�

(m)
ij

(y

i

� µ

j

)

T

⌃

�1
j

(y

i

� µ

j

).

The M-step is to solve
maximize

✓

Q(✓ | ✓(m)
)

subject to
kX

j=1

w

j

= 1, w

j

� 0, j = 1, . . . , k,

⌃

j

� 0, j = 1, . . . , k,

where ⌃

j

� 0 means that ⌃

j

is positive definite. The above optimization problem turns out to be much easier to solve
than directly maximizing the following log-likelihood function

L(✓) =

nX

i=1

log

0

@
kX

j=1

w

j

�(y

i

|µ
j

,⌃

j

)

1

A
.

To solve for the weights, we form the Lagrangian8

J(w, �) =

kX

j=1

n

(m)
j

log w

j

+ �

0

@
kX

j=1

w

j

� 1

1

A
,

and the optimal weights satisfy
@J

@w

j

=

n

(m)
j

w

j

+ � = 0, j = 1, . . . , k. (6.1)

Combine (6.1) with the constraint that
P

k

j=1 w

j

= 1, and we have

w

(m+1)
j

=

n

(m)
j

P
k

j=1 n

(m)
j

=

n

(m)
j

n

, j = 1, . . . , k.

To solve for the means, we let

@Q(✓ | ✓(m)
)

@µ

j

= ⌃

�1
j

nX

i=1

�

(m)
ij

y

i

� n

(m)
j

µ

j

!
= 0, j = 1, . . . , k,

which yields

µ

(m+1)
j

=

1

n

(m)
j

nX

i=1

�

(m)
ij

y

i

, j = 1, . . . , k.

To solve for the covariance matrix, we let9

@Q(✓ | ✓(m)
)

@⌃

j

= �1

2

n

(m)
j

@

@⌃

j

log|⌃
j

|� 1

2

nX

i=1

�

(m)
ij

@

@⌃

j

(y

i

� µ

j

)

T

⌃

�1
j

(y

i

� µ

j

)

= �1

2

n

(m)
j

⌃

�1
j

+

1

2

nX

i=1

�

(m)
ij

⌃

�1
j

(y

i

� µ

j

)(y

i

� µ

j

)

T

⌃

�1
j

= 0, j = 1, . . . , k,

8Not comfortable with the method of Lagrange multipliers? There are a number of excellent tutorials on this topic; see for example http:
//www.slimy.com/

˜

steuard/teaching/tutorials/Lagrange.html.
9See [9] for matrix derivatives.

UWEETR-2010-0002 11

and get

⌃

(m+1)
j

=

1

n

(m)
j

nX

i=1

�

(m)
ij

⇣
y

i

� µ

(m+1)
j

⌘⇣
y

i

� µ

(m+1)
j

⌘
T

, j = 1, . . . , k.

We summarize the whole procedure below.

EM algorithm for estimating GMM parameters

1. Initialization: Choose the initial estimates w

(0)
j

, µ

(0)
j

, ⌃

(0)
j

, j = 1, . . . , k, and compute the initial
log-likelihood

L

(0)
=

1
n

P
n

i=1 log

⇣P
k

j=1 w

(0)
j

�(y

i

|µ(0)
j

,⌃

(0)
j

)

⌘
.

2. E-step: Compute

�

(m)
ij

=

w

(m)
j �(yi |µ(m)

j ,⌃(m)
j)

P k
l=1 w

(m)
l �(yi |µ(m)

l ,⌃(m)
l)

, i = 1, . . . , n, j = 1, . . . , k,

and

n

(m)
j

=

P
n

i=1 �

(m)
ij

, j = 1, . . . , k.

3. M-step: Compute the new estimates

w

(m+1)
j

=

n

(m)
j

n

, j = 1, . . . , k,

µ

(m+1)
j

=

1

n

(m)
j

P
n

i=1 �

(m)
ij

y

i

, j = 1, . . . , k,

⌃

(m+1)
j

=

1

n

(m)
j

P
n

i=1 �

(m)
ij

⇣
y

i

� µ

(m+1)
j

⌘⇣
y

i

� µ

(m+1)
j

⌘
T

, j = 1, . . . , k.

4. Convergence check: Compute the new log-likelihood

L

(m+1)
=

1
n

P
n

i=1 log

⇣P
k

j=1 w

(m+1)
j

�(y

i

|µ(m+1)
j

,⌃

(m+1)
j

)

⌘
.

Return to step 2 if |L(m+1) � L

(m)| > � for a preset threshold �; otherwise end the algorithm.

6.3 Convergence and Initialization
For an analysis of the convergence of the EM algorithm for fitting GMMs see [10].

The k-means algorithm is often used to find a good initialization. Basically, the k-means algorithm provides a
coarse estimate of P (Z

i

= j |Y
i

= y

i

), which can be stated as

�

(�1)
ij

=

(
1, x

i

is in cluster j,

0, otherwise.

With �

(�1)
ij

, i = 1, . . . , n, j = 1, . . . , k, we can use the same formulas in the M-step to obtain w

(0)
j

, µ

(0)
j

, ⌃

(0)
j

,
j = 1, . . . , k.

6.4 An Example of GMM Fitting
Consider a 2-component GMM in R2 with the following parameters

µ1 =

2

64
0

4

3

75 , µ2 =

2

64
�2

0

3

75 , ⌃1 =

2

64
3 0

0

1
2

3

75 , ⌃2 =

2

64
1 0

0 2

3

75 , w1 = 0.6, w2 = 0.4.

UWEETR-2010-0002 12

Its density is shown in Figure 2(a). Figure 2(b) shows 1000 samples randomly drawn from this distribution; samples
from the 1st and 2nd components are marked red and blue, respectively. We ran the k-means algorithm on these
samples and used the centroids of the two clusters as the initial estimates of the means:

µ

(0)
1 =

2

64
0.0823

3.9189

3

75 , µ

(0)
2 =

2

64
�2.0706

�0.2327

3

75 .

Also, we let w

(0)
1 = w

(0)
2 = 0.5 and ⌃

(0)
1 = ⌃

(0)
2 = I2. The density corresponding to these initial estimates is shown

in Figure 2(c). We set � = 10

�3, and in this example, the EM algorithm only needs three iterations to converge.
Figure 2(d)–(f) show the estimated density at each iteration. The final estimates are

µ

(3)
1 =

2

64
0.0806

3.9445

3

75 , µ

(3)
1 =

2

64
�2.0181

�0.1740

3

75 , ⌃

(3)
1 =

2

64
2.7452 0.0568

0.0568 0.4821

3

75 , ⌃

(3)
2 =

2

64
0.8750 �0.0153

�0.0153 1.7935

3

75 ,

and w

(3)
1 = 0.5966 and w

(3)
2 = 0.4034. These estimates are close to the true ones as can be confirmed by visually

comparing Figure 2(f) with Figure 2(a).

6.5 Singularity Problem in Using EM for GMM Fitting
The EM algorithm does well in the previous example, but sometimes it can fail by approaching singularities of the log-
likelihood function, especially when the number of components k is large. This is an inherent problem with applying
maximum likelihood estimation to GMM due to the fact that the log-likelihood function L(✓) is not bounded above.
For example, let µ1 = y1, ⌃1 = �

2
1I

d

and 0 < w1 < 1, and we have

L(✓) =

nX

i=1

log

0

@
kX

j=1

w

j

�(y

i

|µ
j

,⌃

j

)

1

A

= log

0

@
kX

j=1

w

j

�(y1 |µj

,⌃

j

)

1

A
+

nX

i=2

log

0

@
kX

j=1

w

j

�(y

i

|µ
j

,⌃

j

)

1

A

� log (w1�(y1 |µ1,⌃1)) +

nX

i=2

log

0

@
kX

j=2

w

j

�(y

i

|µ
j

,⌃

j

)

1

A

= log

�
w1�(y1 | y1, �

2
1I

d

)

�
+

nX

i=2

log

0

@
kX

j=2

w

j

�(y

i

|µ
j

,⌃

j

)

1

A

= log w1 �
d

2

log(2⇡)� d

2

log �

2
1 +

nX

i=2

log

0

@
kX

j=2

w

j

�(y

i

|µ
j

,⌃

j

)

1

A
.

If we let �

2
1 ! 0 and keep everything else fixed, then the above lower bound of L(✓) diverges to infinity and thus

L(✓)!1. So for GMM, maximizing the likelihood is an ill-posed problem. However, heuristically, we can still find
meaningful solutions at finite local maxima of the log-likelihood function. In order to avoid such singularities when
applying the EM algorithm, one can resort to ad hoc techniques such as reinitializing the algorithm after detecting that
one component is “collapsing” onto a data sample; one can also adopt the Bayesian approach (discussed in Section 7)
as a more principled way to deal with this problem.

UWEETR-2010-0002 13

(a)

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

x1

x

2

(b)

(c) (d)

(e) (f)

Figure 2: GMM fitting example in Section 6.4: (a) shows the density of a 2-component GMM in R2; (b) shows 1000
i.i.d. samples from this distribution; (c)–(f) show the estimated density at each iteraton.

UWEETR-2010-0002 14

7 Maximum A Posteriori
In maximum a posteriori (MAP) estimation, one tries to maximize the posterior instead of the likelihood, so we can
write the MAP estimator of ✓ as

ˆ

✓MAP = arg max

✓2⇥
log p(✓ | y) = arg max

✓2⇥
(log p(y | ✓) + log p(✓)) = arg max

✓2⇥
(L(✓) + log p(✓)),

where p(✓) is a prior probability distribution of ✓. By modifying the M-step, the EM algorithm can be easily extended
for MAP estimation:

E-step: Given the estimate from the previous iteration ✓

(m), compute for ✓ 2 ⇥ the conditional expectation

Q(✓ | ✓(m)
) = E

X|y,✓

(m) [log p(X | ✓)] .

M-step: Maximize Q(✓ | ✓(m)
) + log p(✓) over ✓ 2 ⇥ to find

✓

(m+1)
= arg max

✓2⇥

⇣
Q(✓ | ✓(m)

) + log p(✓)

⌘
.

Again we have the following theorem to show the monotonicity of the modified EM algorithm:

Theorem 7.1. Let L(✓) = log p(y | ✓) be the log-likelihood function and p(✓) a prior probability distribution of ✓ on
⇥. For ✓ 2 ⇥, if

Q(✓ | ✓(m)
) + log p(✓) � Q(✓

(m) | ✓(m)
) + log p(✓

(m)
), (7.1)

then
L(✓) + log p(✓) � L(✓

(m)
) + log p(✓

(m)
).

Proof. Add log p(✓) to both sides of (4.2), and we have

L(✓) + log p(✓) � Q(✓ | ✓(m)
) + log p(✓) + h(X | y, ✓

(m)
). (7.2)

Similarly, by adding log p(✓

(m)
) to both sides of (4.3), we have

L(✓

(m)
) + log p(✓

(m)
) = Q(✓

(m) | ✓(m)
) + log p(✓

(m)
) + h(X | y, ✓

(m)
). (7.3)

If (7.1) holds, then we can combine (7.2) and (7.3), and have

L(✓) + log p(✓) � Q(✓ | ✓(m)
) + log p(✓) + h(X | y, ✓

(m)
)

� Q(✓

(m) | ✓(m)
) + log p(✓

(m)
) + h(X | y, ✓

(m)
)

= L(✓

(m)
) + log p(✓

(m)
),

which ends the proof.

In Section 6.5, we mentioned that the EM algorithm might fail at finding meaningful parameters for GMM due to
the singularities of the log-likelihood function. However, when using the extended EM algorithm for MAP estimation,
one can choose an appropriate prior p(✓) to avoid such singularities. We refer the reader to [11] for details.

8 Last Words and Acknowledgements
EM is a handy tool, but please use it responsibly. Keep in mind its limitations, and always check the concavity of
your log-likelihood; if your log-likelihood isn’t concave, don’t trust one run of EM to find the optimal solution. Non-
concavity can happen to you! In fact, the most popular applications of EM, such as GMM and HMM, are usually not
concave, and can benefit from multiple initializations. For non-concave likelihood functions, it might be helpful to use
EM in conjunction with a global optimizer designed to explore the space more randomly: the global optimizer provides
the exploration strategy while EM does the actual local searches. For more on state-of-the-art global optimization, see
for example [12, 13, 14, 15, 16, 17].

This tutorial was supported in part by the United States Office of Naval Research. We thank the following people
for their suggested edits and proofreading: Ji Cao, Sergey Feldman, Bela Frigyik, Eric Garcia, Adam Gustafson, Amol
Kapila, Nicole Nichols, Mikyoung Park, Nathan Parrish, Tien Re, Eric Swanson, and Kristi Tsukida.

UWEETR-2010-0002 15

References
[1] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incomplete data via the EM algo-

rithm,” Journal of the Royal Statistical Society, Series B (Methodological), vol. 39, no. 1, pp. 1–38, 1977.

[2] L. R. Rabiner, “A tutorial on hidden Markov models and selected applications in speech recognition,” Proceed-
ings of the IEEE, vol. 77, pp. 257–286, Feb. 1989.

[3] J. A. Bilmes, “A gentle tutorial on the EM algorithm and its application to parameter estimation for gaussian
mixture and hidden Markov models,” Tech. Rep. TR-97-021, International Computer Science Institute, April
1998.

[4] C. F. J. Wu, “On the convergence properties of the EM algorithm,” The Annals of Statistics, vol. 11, pp. 95–103,
March 1983.

[5] R. A. Boyles, “On the convergence of the EM algorithm,” Journal of the Royal Statistical Society, Series B
(Methodological), vol. 45, no. 1, pp. 47–50, 1983.

[6] R. A. Redner and H. F. Walker, “Mixture densities, maximum likelihood and the EM algorithm,” SIAM Review,
vol. 26, pp. 195–239, April 1984.

[7] A. Roche, “EM algorithm and variants: An informal tutorial.” Unpublished (available online at ftp://ftp.
cea.fr/pub/dsv/madic/publis/Roche_em.pdf), 2003.

[8] R. M. Neal and G. E. Hinton, “A view of the EM algorithm that justifies incremental, sparse, and other variants,”
in Learning in Graphical Models (M. I. Jordan, ed.), MIT Press, Nov. 1998.

[9] K. B. Petersen and M. S. Pedersen, “The matrix cookbook,” Nov. 2008. http://matrixcookbook.com/.

[10] L. Xu and M. I. Jordan, “On convergence properties of the EM algorithm for Gaussian mixtures,” Neural Com-
putation, vol. 8, pp. 129–151, Jan. 1996.

[11] C. Fraley and A. E. Raftery, “Bayesian regularization for normal mixture estimation and model-based clustering,”
Journal of Classification, vol. 24, pp. 155–181, Sept. 2007.

[12] D. R. Jones, “A taxonomy of global optimization methods based on response surfaces,” Journal of Global Opti-
mization, vol. 21, pp. 345–383, Dec. 2001.

[13] R. Mendes, J. Kennedy, and J. Neves, “The fully informed particle swarm: simpler, maybe better,” IEEE Trans-
actions on Evolutionary Computation, vol. 8, pp. 204–210, June 2004.

[14] M. M. Ali, C. Khompatraporn, and Z. B. Zabinsky, “A numerical evaluation of several stochastic algorithms on
selected continuous global optimization test problems,” Journal of Global Optimization, vol. 31, pp. 635–672,
April 2005.

[15] C. Khompatraporn, J. D. Pintér, and Z. B. Zabinsky, “Comparative assessment of algorithms and software for
global optimization,” Journal of Global Optimization, vol. 31, pp. 613–633, April 2005.

[16] M. Hazen and M. R. Gupta, “A multiresolutional estimated gradient architecture for global optimization,” in
Proceedings of the IEEE Congress on Evolutionary Computation, pp. 3013–3020, 2006.

[17] M. Hazen and M. R. Gupta, “Gradient estimation in global optimization algorithms,” in Proceedings of the IEEE
Congress on Evolutionary Computation, pp. 1841–1848, 2009.

UWEETR-2010-0002 16

