
Gradient Descent Regression	


Logistic Regression



Module2 : learning with Gradient Descent

• formulate problem by model/parameters 
• formulate error as mathematical objective  
• optimize numerically the parameters for the given objective 
• usually algebraic setup 
- involves matrices and calculus 

• probabilistic setup (likelihoods) next module
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module 2: numerical optimization



Module 2 Objectives/Gradient Descent Regression

• numerical methods primer, gradient descent 
• Regression using GD 
- learning rate 
- batch vs online modes 
- compare with normal eq regression (module 1) 

• Logistic regression 
• optional: Newton’s optimization procedure



Gradient descent

• finds a local minima of the objective function (J) 
by guessing an initial set of parameters w and 
then ”walking” episodically in the opposite 
direction of the gradient ∂J/∂w. 
!

!

• update rule (per dimension)



Gradient Descent Example

• J(x) = (x − 2)2 + 1 
and the initial 
guess for a 
minimum is x0 = 3 
!

!

• GD iteration 1 
• GD iteration 2 
• GD iteration 3 



regression goal

• housing data, two features (toy example) 
!

!

!

!

!

• regressor = a linear predictor 
!

!

• such that h(x) approximates label(x)=y as close as 
possible, measured by square error



Regression Normal Equations (module1)

• Linear regression has a well known exact 
solution, given by linear algebra 
!

• X= training matrix of feature values 
• Y= corresponding labels vector 

!

• then regression coefficients that minimize 
objective J are 



Problems with exact solution for regression

• very unstable  
• impractical for large matrices 
• slow 
• undesirable in cases with many outliers

objective                              solution



Gradient Descent for linear regression

• differentiate the objective 
!
!
!
!
!
!

• GD update rule for one datapoint 
!
!

• GD for all datapoints (batch)



GD for linear regression

• batch (all datapoints) update step 
!

!

!

• alternative stochastic (online) update 
- i or t indicate the datapoint 
- j indicates the feature (column in data)



least mean square objective convexity

• GD “walks” the function argument towards a local minimum 
- it is possible (and sometimes likely) to obtain a local minimum 

that is not the GLOBAL minimum

• however this doesn't 
happen for regression 
objective, since it is 
convex  
- verify convexity by 

looking at  the second 
derivative matrix 

- Hessian matrix of J(w) is 
positive semidefinite 
which implies J convex 

!



Logistic regression for classification

• Logistic 
transformation • Logistic differential



Logistic regression

• Logistic regression function 
!

• transform outcome into 
“probabilities” 
!

!

• objective = likelihood of 
observations 
- a.k.a how likely is the data 

observed, given the 
regression model  

- and take the log



Logistic Regression!
!
!

• consider the likelihood of 
observations 
- and take the log 

!
!

• maximize log likelihood using 
gradient ascent 
- one datapoint derivation 
!
!

• write down the update rules 
- batch or stochastic 
!

!
!


