
Probability density function

Many samples from a multivariate normal distribution, shown

along with the 3-sigma ellipse, the two marginal distributions,

and the two 1-d histograms.

Notation

Parameters μ ∈ Rk — location
Σ ∈ Rk×k — covariance (nonnegative-
definite matrix)

Support x ∈ μ+span(Σ) ⊆ Rk

pdf

exists only when Σ is positive-definite
CDF (no analytic expression)
Mean μ
Mode μ
Variance Σ
Entropy

MGF

CF

Multivariate normal distribution
From Wikipedia, the free encyclopedia

In probability theory and statistics, the multivariate normal distribution
or multivariate Gaussian distribution, is a generalization of the one-
dimensional (univariate) normal distribution to higher dimensions. One
possible definition is that a random vector is said to be k-variate normally
distributed if every linear combination of its k components has a univariate
normal distribution. However, its importance derives mainly from the
multivariate central limit theorem. The multivariate normal distribution is
often used to describe, at least approximately, any set of (possibly)
correlated real-valued random variables each of which clusters around a
mean value.
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Notation and parametrization
The multivariate normal distribution of a k-dimensional random vector x = [X1, X2, …, Xk] can be written in the following
notation:
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or to make it explicitly known that X is k-dimensional,

with k-dimensional mean vector

and k x k covariance matrix

Definition
A random vector x = (X1, …, Xk)' is said to have the multivariate normal distribution if it satisfies the following equivalent
conditions.[1]

Every linear combination of its components Y = a1X1 + … + akXk is normally distributed. That is, for any constant vector
a ∈ Rk, the random variable Y = a##x has a univariate normal distribution.

There exists a random ℓ-vector z, whose components are independent standard normal random variables, a k-vector μ,
and a k×ℓ matrix A, such that x = Az + μ. Here ℓ is the rank of the covariance matrix Σ = AA##. Especially in the case
of full rank, see the section below on Geometric interpretation.

There is a k-vector μ and a symmetric, nonnegative-definite k×k matrix Σ, such that the characteristic function of x is

The covariance matrix is allowed to be singular (in which case the corresponding distribution has no density). This case arises
frequently in statistics; for example, in the distribution of the vector of residuals in the ordinary least squares regression. Note
also that the Xi are in general not independent; they can be seen as the result of applying the matrix A to a collection of
independent Gaussian variables z.

Properties

Density function

Non-degenerate case

The multivariate normal distribution is said to be "non-degenerate" when the symmetric covariance matrix  is positive
definite. In this case the distribution has density[2]

where  is the determinant of . Note how the equation above reduces to that of the univariate normal distribution if  is a 
 matrix (i.e. a real number).
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Each iso-density locus—the locus of points in k-dimensional space each of which gives the same particular value of the density
—is an ellipse or its higher-dimensional generalization; hence the multivariate normal is a special case of the elliptical
distributions.

Bivariate case

In the 2-dimensional nonsingular case (k = rank(Σ) = 2), the probability density function of a vector [X Y]# is

where ρ is the correlation between X and Y and where  and . In this case,

In the bivariate case, the first equivalent condition for multivariate normality can be made less restrictive: it is sufficient to
verify that countably many distinct linear combinations of X and Y are normal in order to conclude that the vector [X Y]# is
bivariate normal.[3]

The bivariate iso-density loci plotted in the x,y-plane are ellipses. As the correlation parameter ρ increases, these loci appear to
be squeezed to the following line :

This is because the above expression - but without the rho being inside a signum function - is the best linear unbiased prediction
of Y given a value of X.[4]

Degenerate case

If the covariance matrix  is not full rank, then the multivariate normal distribution is degenerate and does not have a density.
More precisely, it does not have a density with respect to k-dimensional Lebesgue measure (which is the usual measure
assumed in calculus-level probability courses). Only random vectors whose distributions are absolutely continuous with respect
to a measure are said to have densities (with respect to that measure). To talk about densities but avoid dealing with measure-
theoretic complications it can be simpler to restrict attention to a subset of  of the coordinates of  such that the
covariance matrix for this subset is positive definite; then the other coordinates may be thought of as an affine function of the
selected coordinates.[citation needed]

To talk about densities meaningfully in the singular case, then, we must select a different base measure. Using the disintegration
theorem we can define a restriction of Lebesgue measure to the -dimensional affine subspace of  where the
Gaussian distribution is supported, i.e. . With respect to this probability measure the distribution
has density:

where  is the generalized inverse and det* is the pseudo-determinant.[5]

Higher moments

Main article: Isserlis’ theorem

The kth-order moments of x are defined by
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where r1 + r2 + � + rN = k.

The central k-order central moments are given as follows

(a) If k is odd, μ1, …, N(x − μ) = 0.

(b) If k is even with k = 2λ, then

where the sum is taken over all allocations of the set  into λ (unordered) pairs. That is, if you have a kth (
= 2λ = 6) central moment, you will be summing the products of λ = 3 covariances (the -μ notation has been dropped in the
interests of parsimony):

This yields  terms in the sum (15 in the above case), each being the product of λ (in this case 3)
covariances. For fourth order moments (four variables) there are three terms. For sixth-order moments there are 3 × 5 = 15
terms, and for eighth-order moments there are 3 × 5 × 7 = 105 terms.

The covariances are then determined by replacing the terms of the list  by the corresponding terms of the list
consisting of r1 ones, then r2 twos, etc.. To illustrate this, examine the following 4th-order central moment case:

where  is the covariance of xi and xj. The idea with the above method is you first find the general case for a kth moment
where you have k different x variables -  and then you can simplify this accordingly. Say, you have 

 then you simply let xi = xj and realise that  = σi
2.

Likelihood function

If the mean and variance matrix are unknown, a suitable log likelihood function for a single observation x would
be:[citation needed]
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where x is a vector of real numbers. The complex case, where z is a vector of complex numbers, would be:

(with  the conjugate transpose). A similar notation is used for multiple linear regression.[6]

Entropy

The differential entropy of the multivariate normal distribution is[7]

where the bars denote the matrix determinant.

Kullback–Leibler divergence

The Kullback–Leibler divergence from  to , for non-singular matrices Σ0 and Σ1, is:[8]

where  is the dimension of the vector space.

The logarithm must be taken to base e since the two terms following the logarithm are themselves base-e logarithms of
expressions that are either factors of the density function or otherwise arise naturally. The equation therefore gives a result
measured in nats. Dividing the entire expression above by loge 2 yields the divergence in bits.

Cumulative distribution function

The cumulative distribution function (cdf) F(x0) of a random vector x is defined as the probability that all components of x are
less than or equal to the corresponding values in the vector x0. Though there is no closed form for F(x), there are a number of
algorithms that estimate it numerically.

Prediction Interval

The prediction interval for the multivariate normal distribution yields a region consisting of those vectors x satisfying

Here  is a -dimensional vector,  is the known -dimensional mean vector,  is the known covariance matrix and  is
the quantile function for probability  of the chi-squared distribution with  degrees of freedom.[9]

When  the expression defines the interior of an ellipse and the chi-squared distribution simplifies to an exponential
distribution with mean equal to two.

Joint normality

Normally distributed and independent
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If X and Y are normally distributed and independent, this implies they are "jointly normally distributed", i.e., the pair (X, Y)
must have multivariate normal distribution. However, a pair of jointly normally distributed variables need not be independent
(would only be so if uncorrelated,  ).

Two normally distributed random variables need not be jointly bivariate normal

See also: normally distributed and uncorrelated does not imply independent

The fact that two random variables X and Y both have a normal distribution does not imply that the pair (X, Y) has a joint
normal distribution. A simple example is one in which X has a normal distribution with expected value 0 and variance 1, and
Y = X if |X| > c and Y = −X if |X| < c, where c > 0. There are similar counterexamples for more than two random variables. In
general, they sum to a mixture model.

Correlations and independence

In general, random variables may be uncorrelated but highly dependent. But if a random vector has a multivariate normal
distribution then any two or more of its components that are uncorrelated are independent. This implies that any two or more of
its components that are pairwise independent are independent.

But it is not true that two random variables that are (separately, marginally) normally distributed and uncorrelated are
independent. Two random variables that are normally distributed may fail to be jointly normally distributed, i.e., the vector
whose components they are may fail to have a multivariate normal distribution. For an example of two normally distributed
random variables that are uncorrelated but not independent, see normally distributed and uncorrelated does not imply
independent.

Conditional distributions
If μ and Σ are partitioned as follows

then, the distribution of x1 conditional on x2 = a is multivariate normal (x1|x2 = a) ~ N(μ, Σ) where

and covariance matrix

[10]

This matrix is the Schur complement of Σ22 in Σ. This means that to calculate the conditional covariance matrix, one inverts the
overall covariance matrix, drops the rows and columns corresponding to the variables being conditioned upon, and then inverts
back to get the conditional covariance matrix. Here  is the generalized inverse of .

Note that knowing that x2 = a alters the variance, though the new variance does not depend on the specific value of a; perhaps
more surprisingly, the mean is shifted by ; compare this with the situation of not knowing the value of a,
in which case x1 would have distribution .

An interesting fact derived in order to prove this result, is that the random vectors  and  are
independent.
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The matrix Σ12Σ22
−1 is known as the matrix of regression coefficients.

Bivariate case

In the bivariate case where x is partitioned into X1 and X2, the conditional distribution of X1 given X2 is[11]

where  is the correlation coefficient between X1 and X2.

Bivariate conditional expectation

In the case

the following result holds[citation needed]

where the final ratio here is called the inverse Mills ratio.

Marginal distributions
To obtain the marginal distribution over a subset of multivariate normal random variables, one only needs to drop the irrelevant
variables (the variables that one wants to marginalize out) from the mean vector and the covariance matrix. The proof for this
follows from the definitions of multivariate normal distributions and linear algebra.[12]

Example

Let x = [X1, X2, X3] be multivariate normal random variables with mean vector μ = [μ1, μ2, μ3] and covariance matrix Σ
(standard parametrization for multivariate normal distributions). Then the joint distribution of x## = [X1, X3] is multivariate

normal with mean vector μ## = [μ1, μ3] and covariance matrix .

Affine transformation
If y = c + Bx is an affine transformation of  where c is an  vector of constants and B is a constant 

 matrix, then y has a multivariate normal distribution with expected value c + Bμ and variance BΣBT i.e., 
. In particular, any subset of the xi has a marginal distribution that is also multivariate normal.

To see this, consider the following example: to extract the subset (x1, x2, x4)T, use

which extracts the desired elements directly.
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Another corollary is that the distribution of Z = b · x, where b is a constant vector of the same length as x and the dot indicates a
vector product, is univariate Gaussian with . This result follows by using

Observe how the positive-definiteness of Σ implies that the variance of the dot product must be positive.

An affine transformation of x such as 2x is not the same as the sum of two independent realisations of x.

Geometric interpretation
The equidensity contours of a non-singular multivariate normal distribution are ellipsoids (i.e. linear transformations of
hyperspheres) centered at the mean.[13] Hence the multivariate normal distribution is an example of the class of elliptical
distributions. The directions of the principal axes of the ellipsoids are given by the eigenvectors of the covariance matrix Σ. The
squared relative lengths of the principal axes are given by the corresponding eigenvalues.

If Σ = UΛUT = UΛ1/2(UΛ1/2)T is an eigendecomposition where the columns of U are unit eigenvectors and Λ is a diagonal
matrix of the eigenvalues, then we have

Moreover, U can be chosen to be a rotation matrix, as inverting an axis does not have any effect on N(0, Λ), but inverting a
column changes the sign of U's determinant. The distribution N(μ, Σ) is in effect N(0, I) scaled by Λ1/2, rotated by U and
translated by μ.

Conversely, any choice of μ, full rank matrix U, and positive diagonal entries Λi yields a non-singular multivariate normal
distribution. If any Λi is zero and U is square, the resulting covariance matrix UΛUT is singular. Geometrically this means that
every contour ellipsoid is infinitely thin and has zero volume in n-dimensional space, as at least one of the principal axes has
length of zero.

Estimation of parameters
The derivation of the maximum-likelihood estimator of the covariance matrix of a multivariate normal distribution is perhaps
surprisingly subtle and elegant. See estimation of covariance matrices.

In short, the probability density function (pdf) of a multivariate normal is

and the ML estimator of the covariance matrix from a sample of n observations is

which is simply the sample covariance matrix. This is a biased estimator whose expectation is

An unbiased sample covariance is
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The Fisher information matrix for estimating the parameters of a multivariate normal distribution has a closed form expression.
This can be used, for example, to compute the Cramér–Rao bound for parameter estimation in this setting. See Fisher
information for more details.

Bayesian inference
In Bayesian statistics, the conjugate prior of the mean vector is another multivariate normal distribution, and the conjugate prior
of the covariance matrix is an inverse-Wishart distribution  . Suppose then that n observations have been made

and that a conjugate prior has been assigned, where

where

and

Then,[citation needed]

where

Multivariate normality tests
Multivariate normality tests check a given set of data for similarity to the multivariate normal distribution. The null hypothesis
is that the data set is similar to the normal distribution, therefore a sufficiently small p-value indicates non-normal data.
Multivariate normality tests include the Cox-Small test[14] and Smith and Jain's adaptation[15] of the Friedman-Rafsky test.[16]

Mardia's test[17] is based on multivariate extensions of skewness and kurtosis measures. For a sample {x1, ..., xn} of k-
dimensional vectors we compute
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Under the null hypothesis of multivariate normality, the statistic A will have approximately a chi-squared distribution with 
1
6⋅k(k + 1)(k + 2) degrees of freedom, and B will be approximately standard normal N(0,1).

Mardia's kurtosis statistic is skewed and converges very slowly to the limiting normal distribution. For medium size samples 
, the parameters of the asymptotic distribution of the kurtosis statistic are modified[18] For small sample

tests ( ) empirical critical values are used. Tables of critical values for both statistics are given by Rencher[19] for
k=2,3,4.

Mardia's tests are affine invariant but not consistent. For example, the multivariate skewness test is not consistent against
symmetric non-normal alternatives.[20]

The BHEP test[21] computes the norm of the difference between the empirical characteristic function and the theoretical
characteristic function of the normal distribution. Calculation of the norm is performed in the L2(μ) space of square-integrable
functions with respect to the Gaussian weighting function . The test statistic is

The limiting distribution of this test statistic is a weighted sum of chi-squared random variables,[22] however in practice it is
more convenient to compute the sample quantiles using the Monte-Carlo simulations.[citation needed]

A detailed survey of these and other test procedures is available.[23]

Drawing values from the distribution
A widely used method for drawing a random vector x from the N-dimensional multivariate normal distribution with mean
vector μ and covariance matrix Σ works as follows:[24]

1. Find any real matrix A such that A AT = Σ. When Σ is positive-definite, the Cholesky decomposition is typically used,
and the extended form of this decomposition can always be used (as the covariance matrix may be only positive semi-
definite) in both cases a suitable matrix A is obtained.[citation needed] An alternative is to use the matrix A = UΛ½ obtained
from a spectral decomposition Σ = UΛUT of Σ.[citation needed] The former approach is more computationally
straightforward but the matrices A change for different orderings of the elements of the random vector, while the latter
approach gives matrices that are related by simple re-orderings. In theory both approaches give equally good ways of
determining a suitable matrix A, but there are differences in computation time.

2. Let z = (z1, …, zN)T be a vector whose components are N independent standard normal variates (which can be generated,
for example, by using the Box–Muller transform).
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3. Let x be μ + Az. This has the desired distribution due to the affine transformation property.

See also
Chi distribution, the pdf of the 2-norm (or Euclidean norm) of a multivariate normally distributed vector (centered at
zero).
Complex normal distribution, for the generalization to complex valued random variables.
Multivariate stable distribution extension of the multivariate normal distribution, when the index (exponent in the
characteristic function) is between zero to two.
Mahalanobis distance
Wishart distribution

References
1. ^ Gut, Allan (2009) An Intermediate Course in Probability, Springer. ISBN 9781441901613 (Chapter 5)
2. ^ UIUC, Lecture 21. The Multivariate Normal Distribution (http://www.math.uiuc.edu/~r-ash/Stat/StatLec21-25.pdf), 21.5:"Finding the

Density".
3. ^ Hamedani, G. G.; Tata, M. N. (1975). "On the determination of the bivariate normal distribution from distributions of linear

combinations of the variables". The American Mathematical Monthly 82 (9): 913–915. doi:10.2307/2318494
(http://dx.doi.org/10.2307%2F2318494).

4. ^ Wyatt, John. "Linear least mean-squared error estimation" (http://web.mit.edu/6.041/www/LECTURE/lec22.pdf). Lecture notes course
on applied probability. Retrieved 23 January 2012.

5. ^ Rao, C.R. (1973). Linear Statistical Inference and Its Applications. New York: Wiley. pp. 527–528.
6. ^ Tong, T. (2010) Multiple Linear Regression : MLE and Its Distributional Results

(http://amath.colorado.edu/courses/7400/2010Spr/lecture9.pdf), Lecture Notes
7. ^ Gokhale, DV; NA Ahmed, BC Res, NJ Piscataway (May 1989). "Entropy Expressions and Their Estimators for Multivariate

Distributions". Information Theory, IEEE Transactions on 35 (3): 688–692. doi:10.1109/18.30996
(http://dx.doi.org/10.1109%2F18.30996).

8. ^ Penny & Roberts, PARG-00-12, (2000) [1] (http://www.allisons.org/ll/MML/KL/Normal). pp. 18
9. ^ Siotani, Minoru (1964). "Tolerance regions for a multivariate normal population"

(http://www.ism.ac.jp/editsec/aism/pdf/016_1_0135.pdf). Annals of the Institute of Statistical Mathematics 16 (1): 135–153.
doi:10.1007/BF02868568 (http://dx.doi.org/10.1007%2FBF02868568).

10. ^ Eaton, Morris L. (1983). Multivariate Statistics: a Vector Space Approach. John Wiley and Sons. pp. 116–117. ISBN 0-471-02776-6.
11. ^ Jensen, J (2000). Statistics for Petroleum Engineers and Geoscientists. Amsterdam: Elsevier. p. 207.
12. ^ The formal proof for marginal distribution is shown here http://fourier.eng.hmc.edu/e161/lectures/gaussianprocess/node7.html
13. ^ Nikolaus Hansen. "The CMA Evolution Strategy: A Tutorial" (http://www.lri.fr/~hansen/cmatutorial.pdf) (PDF).
14. ^ Cox, D. R.; Small, N. J. H. (1978). "Testing multivariate normality". Biometrika 65 (2): 263. doi:10.1093/biomet/65.2.263

(http://dx.doi.org/10.1093%2Fbiomet%2F65.2.263).
15. ^ Smith, S. P.; Jain, A. K. (1988). "A test to determine the multivariate normality of a data set". IEEE Transactions on Pattern Analysis

and Machine Intelligence 10 (5): 757. doi:10.1109/34.6789 (http://dx.doi.org/10.1109%2F34.6789).
16. ^ Friedman, J. H.; Rafsky, L. C. (1979). "Multivariate Generalizations of the Wald-Wolfowitz and Smirnov Two-Sample Tests". The

Annals of Statistics 7 (4): 697. doi:10.1214/aos/1176344722 (http://dx.doi.org/10.1214%2Faos%2F1176344722).
17. ^ Mardia, K. V. (1970). "Measures of multivariate skewness and kurtosis with applications". Biometrika 57 (3): 519–530.

doi:10.1093/biomet/57.3.519 (http://dx.doi.org/10.1093%2Fbiomet%2F57.3.519).
18. ^ Rencher (1995), pages 112-113.
19. ^ Rencher (1995), pages 493-495.
20. ^ Baringhaus, L.; Henze, N. (1991). "Limit distributions for measures of multivariate skewness and kurtosis based on projections". Journal

of Multivariate Analysis 38: 51. doi:10.1016/0047-259X(91)90031-V (http://dx.doi.org/10.1016%2F0047-259X%2891%2990031-V).
21. ^ Epps, Lawrence B.; Pulley, Lawrence B. (1983). "A test for normality based on the empirical characteristic function". Biometrika 70 (3):

723–726. doi:10.1093/biomet/70.3.723 (http://dx.doi.org/10.1093%2Fbiomet%2F70.3.723).
22. ^ Baringhaus, L.; Henze, N. (1988). "A consistent test for multivariate normality based on the empirical characteristic function". Metrika

35 (1): 339–348. doi:10.1007/BF02613322 (http://dx.doi.org/10.1007%2FBF02613322).
23. ^ Henze, Norbert (2002). "Invariant tests for multivariate normality: a critical review". Statistical Papers 43 (4): 467–506.

doi:10.1007/s00362-002-0119-6 (http://dx.doi.org/10.1007%2Fs00362-002-0119-6).
24. ^ Gentle, J.E. (2009). Computational Statistics. New York: Springer. pp. 315–316. doi:10.1007/978-0-387-98144-4

(http://dx.doi.org/10.1007%2F978-0-387-98144-4).

Literature

http://en.wikipedia.org/wiki/Chi_distribution
http://en.wikipedia.org/wiki/Probability_density_function
http://en.wikipedia.org/wiki/Norm_(mathematics)#p-norm
http://en.wikipedia.org/wiki/Euclidean_norm
http://en.wikipedia.org/wiki/Complex_normal_distribution
http://en.wikipedia.org/wiki/Multivariate_stable_distribution
http://en.wikipedia.org/wiki/Mahalanobis_distance
http://en.wikipedia.org/wiki/Wishart_distribution
http://en.wikipedia.org/wiki/Multivariate_normal_distribution#cite_ref-1
http://en.wikipedia.org/wiki/Special:BookSources/9781441901613
http://en.wikipedia.org/wiki/Multivariate_normal_distribution#cite_ref-2
http://www.math.uiuc.edu/~r-ash/Stat/StatLec21-25.pdf
http://en.wikipedia.org/wiki/Multivariate_normal_distribution#cite_ref-HT_3-0
http://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.2307%2F2318494
http://en.wikipedia.org/wiki/Multivariate_normal_distribution#cite_ref-wyattlms_4-0
http://web.mit.edu/6.041/www/LECTURE/lec22.pdf
http://en.wikipedia.org/wiki/Multivariate_normal_distribution#cite_ref-rao_5-0
http://en.wikipedia.org/wiki/Multivariate_normal_distribution#cite_ref-6
http://amath.colorado.edu/courses/7400/2010Spr/lecture9.pdf
http://en.wikipedia.org/wiki/Multivariate_normal_distribution#cite_ref-7
http://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.1109%2F18.30996
http://en.wikipedia.org/wiki/Multivariate_normal_distribution#cite_ref-8
http://www.allisons.org/ll/MML/KL/Normal
http://en.wikipedia.org/wiki/Multivariate_normal_distribution#cite_ref-Siotani_9-0
http://www.ism.ac.jp/editsec/aism/pdf/016_1_0135.pdf
http://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.1007%2FBF02868568
http://en.wikipedia.org/wiki/Multivariate_normal_distribution#cite_ref-eaton_10-0
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/0-471-02776-6
http://en.wikipedia.org/wiki/Multivariate_normal_distribution#cite_ref-11
http://en.wikipedia.org/wiki/Multivariate_normal_distribution#cite_ref-12
http://fourier.eng.hmc.edu/e161/lectures/gaussianprocess/node7.html
http://en.wikipedia.org/wiki/Multivariate_normal_distribution#cite_ref-13
http://www.lri.fr/~hansen/cmatutorial.pdf
http://en.wikipedia.org/wiki/Multivariate_normal_distribution#cite_ref-14
http://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.1093%2Fbiomet%2F65.2.263
http://en.wikipedia.org/wiki/Multivariate_normal_distribution#cite_ref-15
http://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.1109%2F34.6789
http://en.wikipedia.org/wiki/Multivariate_normal_distribution#cite_ref-16
http://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.1214%2Faos%2F1176344722
http://en.wikipedia.org/wiki/Multivariate_normal_distribution#cite_ref-Mardia_17-0
http://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.1093%2Fbiomet%2F57.3.519
http://en.wikipedia.org/wiki/Multivariate_normal_distribution#cite_ref-18
http://en.wikipedia.org/wiki/Multivariate_normal_distribution#cite_ref-19
http://en.wikipedia.org/wiki/Multivariate_normal_distribution#cite_ref-20
http://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.1016%2F0047-259X%2891%2990031-V
http://en.wikipedia.org/wiki/Multivariate_normal_distribution#cite_ref-EP_21-0
http://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.1093%2Fbiomet%2F70.3.723
http://en.wikipedia.org/wiki/Multivariate_normal_distribution#cite_ref-BH_22-0
http://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.1007%2FBF02613322
http://en.wikipedia.org/wiki/Multivariate_normal_distribution#cite_ref-Henze_23-0
http://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.1007%2Fs00362-002-0119-6
http://en.wikipedia.org/wiki/Multivariate_normal_distribution#cite_ref-Gentle_24-0
http://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.1007%2F978-0-387-98144-4


Rencher, A.C. (1995). Methods of Multivariate Analysis. New York: Wiley.

Retrieved from "http://en.wikipedia.org/w/index.php?title=Multivariate_normal_distribution&oldid=580202110"
Categories: Continuous distributions Multivariate continuous distributions Normal distribution
Exponential family distributions Stable distributions

This page was last modified on 4 November 2013 at 20:02.
Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using this
site, you agree to the Terms of Use and Privacy Policy. 
Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.

http://en.wikipedia.org/wiki/Category:Continuous_distributions
http://en.wikipedia.org/wiki/Category:Multivariate_continuous_distributions
http://en.wikipedia.org/wiki/Category:Normal_distribution
http://en.wikipedia.org/wiki/Category:Exponential_family_distributions
http://en.wikipedia.org/wiki/Category:Stable_distributions
http://en.wikipedia.org/w/index.php?title=Multivariate_normal_distribution&oldid=580202110
http://en.wikipedia.org/wiki/Help:Category
http://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License
http://wikimediafoundation.org/wiki/Terms_of_Use
http://wikimediafoundation.org/wiki/Privacy_policy
http://www.wikimediafoundation.org/

