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Linear Regression: One-Dimensional Case

Given: a set of N input-response pairs

The inputs (x) and the responses (y) are one dimensional scalars

Goal: Model the relationship between x and y
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Linear Regression: One-Dimensional Case

Let’s assume the relationship between x and y is linear
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Linear Regression: One-Dimensional Case

Let’s assume the relationship between x and y is linear

Linear relationship can be defined by a straight line with parameter w

Equation of the straight line: y = wx
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Linear Regression: One-Dimensional Case

The line may not fit the data exactly
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Linear Regression: One-Dimensional Case

The line may not fit the data exactly

But we can try making the line a reasonable approximation

(CS5350/6350) Linear Models for Regression September 6, 2011 4 / 17



Linear Regression: One-Dimensional Case

The line may not fit the data exactly

But we can try making the line a reasonable approximation

Error for the pair (xi , yi ) pair: ei = yi − wxi
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Linear Regression: One-Dimensional Case

The line may not fit the data exactly

But we can try making the line a reasonable approximation

Error for the pair (xi , yi ) pair: ei = yi − wxi

The total squared error: E =
∑N

i=1 e
2
i =

∑N

i=1(yi − wxi )
2
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Linear Regression: One-Dimensional Case

The line may not fit the data exactly

But we can try making the line a reasonable approximation

Error for the pair (xi , yi ) pair: ei = yi − wxi

The total squared error: E =
∑N

i=1 e
2
i =

∑N

i=1(yi − wxi )
2

The best fitting line is defined by w minimizing the total error E
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Linear Regression: One-Dimensional Case

The line may not fit the data exactly

But we can try making the line a reasonable approximation

Error for the pair (xi , yi ) pair: ei = yi − wxi

The total squared error: E =
∑N

i=1 e
2
i =

∑N

i=1(yi − wxi )
2

The best fitting line is defined by w minimizing the total error E

Just requires a little bit of calculus to find it (take derivative, equate to zero..)
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Linear Regression: In Higher Dimensions

Analogy to line fitting: In higher dimensions, we will fit hyperplanes

For 2-dim. inputs, linear regression fits a 2-dim. plane to the data
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Linear Regression: In Higher Dimensions

Analogy to line fitting: In higher dimensions, we will fit hyperplanes

For 2-dim. inputs, linear regression fits a 2-dim. plane to the data

Many planes are possible. Which one is the best?
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Linear Regression: In Higher Dimensions

Analogy to line fitting: In higher dimensions, we will fit hyperplanes

For 2-dim. inputs, linear regression fits a 2-dim. plane to the data

Many planes are possible. Which one is the best?

Intuition: Choose the one which is (on average) closest to the responses Y
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Linear Regression: In Higher Dimensions

Analogy to line fitting: In higher dimensions, we will fit hyperplanes

For 2-dim. inputs, linear regression fits a 2-dim. plane to the data

Many planes are possible. Which one is the best?

Intuition: Choose the one which is (on average) closest to the responses Y

Linear regression uses the sum-of-squared error notion of closeness
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Linear Regression: In Higher Dimensions

Analogy to line fitting: In higher dimensions, we will fit hyperplanes

For 2-dim. inputs, linear regression fits a 2-dim. plane to the data

Many planes are possible. Which one is the best?

Intuition: Choose the one which is (on average) closest to the responses Y

Linear regression uses the sum-of-squared error notion of closeness

Similar intuition carries over to higher dimensions too
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For 2-dim. inputs, linear regression fits a 2-dim. plane to the data
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Intuition: Choose the one which is (on average) closest to the responses Y

Linear regression uses the sum-of-squared error notion of closeness
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Linear Regression: In Higher Dimensions

Analogy to line fitting: In higher dimensions, we will fit hyperplanes

For 2-dim. inputs, linear regression fits a 2-dim. plane to the data

Many planes are possible. Which one is the best?

Intuition: Choose the one which is (on average) closest to the responses Y

Linear regression uses the sum-of-squared error notion of closeness

Similar intuition carries over to higher dimensions too

Fitting a D-dimensional hyperplane to the data
Hard to visualize in pictures though..
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Linear Regression: In Higher Dimensions

Analogy to line fitting: In higher dimensions, we will fit hyperplanes

For 2-dim. inputs, linear regression fits a 2-dim. plane to the data

Many planes are possible. Which one is the best?

Intuition: Choose the one which is (on average) closest to the responses Y

Linear regression uses the sum-of-squared error notion of closeness

Similar intuition carries over to higher dimensions too

Fitting a D-dimensional hyperplane to the data
Hard to visualize in pictures though..

The hyperplane is defined by parameters w (a D × 1 weight vector)
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Linear Regression: In Higher Dimensions (Formally)

Given training data D = {(x1, y1), . . . , (xN , yN)}

Inputs xi : D-dimensional vectors (RD), responses yi : scalars (R)
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Linear Regression: In Higher Dimensions (Formally)

Given training data D = {(x1, y1), . . . , (xN , yN)}

Inputs xi : D-dimensional vectors (RD), responses yi : scalars (R)

The linear model: response is a linear function of the model parameters

y = f (x,w) = b +

M
∑

j=1

wjφj(x)
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Linear Regression: In Higher Dimensions (Formally)

Given training data D = {(x1, y1), . . . , (xN , yN)}

Inputs xi : D-dimensional vectors (RD), responses yi : scalars (R)

The linear model: response is a linear function of the model parameters

y = f (x,w) = b +

M
∑

j=1

wjφj(x)

wj ’s and b are the model parameters (b is an offset)

Parameters define the mapping from the inputs to responses
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Linear Regression: In Higher Dimensions (Formally)

Given training data D = {(x1, y1), . . . , (xN , yN)}

Inputs xi : D-dimensional vectors (RD), responses yi : scalars (R)

The linear model: response is a linear function of the model parameters

y = f (x,w) = b +

M
∑

j=1

wjφj(x)

wj ’s and b are the model parameters (b is an offset)

Parameters define the mapping from the inputs to responses

Each φj is called a basis function

Allows change of representation of the input x (often desired)
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Linear Regression: In Higher Dimensions

The linear model:

y = b +

M
∑

j=1

wjφj(x) = b +wTφ(x)

φ = [φ1, . . . .φM ]

w = [w1, . . . ,wM ], the weight vector (to learn using the training data)
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Linear Regression: In Higher Dimensions

The linear model:

y = b +

M
∑

j=1

wjφj(x) = b +wTφ(x)

φ = [φ1, . . . .φM ]

w = [w1, . . . ,wM ], the weight vector (to learn using the training data)

We consider the simplest case: φ(x) = x

φj(x) is the j-th feature of the data (total D features, so M = D)
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Linear Regression: In Higher Dimensions

The linear model:

y = b +

M
∑

j=1

wjφj(x) = b +wTφ(x)

φ = [φ1, . . . .φM ]

w = [w1, . . . ,wM ], the weight vector (to learn using the training data)

We consider the simplest case: φ(x) = x

φj(x) is the j-th feature of the data (total D features, so M = D)

The linear model becomes

y = b +

D
∑

j=1

wjxj = b +wTx
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Linear Regression: In Higher Dimensions

The linear model:

y = b +

M
∑

j=1

wjφj(x) = b +wTφ(x)

φ = [φ1, . . . .φM ]

w = [w1, . . . ,wM ], the weight vector (to learn using the training data)

We consider the simplest case: φ(x) = x

φj(x) is the j-th feature of the data (total D features, so M = D)

The linear model becomes

y = b +

D
∑

j=1

wjxj = b +wTx

Note: Nonlinear relationships between x and y can be modeled using
suitably chosen φj ’s (more when we cover Kernel Methods)
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Linear Regression: In Higher Dimensions

Given training data D = {(x1, y1), . . . , (xN , yN)}

Fit each training example (xi , yi ) using the linear model

yi = b +wTxi
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Linear Regression: In Higher Dimensions

Given training data D = {(x1, y1), . . . , (xN , yN)}

Fit each training example (xi , yi ) using the linear model

yi = b +wTxi

A bit of notation abuse: write w = [b,w], write xi = [1, xi ]

yi = wTxi
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Linear Regression: In Higher Dimensions

Given training data D = {(x1, y1), . . . , (xN , yN)}

Fit each training example (xi , yi ) using the linear model

yi = b +wTxi

A bit of notation abuse: write w = [b,w], write xi = [1, xi ]

yi = wTxi

Switching to matrix notation, the relationship becomes: Y = Xw
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Linear Regression: In Higher Dimensions

Given training data D = {(x1, y1), . . . , (xN , yN)}

Fit each training example (xi , yi ) using the linear model

yi = b +wTxi

A bit of notation abuse: write w = [b,w], write xi = [1, xi ]

yi = wTxi

Switching to matrix notation, the relationship becomes: Y = Xw
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Linear Regression: In Higher Dimensions

Given training data D = {(x1, y1), . . . , (xN , yN)}

Fit each training example (xi , yi ) using the linear model

yi = b +wTxi

A bit of notation abuse: write w = [b,w], write xi = [1, xi ]

yi = wTxi

Switching to matrix notation, the relationship becomes: Y = Xw

Y =







y1
...
yN






,X =







1 x1
...
...

1 xN






=







1 x11 · · · x1D
...

. . .
...

1 xN1 · · · xND






,
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Linear Regression: In Higher Dimensions

Given training data D = {(x1, y1), . . . , (xN , yN)}

Fit each training example (xi , yi ) using the linear model

yi = b +wTxi

A bit of notation abuse: write w = [b,w], write xi = [1, xi ]

yi = wTxi

Switching to matrix notation, the relationship becomes: Y = Xw
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Linear Regression: In Higher Dimensions

Given training data D = {(x1, y1), . . . , (xN , yN)}

Fit each training example (xi , yi ) using the linear model

yi = b +wTxi

A bit of notation abuse: write w = [b,w], write xi = [1, xi ]

yi = wTxi

Switching to matrix notation, the relationship becomes: Y = Xw

Y =







y1
...
yN






,X =







1 x1
...
...

1 xN






=







1 x11 · · · x1D
...

. . .
...

1 xN1 · · · xND






,w =











b

w1

...
wD











Y: N × 1, X: N × (D + 1), w: (D + 1)× 1
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Linear Regression: The Objective Function

Parameter w that satisfies yi = wTxi exactly for each i may not exist
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Linear Regression: The Objective Function

Parameter w that satisfies yi = wTxi exactly for each i may not exist

So we look for the closest approximation

Specifically, w that minimizes the following sum-of-squared-differences
between the truth (yi ) and the predictions (wTxi ), just as we did for the
one-dimensional case:

E (w) =
1

2

N
∑

i=1

(yi −wTxi )
2
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Linear Regression: The Objective Function

Parameter w that satisfies yi = wTxi exactly for each i may not exist

So we look for the closest approximation

Specifically, w that minimizes the following sum-of-squared-differences
between the truth (yi ) and the predictions (wTxi ), just as we did for the
one-dimensional case:

E (w) =
1

2

N
∑

i=1

(yi −wTxi )
2

Following the matrix notation, we can write the above as:

E (w) =
1

2
(Y − Xw)T (Y − Xw)
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Linear Regression: Least-Squares Solution

Taking derivative w.r.t w, and equating to zero, we get

∇E (w) = −XT (Y − Xw) = 0

=⇒ XTXw = XTY
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Linear Regression: Least-Squares Solution

Taking derivative w.r.t w, and equating to zero, we get

∇E (w) = −XT (Y − Xw) = 0

=⇒ XTXw = XTY

Taking inverse on both sides, we get the solution

ŵ = (XTX)−1XTY

The above is also called the least-squares solution (since we minimized a
sum-of-squared-differences objective)
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Linear Regression: Least-Squares Solution

Taking derivative w.r.t w, and equating to zero, we get

∇E (w) = −XT (Y − Xw) = 0

=⇒ XTXw = XTY

Taking inverse on both sides, we get the solution

ŵ = (XTX)−1XTY

The above is also called the least-squares solution (since we minimized a
sum-of-squared-differences objective)

Note: The same solution holds even if the responses are vector-valued
(assume K responses per input)

Y will be an N × K matrix (assuming K responses per input)
w will be a D × K matrix (k-th column is the weight vector for the k-th
response variable)
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Linear Regression: Complexity Control

We minimized the sum-of-squares objective for linear regression

E (w) =
1

2
(Y − Xw)T (Y − Xw)

There is no control on the values the elements of w can take
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Linear Regression: Complexity Control

We minimized the sum-of-squares objective for linear regression

E (w) =
1

2
(Y − Xw)T (Y − Xw)

There is no control on the values the elements of w can take

Problem: The wi ’s can get very large trying to fit training data

Implications: The model becomes complex
Result: The model may lead to overfitting
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Linear Regression: Complexity Control

We minimized the sum-of-squares objective for linear regression

E (w) =
1

2
(Y − Xw)T (Y − Xw)

There is no control on the values the elements of w can take

Problem: The wi ’s can get very large trying to fit training data

Implications: The model becomes complex
Result: The model may lead to overfitting

Solution: Penalize large values of the parameters/coefficients wi ’s

Penalizing amounts to doing complexity control (also called regularization)
Leads to better generalization
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Linear Regression: Complexity Control

We minimized the sum-of-squares objective for linear regression

E (w) =
1

2
(Y − Xw)T (Y − Xw)

There is no control on the values the elements of w can take

Problem: The wi ’s can get very large trying to fit training data

Implications: The model becomes complex
Result: The model may lead to overfitting

Solution: Penalize large values of the parameters/coefficients wi ’s

Penalizing amounts to doing complexity control (also called regularization)
Leads to better generalization

Penalizing the squared norm wTw is a common choice (called ℓ2 norm)

wTw =
∑D

j=1 w
2
j
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Linear Regression: Complexity Control

We minimized the sum-of-squares objective for linear regression

E (w) =
1

2
(Y − Xw)T (Y − Xw)

There is no control on the values the elements of w can take

Problem: The wi ’s can get very large trying to fit training data

Implications: The model becomes complex
Result: The model may lead to overfitting

Solution: Penalize large values of the parameters/coefficients wi ’s

Penalizing amounts to doing complexity control (also called regularization)
Leads to better generalization

Penalizing the squared norm wTw is a common choice (called ℓ2 norm)

wTw =
∑D

j=1 w
2
j

Note: other form of penalization are also possible. For example:

Sum of absolute values of the coefficients:
∑D

j=1 |wj | (called ℓ1 norm)
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Linear Regression: The Regularized Objective Function

The modified objective becomes

E (w) =
1

2
(Y − Xw)T (Y − Xw) +

λ

2
wTw

We minimize the sum of a loss function and a regularizer term
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Linear Regression: The Regularized Objective Function

The modified objective becomes

E (w) =
1

2
(Y − Xw)T (Y − Xw) +

λ

2
wTw

We minimize the sum of a loss function and a regularizer term

The hyperparameter λ controls the amount of regularization

Important: It’s a standard way to control overfitting in supervised learning

Common form of a penalized loss function in supervised learning looks like:

E (w) = ℓ(X,Y,w) + R(w)
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Linear Regression: The Regularized Objective Function

The modified objective becomes

E (w) =
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We minimize the sum of a loss function and a regularizer term

The hyperparameter λ controls the amount of regularization

Important: It’s a standard way to control overfitting in supervised learning

Common form of a penalized loss function in supervised learning looks like:

E (w) = ℓ(X,Y,w) + R(w)

The loss function ℓ(X,Y,w) is a measure of model-fit on the training data
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Linear Regression: The Regularized Objective Function

The modified objective becomes

E (w) =
1

2
(Y − Xw)T (Y − Xw) +

λ

2
wTw

We minimize the sum of a loss function and a regularizer term

The hyperparameter λ controls the amount of regularization

Important: It’s a standard way to control overfitting in supervised learning

Common form of a penalized loss function in supervised learning looks like:

E (w) = ℓ(X,Y,w) + R(w)

The loss function ℓ(X,Y,w) is a measure of model-fit on the training data

The regularizer R(w) prevents the model from becoming too complex

Regularization is particularly important for small N, large D
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Linear Regression: The Regularized Objective Function

Coming back to the penalized least-squares objective for linear regression

E (w) =
1

2
(Y − Xw)T (Y − Xw) +

λ

2
wTw
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Linear Regression: The Regularized Objective Function

Coming back to the penalized least-squares objective for linear regression

E (w) =
1

2
(Y − Xw)T (Y − Xw) +

λ

2
wTw

Taking derivative w.r.t. w and equating to zero gives:

∇E (w) = −XT (Y − Xw) + λw = 0

=⇒ XTXw + λw = XTY

=⇒ (XTX+ λI)w = XTY
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Linear Regression: The Regularized Objective Function

Coming back to the penalized least-squares objective for linear regression

E (w) =
1

2
(Y − Xw)T (Y − Xw) +

λ

2
wTw

Taking derivative w.r.t. w and equating to zero gives:

∇E (w) = −XT (Y − Xw) + λw = 0

=⇒ XTXw + λw = XTY

=⇒ (XTX+ λI)w = XTY

Taking inverse on both sides, we get the solution

ŵ = (XTX+ λI)−1XTY
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Linear Regression: The Regularized Objective Function

Coming back to the penalized least-squares objective for linear regression

E (w) =
1

2
(Y − Xw)T (Y − Xw) +

λ

2
wTw

Taking derivative w.r.t. w and equating to zero gives:

∇E (w) = −XT (Y − Xw) + λw = 0

=⇒ XTXw + λw = XTY

=⇒ (XTX+ λI)w = XTY

Taking inverse on both sides, we get the solution

ŵ = (XTX+ λI)−1XTY

Penalized linear regression is also known as ridge regression
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Linear Regression: The Regularized Objective Function

Coming back to the penalized least-squares objective for linear regression

E (w) =
1

2
(Y − Xw)T (Y − Xw) +

λ

2
wTw

Taking derivative w.r.t. w and equating to zero gives:

∇E (w) = −XT (Y − Xw) + λw = 0

=⇒ XTXw + λw = XTY

=⇒ (XTX+ λI)w = XTY

Taking inverse on both sides, we get the solution

ŵ = (XTX+ λI)−1XTY

Penalized linear regression is also known as ridge regression

Ridge regression also useful when XTX is not invertible

Standard least-squares solution ŵ = (XTX)−1XTY will not be valid
Adding the λI makes (XTX+ λI) invertibe
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Linear Regression: Gradient Descent Solution

Recall: solving for w requires inverting D × D matrices XTX or (XTX+ λI)

Matrix inversion can be expensive if data dimensionality D is large
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Linear Regression: Gradient Descent Solution

Recall: solving for w requires inverting D × D matrices XTX or (XTX+ λI)

Matrix inversion can be expensive if data dimensionality D is large
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Linear Regression: Gradient Descent Solution

Recall: solving for w requires inverting D × D matrices XTX or (XTX+ λI)

Matrix inversion can be expensive if data dimensionality D is large

One solution: Iterative minimization of the loss function

E (w) = 1
2
(Y − Xw)T (Y − Xw): Linear Regression

E (w) = 1
2
(Y − Xw)T (Y − Xw) + λ

2
wTw: Ridge Regression

How: Using Gradient Descent (GD)

A general recipe for iteratively optimizing similar loss functions

Gradient Descent rule:

Initialize the weight vector w = w0

Update w by moving along the direction of negative gradient − ∂E
∂w
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Linear Regression: Gradient Descent Solution

Initialize w = w0
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Initialize w = w0

Repeat until convergence:

w = w − α
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Linear Regression: Gradient Descent Solution

Initialize w = w0

Repeat until convergence:

w = w − α
∂E

∂w

= w − αXT (Xw − Y)

= w − α

N
∑

i=1

xi (w
Txi − yi )

α is the learning rate

Stop: When some criteria is met (e.g., max. # of iterations), or the rate of
decrease of E falls below some threshold

Small α: slow convergence but small residual error
Large α: fast convergence but large residual error
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Linear Regression: Gradient Descent Solution

Initialize w = w0

Repeat until convergence:

w = w − α
∂E

∂w

= w − αXT (Xw − Y)

= w − α

N
∑

i=1

xi (w
Txi − yi )

α is the learning rate

Stop: When some criteria is met (e.g., max. # of iterations), or the rate of
decrease of E falls below some threshold

Small α: slow convergence but small residual error
Large α: fast convergence but large residual error

Note that convergence rate depends on the error at each iteration

Error over all examples:
∑N

i=1 xi (w
Txi − yi )
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Linear Regression: Gradient Descent Solution

The least-squares linear regression objective is a convex function

It has a unique minimum
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Effect of the learning rate α (left: small α, right: large α)
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Linear Regression: Gradient Descent Solution

The least-squares linear regression objective is a convex function

It has a unique minimum
Gradient descent will find the unique minimum (or get very close it to,
depending in the learning rate α)
For general functions, GD can only find a local minimum

Effect of the learning rate α (left: small α, right: large α)

Stochastic Gradient Descent (SGD): Variant of GD which computes the
gradient of E (w) w.r.t. a single training example and thus allows updating w
using one example at a time (unlike GD which uses all the data to make each
update of w). SGD for linear regression looks like:

repeat-while-converged {for i=1:N {w − αxi (w
Txi − yi )}}
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Linear Regression: Gradient Descent Solution

The least-squares linear regression objective is a convex function

It has a unique minimum
Gradient descent will find the unique minimum (or get very close it to,
depending in the learning rate α)
For general functions, GD can only find a local minimum

Effect of the learning rate α (left: small α, right: large α)

Stochastic Gradient Descent (SGD): Variant of GD which computes the
gradient of E (w) w.r.t. a single training example and thus allows updating w
using one example at a time (unlike GD which uses all the data to make each
update of w). SGD for linear regression looks like:

repeat-while-converged {for i=1:N {w − αxi (w
Txi − yi )}}

Note: SGD is usually more efficient than GD and also converges faster
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Next class..

Linear Classifiers

Hyperplane based class separators
The Perceptron algorithm
Maximum Margin Hyperplanes: Introduction to Support Vector Machines
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