Gradient Descent Regression
Logistic Regression

Module?2 : learning with Gradient Descent

module 2: numerical optimization

RAW DATA
housing data
spam data

— FEATURES

LABELS

SUPERVISED
LEARNING

numerical optimization
Logistic Regression
Perceptron

Neural Network

EVALUATION

train/test

error, accuracy
Cross Validation
ROC

formulate problem by model/parameters
formulate error as mathematical objective

optimize numerically the parameters for the given objective

usually algebraic setup

- involves matrices and calculus
probabilistic setup (likelihoods) next module

Module 2 Objectives /Gradient Descent Regression

- numerical methods primer, gradient descent

. Regression using GD

- learning rate
- batch vs online modes
- compare with normal eq regression (module 1)

. Logistic regressior
. optional: Newton’s optimization procedure

Gradient descent

. finds a local minima of the objective function (J)
by guessing an initial set of parameters w and
then “walking” episodically in the opposite
direction of the gradient dJ/dw.

. update rule (per dimension)

0J(w)

w = w — N\——
dw?

Gradient Descent Examplel '

. JX) = (x-2¢ + 1
and the initial
guess for a
minimum is Xxo = 3

25 3
X2 Xa Xo

: : oJ(x

. GD iteration 1 T1 =T — A (,)(;“) =3 .25(2%3—4) =2.5
: : oJ(x

. GD iteration 2 To =T — \ (,)(;1) = 2.5 — .25(2% 2.5 — 4) = 2.25

. GD iteration 3 vs = 19— 2222 905 95(949.95 4) = 2.125

ox

regression goal

. housing data, two features (toy example)

Living area (ft?) | #bedrooms | price (10009$s)
2104 3 400
1600 3 330
2400 3 369
1416 2 232
3000 4 540
. regressor = a linear predictor ho(x) = 6° + 01zt + 6222

D
h(x) = Z e
d=0

. such that h(x) approximates label(x)=y as close as
possible, measured by square error

10) =Y (ho(xt) — yr)?

t

Regression Normal Equations imodulel,

. Linear regression has a well known exact
solution, given by linear algebra

. X= training matrix of feature values
. Y= corresponding labels vector

. then regression coefficients that minimize
objective J are

p=(X"X)'X'Y

Problems with exact solution for regression

objective solution
J(0) = (ho(xt) — yt)’)= (XTxX)"'xTy

t

. very unstable

. impractical for large matrices

. slow

. undesirable in cases with many outliers

Gradient Descent for linear regression

. differentiate the objective Tw) = 1 3 (hu(xe) — 90)?
aJ(w) 0%(’1~u,~(X) —y)?
owI B Il

d(hw(x) — y)

Aw
Z u’l’—

Ol

= (hw(x)—y)

= (hy(x) — y)
= (hy(x) —y)2’

. GD update rule for one datapoint

w! = w! — NMhy(x) — y)a?

. GD for all datapoints (batch)

w! = w’ —/\Zh X¢) — Ui)

GD for linear regression

batch (all datapoints) update step
u’—u’—AZl: (X¢) —)

. alternative stochastic (online) update

- 1 or t indicate the datapoint
- j indicates the feature (column in data)

LOOP for t=1 tom | |
w? = w! — N hy(x¢) — y¢)af for all 5

END LOOP

least mean square objective convexity

. GD “walks” the function argument towards a local minimum
- it is possible (and sometimes likely) to obtain a local minimum

that is not the GLOBAL minimum

. however this doesn't
happen for regression
objective, since it is
convex
- verify convexity by

looking at the second
derivative matrix

- Hessian matrix of J(w) is
positive semidefinite
which implies J convex

J(w) =

B | b

D (hu(xs) — ye)?

t

o(J(w)) 44
Ow’? - Z(Z W Ty — ;Ut)-1-~z

t d

‘. 2 , .
0°J(w) _ Z i g
Owt Ow? : o

Hessian matrix of J(w) is XTX

Vw, w? XTXw = (Xw)" (Xw) > 0.

Logistic regression for classification

. Logistic . Logistic differential

transformation
1
g(:) - 14+ e) ()
1. . Ug\z
g (N) - 0z
—_— l N
- (14 e~)26

0
r 4

Figure 1: Logistic function

Logistic regression

Logistic regression function

transform outcome into
“probabilities”

objective = likelihood of
observations

- aka how likely is the data
observed, given the
regression model

- and take the log

L(w) = p(y|X;w)

m
- Hp('!/i|41'-a,l w)
= H (1yy

[(w) = log L(w)

= Z y; log h(ax

(1 — hy () ¥

(1 — i) log(1l — h(z;))

Logistic Regression

. consider the likelihood of
observations

- and take the log

- maximize log likelihood using
gradient ascent

- one datapoint derivation

. write down the update rules
- batch or stochastic

L(w) = p(y|X; w)

m
—Hp Yi|xi; w)
=1

m

= [[(Ruw(2)) ¥ (1 = oy ()"~

=1

[(w) = log L(w)

— Z y; log h(x;)
=1

+ (1 — ;) log(1l — h(x;))

0 1 1 %
—(w) = (i — (1 — : : w.r
dw’ (U) (yg("ll_".'l_,‘) (U) 1 — g(-u_.‘;]:)) Jw g(“ I)
(1 ! (1—1y) ! Jg(wz)(1 — g(wx)) 0 wa
= \! - - glwx — T
(/g('u,-'.'lf) 1— J(U..‘;I,') J J ()u)
= (y(1 — g(gz)) — (1 — y)g(wz))a’
= (y — h(z))2’
the stochastic gradient ascent rule:
w = w! + Myi — ho(2:)))]

) the batch gradient ascent rule:

= ! AT = o)

