5.2 Linear Discriminant Functions and Decision Sur-
faces

5.2.1 The Two-Category Case

A discriminant function that is a linear combination of the components of x can be
written as

g(x) = wix + wy, (1)

where w is the weight vector and wo the bias or threshold weight. A two-category
linear classifier implements the following decision rule: Decide w, if g(x) > 0 and wy
if g(x) < 0. Thus, x is assigned to w; if the inner product wx exceeds the threshold
—wp and wy otherwise. If g(x) = 0, x can ordinarily be assigned to either class, but
in this chapter we shall leave the assignment undefined. Figure 5.1 shows a typical
implementation, a clear example of the general structure of a pattern recognition
system we saw in Chap. 77.

2(x)

Xl X2 DI Xd

Figure 5.1: A simple linear classifier having d input units, each corresponding to the
values of the components of an input vector. Each input feature value z; is multiplied
by its corresponding weight w;; the output unit sums all these products and emits a
+1 if wix 4 wg > 0 or a —1 otherwise.

The equation g(x) = 0 defines the decision surface that separates points assigned
to wy from points assigned to w,;. When g(x) is linear, this decision surface is a
hyperplane. If x, and x, are both on the decision surface, then
wix; + wp = w'xe + wp

or

wt(xl - x’.’) = Ov

and this shows that w is normal to any vector lying in the hyperplane. In general,
the hyperplane H divides the feature space into two halfspaces, decision region R,
for wy and region Ry for ws. Since g(x) > 0 if x is in Ry, it follows that the normal
vector w points into R;. It is sometimes said that any x in R is on the positive side
of H, and any x in Rq is on the negative side.

The discriminant function g(x) gives an algebraic measure of the distance from x
to the hyperplane. Perhaps the easiest way to see this is to express x as

X=Xp+7 hid
— P —T

|wll
where x,, is the normal projection of x onto H, and r is the desired algebraic distance
— positive if x is on the positive side and negative if x is on the negative side. Then,
since g(x,) =0,

g9(x) = w'x +wo = rl|w|,

or

g(x)

r=T—.
wll

In particular, the distance from the origin to H is given by wg/||w||. If wy > 0 the
origin is on the positive side of H, and if wg < 0 it is on the negative side. If wy = 0,
then g(x) has the homogeneous form w'x, and the hyperplane passes through the
origin. A geometric illustration of these algebraic results is given in Fig. 5.2.

Figure 5.2: The linear decision boundary H, where g(x) = w'x 4+ wqo = 0, separates
the feature space into two half-spaces Ry (where g(x) > 0) and R2 (where g(x) < 0).

To summarize, a linear discriminant function divides the feature space by a hy-
perplane decision surface. The orientation of the surface is determined by the normal
vector w, and the location of the surface is determined by the bias wg. The discrim-
inant function g(x) is proportional to the signed distance from x to the hyperplane,
with g(x) > 0 when x is on the positive side, and g(x) < 0 when x is on the negative
side.

of every hyperplane. Thus, a solution vector must lie in the intersection of n half-
spaces; indeed any vector in this region is a solution vector. The corresponding region
is called the solution region, and should not be confused with the decision region in
feature space corresponding to any particular category. A two-dimensional example
illustrating the solution region for both the normalized and the unnormalized case is
shown in Fig. 5.8.

solution solution
region region y}

Figure 5.8: Four training samples (black for w;, red for ws) and the solution region
in feature space. The figure on the left shows the raw data; the solution vectors leads
to a plane that separates the patterns from the two categories. In the figure on the
right, the red points have been “normalized” — i.e., changed in sign. Now the solution
vector leads to a plane that places all “normalized” points on the same side.

From this discussion, it should be clear that the solution vector — again, if it
exists — is not unique. There are several ways to impose additional requirements to
constrain the solution vector. One possibility is to seek a unit-length weight vector
that maximizes the minimum distance from the samples to the separating plane.
Another possibility is to seek the minimum-length weight vector satisfying a’y; > b
for all 7, where b is a positive constant called the margin. As shown in Fig. 5.9, the
solution region resulting form the intersections of the halfspaces for which aly; > b > 0
lies within the previous solution region, being insultated from the old boundaries by
the distance b/||y;||.

The motivation behind these attempts to find a solution vector closer to the “mid-
dle” of the solution region is the natural belief that the resulting solution is more likely
to classify new test samples correctly. In most of the cases we shall treat, however,
we shall be satisfied with any solution strictly within the solution region. Our chief
concern will be to see that any iterative procedure used does not converge to a limit
point on the boundary. This problem can always be avoided by the introduction of a
margin, i.e., by requiring that a’y; > b > 0 for all i.

N\
- ! \ /
, 1A
: %
‘ N)//

Figure 5.9: The effect of the margin on the solution region. At the left, the case of
no margin (b = 0) equivalent to a case such as shown at the left in Fig. 5.8. At the
right is the case b > 0, shrinking the solution region by margins b/|y;|.

distance from a(1) in the direction of steepest descent, i.e., along the negative of the
gradient. In general, a(k + 1) is obtained from a(k) by the equation

a(k +1) = a(k) — n(k)VJ(a(k)), (12)

where n is a positive scale factor or learning rate that sets the step size. We hope
that such a sequence of weight vectors will converge to a solution minimizing J(a).
In algorithmic form we have:

Algorithm 1 (Basic gradient descent)

1 begin initialize a,criterion #,n(-),k =0
2 dok—k+1

3 a—a—rn(k)VJ(a)

4 until n(k)V.J(a) <6

5 return a

6 end

The many problems associated with gradient descent procedures are well known.
Fortunately, we shall be constructing the functions we want to minimize, and shall be
able to avoid the most serious of these problems. One that will confront us repeatedly,
however, is the choice of the learning rate n(k). If n(k) is too small, convergence is
needlessly slow, whereas if (k) is too large, the correction process will overshoot and
can even diverge (Sect. 5.6.1).

We now consider a principled method for setting the learning rate. Suppose that
the criterion function can be well approximated by the second-order expansion around
a value a(k) as

J(a) ~ J(a(k)) + VJ'(a — a(k)) + %(a —a(k))'H (a - a(k)), (13)

where H is the Hessian matriz of second partial derivatives 9°.J/da;0a; evaluated at
a(k). Then, substituting a(k + 1) from Eq. 12 into Eq. 13 we find:

J(a(k + 1)) ~ J(a(k)) — n(k)||VJ|? + %nz(k)VJ'HVJ.

From this it follows (Problem 12) that J(a(k + 1)) can be minimized by the choice

vJ)?
k) =g ey

where H depends on a, and thus indirectly on k. This then is the optimal choice
of n(k) given the assumptions mentioned. Note that if the criterion function .J(a) is
quadratic throughout the region of interest, then H is constant and 7 is a constant
independent of k.

An alternative approach, obtained by ignoring Eq. 12 and by choosing a(k +
1) to minimize the second-order expansion, is Newton's algorithm where line 3 in
Algorithm 1 is replaced by

(14)

a(k+1)=a(k)-—H'VJ, (15)

leading to the following algorithm:

Algorithm 2 (Newton descent)

1 begin initialize a, criterion #

2 do

3 a—a—H'V.J(a)
4 until H-'V.J(a) < 6

5 return a

6 end

Simple gradient descent and Newton’s algorithm are compared in Fig. 5.10.

Generally speaking, Newton’s algorithm will usually give a greater improvement
per step than the simple gradient descent algorithm, even with the optimal value
of n(k). However, Newton’s algorithm is not applicable if the Hessian matrix H is
singular. Furthermore, even when H is nonsingular, the O(d®) time required for
matrix inversion on each iteration can easily offset the descent advantage. In fact,
it often takes less time to set n(k) to a constant n that is smaller than necessary
and make a few more corrections than it is to compute the optimal (k) at each step
(Computer exercise 1).

5.5 Minimizing the Perceptron Criterion Function

5.5.1 The Perceptron Criterion Function

Consider now the problem of constructing a criterion function for solving the linear
inequalities a'y; > 0. The most obvious choice is to let .J(a; yi,...,y») be the number
of samples misclassified by a. However, because this function is piecewise constant, it
is obviously a poor candidate for a gradient search. A better choice is the Perceptron
criterion function

Jp(a) = > (-a'y), (16)

yey

Figure 5.11: Four learning criteria as a function of weights in a linear classifier. At the
upper left is the total number of patterns misclassified, which is piecewise constant
and hence unacceptable for gradient descent procedures. At the upper right is the
Perceptron criterion (Eq. 16), which is piecewise linear and acceptable for gradient
descent. The lower left is squared error (Eq. 32), which has nice analytic properties
and is useful even when the patterns are not linearly separable. The lows=r right is
the square error with margin (Eq. 33). A designer may adjust the margin b in order
to force the solution vector to lie toward the middle of the b = 0 solution region in
hopes of improving generalization of the resulting classifier.

Thus, the batch Perceptron algorithm for finding a solution vector can be stated
very simply: the next weight vector is obtained by adding some multiple of the sum
of the misclassified samples to the present weight vector. We use the term “batch”
to refer to the fact that (in general) a large group of samples is used when com-
puting each weight update. (We shall soon see alternate methods based on single
samples.) Figure 5.12 shows how this algorithm yields a solution vector for a simple
two-dimensional example with a(1) = 0, and n(k) = 1. We shall now show that it
will yield a solution for any linearly separable problem.

Figure 5.12: The Perceptron criterion, J,, is plotted as a function of the weights a,
and as for a three-pattern problem. The weight vector begins at 0, and the algorithm
sequentially adds to it vectors equal to the “normalized” misclassified patterns them-
selves. In the example shown, this sequence is y2,¥3,¥1,¥3, at which time the vector
lies in the solution region and iteration terminates. Note that the second update (by
y3) takes the candidate vector farther from the solution region than after the first
update (cf. Theorem 5.1. (In an alternate, batch method, all the misclassified points
are added at each iteration step leading to a smoother trajectory in weight space.)

5.5.2 Convergence Proof for Single-Sample Correction

We shall begin our examination of convergence properties of the Perceptron algo-
rithm with a variant that is easier to analyze. Rather than testing a(k) on all of the
samples and basing our correction of the set Vi of misclassified training samples, we
shall consider the samples in a sequence and shall modify the weight vector when-
ever it misclassifies a single sample. For the purposes of the convergence proof, the
detailed nature of the sequence is unimportant as long as every sample appears in
the sequence infinitely often. The simplest way to assure this is to repeat the sam-
ples cyclically, though from a practical point of view random selection is often to be
preferred (Sec. 5.8.5). Clearly neither the batch nor this single-sample version of the
Perceptron algorithm are on-line since we must store and potentially revisit all of the
training patterns.

Two further simplifications help to clarify the exposition. First, we shall tem-
porarily restrict our attention to the case in which n(k) is constant — the so-called
fized-increment case. It is clear from Eq. 18 that if n(¢) is constant it merely serves to
scale the samples; thus, in the fixed-increment case we can take n(t) = 1 with no loss
in generality. The second simplification merely involves notation. When the samples

are considered sequentially, some will be misclassified. Since we shall only change the
weight vector when there is an error, we really need only pay attention to the mis-
classified samples. Thus we shall denote the sequence of samples using superscripts,
i.e., by y', ¥%, ..., ¥*, ..., where each y* is one of the n samples y1, ..., ¥n, and where
each y* is misclassified. For example, if the samples y;, y2, and y3 are considered
cyclically, and if the marked samples

| ! | ! |
Y1, ¥Y2, ¥3, Y1, Y2, ¥3, Y1, Y2, - (19)

are misclassified, then the sequence y', y?, y* y* y° ... denotes the sequence
Y1, ¥3, ¥1, ¥2, Y2, ... With this understanding, the fized-increment rule for generating
a sequence of weight vectors can be written as

a(l) arbitrary }

a(k+1) = a(k) +y* k>1 (20)

where al(k)y* < 0 for all k. If we let n denote the total number of patterns, the
algorithm is:

Algorithm 4 (Fixed-increment single-sample Perceptron)

1 begin initialize a, k=0

2 do k « (k+ 1)modn

3 if yi is misclassified by a then a« a — y;
4 until all patterns properly classified

5 return a

6 end

The fixed-increment Perceptron rule is the simplest of many algorithms that have
been proposed for solving systems of linear inequalities. Geometrically, its interpre-
tation in weight space is particularly clear. Since a(k) misclassifies y*, a(k) is not on
the positive side of the y* hyperplane ay* = 0. The addition of y* to a(k) moves
the weight vector directly toward and perhaps across this hyperplane. Whether the
hyperplane is crossed or not, the new inner product a*(k + 1)y* is larger than the old
inner product at(k)y* by the amount ||y*||?, and the correction is clearly moving the
weight vector in a good direction (Fig. 5.13).

|

\“.J
— =
N

f

. -..‘I

Y /
<ot

—

\ e

I

|

——)
-2

| 1)

| \ 1. = Z f \ J[, F = Z f

| \ =T | | : =]
. f \ - | / e

Figure 5.13: Samples from two categories, w; (black) and w: (red) are shown in
augmented feature space, along with an augmented weight vector a. At each step
in a fixed-increment rule, one of the misclassified patterns, y*, is shown by the large
dot. A correction Aa (proportional to the pattern vector y*) is added to the weight
vector — towards an w; point or away from an ws point. This changes the decision
boundary from the dashed position (from the previous update) to the solid position.
The sequence of resulting a vectors is shown, where later values are shown darker. In

this example, by step 9 a solution vector has been found and the categories successfully
separated by the decision boundary shown.

Clearly this algorithm can only terminate if the samples are linearly separable; we
now prove that indeed it terminates so long as the samples are linearly separable.

Theorem 5.1 (Perceptron Convergence) If training samples are linearly sepa-

rable then the sequence of weight vectors given by Algorithm 4 will terminate at a
solution vector.

Proof:

In seeking a proof, it is natural to try to show that each correction brings the weight
vector closer to the solution region. That is, one might try to show that if a is any
solution vector, then |la(k + 1) — a|| is smaller than ||a(k) — a||. While this turns out

not to be true in general (cf. steps 6 & 7 in Fig. 5.13), we shall see that it is true for
solution vectors that are sufficiently long.

Let a be any solution vector, so that a'y; is strictly positive for all ¢, and let a be
a positive scale factor. From Eq. 20,

a(k+1) — ca = (a(k) — 0d) + y*

and hence

la(k +1) — aal® = |la(k) — aal|* + 2(a(k) — ad)"y* + [y

Since y* was misclassified, a*(k)y* < 0, and thus

la(k +1) — oal® < |la(k) — oal|* — 20a"y"* + |[y"|>.

Because a'y* is strictly positive, the second term will dominate the third if « is
sufficiently large. In particular, if we let 5 be the maximum length of a pattern
vector,

A = max |y, (21)

and v be the smallest inner product of the solution vector with any pattern vector,
ie.,

7 = min [a'y;] >0, (22)

then we have the inequality

la(k + 1) — aa||® < |la(k) — od||* — 22y + 7.

If we choose

2
=2, (23)

we obtain

la(k + 1) — ca|® < ||a(k) — ca|* — 3%

Thus, the squared distance from a(k) to aa is reduced by at least, 3* at each correction,
and after k corrections

la(k +1) - oa* < |la(k) — oal|* - k5°. (24)

Since the squared distance cannot become negative, it follows that the sequence of
corrections must terminate after no more than kg corrections, where

_ lla(t) - aal?

ko =

(25)

Since a correction occurs whenever a sample is misclassified, and since each sample
appears infinitely often in the sequence, it follows that when corrections cease the
resulting weight vector must classify all of the samples correctly. ll

The number kg gives us a bound on the number of corrections. If a(1) = 0, we
get the following particularly simple expression for kq:

_o?[al? _ pra?az _ maxlivillal®
ko = 32 - 2 - i ta]2 (26)
A miun[y,-a]
The denominator in Eq. 26 shows that the difficulty of the problem is essentially
determined by the samples most nearly orthogonal to the solution vector. Unfortu-
nately, it provides no help when we face an unsolved problem, since the bound is
expressed in terms of a solution vector which is unknown. In general, it is clear that
linearly-separable problems can be made arbitrarily difficult to solve by making the
samples almost coplanar (Computer exercise 2). Nevertheless, if the training sam-
ples are linearly separable, the fixed-increment rule will yield a solution after a finite
number of corrections.

5.5.3 Some Direct Generalizations

The fixed increment rule can be generalized to provide a variety of related algorithms.
We shall briefly consider two variants of particular interest. The first variant intro-
duces a variable increment n(k) and a margin b, and calls for a correction whenever
a‘(k)y* fails to excede the margin. The update is given by
a(l) arbitrary
alk+1) = a(k) + n(k)y* k>1, } (27)

where now at(k)y* < b for all k. Thus for n patterns, our algorithm is:

Algorithm 5 (Variable increment Perceptron with margin)

1 begin initialize a,criterion #, margin b,n(-),k =0
2 do k+—k+1

3 if a'yx +b <0 then a« a—n(k)yx
4 until a'y, + b < 0 for all k
5
6

return a
end

It can be shown that if the samples are linearly separable and if

n(k) >0, (28)

lim E n(k) = oo (29)
m—oo
k=1

and

Jim =L =0, (30)
(5" n(k))
k=1

then a(k) converges to a solution vector a satisfying a’y; > b for all 7 (Problem 18).
In particular, these conditions on 7(k) are satisfied if n(k) is a positive constant, or if
it decreases like 1/k.

Another variant of interest is our original gradient descent algorithm for .J,,

a(l) arbitrary
alk+1)=a(k)+n(k) X vy, } (31)
YEVk

where Y is the set of training samples misclassified by a(k). It is easy to see that this
algorithm will also yield a solution once one recognizes that if a is a solution vector
for y1,...,¥n, then it correctly classifies the correction vector

vi=>v.

YEYVk
In greater detail, then, the algorithm is

Algorithm 6 (Batch variable increment Perceptron)

1 begin initialize a,7(-),k =0

2 dok —k+1

g yk={}

4 7=0

5 doje—j+1

6 if y; is misclassified then Append y; to Vi

7 until j =n

8 a—a+nk) Xy
yEVi

9 until Vi = {}

10 return a

17 end

The benefit of batch gradient descent is that the trajectory of the weight vector is
smoothed, compared to that in corresponding single-sample algorithms (e.g., Algo-
rithm 5), since at each update the full set of misclassified patterns is used — the
local statistical variations in the misclassified patterns tend to cancel while the large-
scale trend does not. Thus, if the samples are linearly separable, all of the possible
correction vectors form a linearly separable set, and if 7j(k) satisfies Eqgs. 28-30, the
sequence of weight vectors produced by the gradient descent algorithm for Jy,(-) will
always converge to a solution vector.

It is interesting to note that the conditions on n(k) are satisfied if n(k) is a positive

would prefer to have n{k) become smaller as time goes on. This is particularly true
if there is reason to believe that the set of samples is not linearly separable, since it
reduces the disruptive effects of a few “bad” samples. However, in the separable case
it is a curious fact that one can allow n(k) to become larger and still obtain a solution.

