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1 The perceptron

Lets suppose we are (as with regression regression) with (x;,3;);4 = 1, ..,m the data points and labels. This
is a classification problem with two classes y € {-1,1}

Like with regression we are looking for a linear predictor (classifier)
D
hw(x) = xw = Z xdw?
d=0

(we added the z° = 1 component so we can get the free term w°) such that hw(x) > 0 when y = 1 and
hw(x) < 0 when y = —1.

On y = —1 data points: given that all x and y are numerical, we will make the following transformation:
when y = —1, we will reverse the sign of the input; that is replace x with -x and y = —y. Then the condition
hw(x) < 0 becomes hw(x) > 0 for all data points.

The perceptron objective function is a combination of the number of miss-classification points and how

bad the miss-classification is
J(w) = Z —hw(x) = Z —XW
xEM xeM

where M is the set of miss-classified data points. Note that each term of the sum is positive, since miss-
classified implies wx < 0. Using gradient descent, we first differentiate J

x\l\‘ Vwd(w) = Z —xT a x :E —-'2;

57 o
then we write down the gradient descent update rule

W:=w+)\ZxT

xeEM

(X is the learning rate). The batch version looks like

1. init w

2. LOOP

3. get M = set of missclassified data points
4. wW=wH+AY o xT

5. UNTIL [A > cp X| <€
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Assume the instances are linearly separable. Then we can modify the algorithm

1. init w

2. LOOP

3. get M = set of missclassified data points
4. for each x € M do w = w + Ax7T

5. UNTIL M is empty

Proof of perceptron convergence Assuming data is linearly separable , or there is a solution W such
that xw > 0 for all x.
Lets call wy the w obtained at the k-th iteration (update). Fix an o > 0. Then

Wit —aw = (wy —aw) + x{
where xj is the datapoint that updated w at iteration k. Then
lIWer1 — aWl|]? = [|wi — aW|[® + 2x5 (Wi — aW) + [Jxk]|* < [|wi — aW]|? — 2x,0% + [Jxi]|?

Since xxWw > 0 all we need is an « sufficiently large to show that this update process cannot go on forever.
When it stops, all datapoints must be classified correctly.

bias unit

Figure 1: bias unit



2 Multilayer perceptrons

Also called feed-forward networks.
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Figure 2: multilayer perceptron



2.1 More than linear functions, example: XOR

- activation functions, XOR example

Figure 3: XOR NNet
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2.2  Construction and structure of NNets

input x

Figure 4: NNet fully connected

The oputpit units can be written as

Ge(X) =2z, = f (Z Wiy f (Z wijxi + ’lUjO) + wko) = F (F(xw;)wy)

2.3 Kolmogorov theorem, expressive power of NNet
Any function g can be written
9x)=}"g, (Z \de(:c%)
J d
but there is no practical way to use this theorem in practice. Usually E and U are very complex and not
smooth.
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3 Training, Error backpropagation
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- propagation to first set of weights (close to input)

V) Ak _Eﬁ

= — .——-._____\X—q }

KB‘N BDL Bs\e (de‘i

ol ?[li(“ k)”‘ >z QwﬂzA

Q\Aj B\\G ‘j@( Z>Bwﬁ‘[‘< BI«A -
/ 7);{,’(\1\0&&)\0&

! gve !
@v; - j <\A 6) BWA >

o

.\IQ{" i { }f( « "\/3 ﬁte 1) 2 dN
o

s hy ot n
dy= Abet) 2 Kﬁg
N

ek / 0\,"")1



C"/’LOC L as e LACK

A%tﬁ“@t 5(“{5 ((Ma%w,[vx C(MG(;('”‘K\>.

WJL = Wit Jrkégll
\/Vkil W\LS% AS‘\(\«\A

vt Sl <e

-

\M \\): ii<w>>(-&>
L=

/4/("\%' ERCU l‘l'(,rﬁ'\',m"bv
& q[\« »2,,010\/\ Xe

\ Looni= BT Al
N e D Vag + A !/\;X



4 How to improve backpropagation

4.1

Activation function

- continuous, differentiable (smoothness)
- nonlinear
- saturation
- - monotonicity
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Noise
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5 Network size and structure. Regularization

6 Jacobian and Hessian
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Figure 6.18: Gradient descent in a one-dimensional quadratic criterion with different
learning rates. If n < 7,5, convergence is assured, but training can be needlessly
slow. If 7 = 7,p, a single learning step suffices to find the error minimum. If
Nopt < 11 < 2Nopt, the system will oscillate but nevertheless converge, but training is
needlessly slow. If n > 2n,,,, the system diverges.



