CSG220 Machine Learning Fall 2008 Neural networks

Neural networks

Virgil Pavlu October 1, 2008

1 The perceptron

Lets suppose we are (as with regression regression) with (x;,;);¢ = 1,..,m the data points and labels. This
is a classification problem with two classes y € {—1,1}
Like with regression we are looking for a linear predictor (classifier)

D
hw(x) = xw = Zxdwd
d=0

(we added the x° = 1 component so we can get the free term w®) such that hy(x) > 0 when y = 1 and
hw(x) <0 when y = —1.

On y = —1 data points: given that all x and y are numerical, we will make the following transformation:
when y = —1, we will reverse the sign of the input; that is replace x with -x and y = —y. Then the condition
hw(x) < 0 becomes hy(x) > 0 for all data points.

The perceptron objective function is a combination of the number of miss-classification points and how

bad the miss-classification is
J(w) = Z —hw(x) = Z —XW
xEM xEM

where M is the set of miss-classified data points. Note that each term of the sum is positive, since miss-
classified implies wx < 0. Using gradient descent, we first differentiate J

Vwl(w) =Y —x"

xEM

then we write down the gradient descent update rule

w::w—l—)\ZxT
xeM

(X is the learning rate). The batch version looks like

1. init w

2. LOOP

3. get M = set of missclassified data points
4. W:W—I—)\erMxT

5. UNTIL [AD , o x| <e

Assume the instances are linearly separable. Then we can modify the algorithm

init w

. LOOP

get M = set of missclassified data points
for each x € M do w = w + AxT

. UNTIL M is empty

s o=

Proof of perceptron convergence Assuming data is linearly separable , or there is a solution w such
that xw > 0 for all x.
Lets call wy, the w obtained at the k-th iteration (update). Fix an o > 0. Then

Wiyl — QW = (W), — QW) + X}
where x;, is the datapoint that updated w at iteration k. Then
[Wii1 — awl|]? = [[wi — aw||* + 2xx (Wi, — aw) + ||xx]|? < [[wi — aw[|? — 2xpaw + [|xi|*

Since xxw > 0 all we need is an « sufficiently large to show that this update process cannot go on forever.
When it stops, all datapoints must be classified correctly.

gix)

eurput Unit

bias wnit

input units

Figure 1: bias unit

2 Multilayer perceptrons

Also called feed-forward networks.

Figure 2: multilayer perceptron

2.1 More than linear functions, example: XOR

- activation functions, XOR example

z=-1
@ ! i
R,
=+/ R
-1 R 1 Ay
@ -1 [

Figure 3: XOR NNet

2.2 Construction and structure of NNets

largf’ff 1y 153 L 1 s e !

output z

input x X; X3 i s X

Figure 4: NNet fully connected

The oputpit units can be written as
gk(x) =2, = f (Z w; | (Z wijz’ + ij) + wko) = F (F(xw;)wy)
j i

2.3 Kolmogorov theorem, expressive power of NNet

Any function g can be written
= d
9(x) =) <Z W (x))
j d
but there is no practical way to use this theorem in practice. Usually = and ¥ are very complex and not
smooth.

3 Training, Error backpropagation

- error

- propagation to last set of weights (close to output)

- propagation to first set of weights (close to input)

- stochastic VS batch

4 How to improve backpropagation

4.1 Activation function

- continuous, differentiable (smoothness)

- nonlinear

- saturation

- monotonicity
4.2 Scale input
4.3 Target values

4.4 Noise

4.5 Number of hidden units
4.6 Weights initialization

4.7 Learning rates

J Tf< Tfo-pt

n:??opt

J no'pt <n<2nopt J

wx

Figure 6.18: Gradient descent in a one-dimensional quadratic criterion with different
learning rates. If 1 < 7.5, convergence is assured, but training can be needlessly

w*

w

w*

n >2 napt

slow. If 5 = #4pe, a single learning step sullices to find the error minimum.

Nopt < 1 < 2Nopt, the system will oscillate but nevertheless converge, but training is
needlessly slow. If 1 > 21,5, the system diverges.

Figure 5: learning rates

4.8 Construction and structure of NNets

5 Network size and structure. Regularization

6 Jacobian and Hessian

