
CSG220 Machine Learning Fall 2008 Neural networks

Neural networks
Virgil Pavlu October 1, 2008

1 The perceptron

Lets suppose we are (as with regression regression) with (xi, yi); i = 1, ..,m the data points and labels. This
is a classification problem with two classes y ∈ {−1, 1}

Like with regression we are looking for a linear predictor (classifier)

hw(x) = xw =
D∑

d=0

xdwd

(we added the x0 = 1 component so we can get the free term w0) such that hw(x) ≥ 0 when y = 1 and
hw(x) ≤ 0 when y = −1.

On y = −1 data points: given that all x and y are numerical, we will make the following transformation:
when y = −1, we will reverse the sign of the input; that is replace x with -x and y = −y. Then the condition
hw(x) ≤ 0 becomes hw(x) ≥ 0 for all data points.

The perceptron objective function is a combination of the number of miss-classification points and how
bad the miss-classification is

J(w) =
∑
x∈M

−hw(x) =
∑
x∈M

−xw

where M is the set of miss-classified data points. Note that each term of the sum is positive, since miss-
classified implies wx < 0. Using gradient descent, we first differentiate J

∇wJ(w) =
∑
x∈M

−xT

then we write down the gradient descent update rule

w := w + λ
∑
x∈M

xT

(λ is the learning rate). The batch version looks like

1. init w
2. LOOP
3. get M = set of missclassified data points
4. w = w + λ

∑
x∈M xT

5. UNTIL |λ
∑

x∈M x| < ε

1

Assume the instances are linearly separable. Then we can modify the algorithm

1. init w
2. LOOP
3. get M = set of missclassified data points
4. for each x ∈ M do w = w + λxT

5. UNTIL M is empty

Proof of perceptron convergence Assuming data is linearly separable , or there is a solution w̄ such
that xw̄ > 0 for all x.
Lets call wk the w obtained at the k-th iteration (update). Fix an α > 0. Then

wk+1 − αw̄ = (wk − αw̄) + xT
k

where xk is the datapoint that updated w at iteration k. Then

||wk+1 − αw̄||2 = ||wk − αw̄||2 + 2xk(wk − αw̄) + ||xk||2 ≤ ||wk − αw̄||2 − 2xkαw̄ + ||xk||2

Since xkw̄ > 0 all we need is an α sufficiently large to show that this update process cannot go on forever.
When it stops, all datapoints must be classified correctly.

Figure 1: bias unit

2

2 Multilayer perceptrons

Also called feed-forward networks.

Figure 2: multilayer perceptron

3

2.1 More than linear functions, example: XOR

- activation functions, XOR example

Figure 3: XOR NNet

4

2.2 Construction and structure of NNets

Figure 4: NNet fully connected

The oputpit units can be written as

gk(x) = zk = f

∑
j

wkjf

(∑
i

wijx
i + wj0

)
+ wk0

 = F (F (xwj)wk)

2.3 Kolmogorov theorem, expressive power of NNet

Any function g can be written

g(x) =
∑

j

Ξj

(∑
d

Ψdj(xd)

)
but there is no practical way to use this theorem in practice. Usually Ξ and Ψ are very complex and not
smooth.

5

3 Training, Error backpropagation

- error

- propagation to last set of weights (close to output)

6

- propagation to first set of weights (close to input)

- stochastic VS batch

7

4 How to improve backpropagation

4.1 Activation function

- continuous, differentiable (smoothness)
- nonlinear
- saturation
- monotonicity

4.2 Scale input

4.3 Target values

4.4 Noise

4.5 Number of hidden units

4.6 Weights initialization

4.7 Learning rates

Figure 5: learning rates

8

4.8 Construction and structure of NNets

5 Network size and structure. Regularization

6 Jacobian and Hessian

9

