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An Example of a Learning Problem

Credit: This example is from: S. Russell and P. Norvig, "Artificial Intelligence: A 
Modern Approach", third edition (2009), Prentice Hall.
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An Example of a Learning Problem

• Some attributes are boolean, like Alt (are there alternative restaurants 
nearby?), Bar (does the restaurant have a bar?), Fri (is it weekend?), Hun (is 
the customer hungry?), Rain (is it raining?), Res (was a reservation made?) 3



An Example of a Learning Problem

• Attribute Pat (how many people are in the restaurant) takes three values.
• Attribute Price takes three values. Attribute Type takes four values.
• Attribute Est (estimated wait time) takes four values. 4



An Example of a Learning Problem

• Using these training examples, we want to learn a function F, mapping each 
pattern into a boolean answer (will wait, or will not wait).
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Decision Trees

• A decision tree is a type of classifier. The input is a pattern. The output is a class.
• Given a pattern:  we start at the root of the tree.
• The current node asks a question about the pattern.
• Based on the answer, we move to a child of the current node.
• When we get to a leaf node, we get the output of the decision tree (a class). 6



Decision Trees

• For example, what is the output of the decision tree on this pattern?
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Alt Bar Fri Hun Pat Price Rain Res Type Est
F T F F Some $$ T F Thai 10-30



Decision Trees

• For example, what is the output of the decision tree on this pattern?

• First check: ???
8

Alt Bar Fri Hun Pat Price Rain Res Type Est
F T F F Some $$ T F Thai 10-30



Decision Trees

• For example, what is the output of the decision tree on this pattern?

• First check: value of Patrons? Some.
• Where do we go next? 9

Alt Bar Fri Hun Pat Price Rain Res Type Est
F T F F Some $$ T F Thai 10-30



Decision Trees

• For example, what is the output of the decision tree on this pattern?

• First check: value of Patrons? Some.
• Where do we go next? To the middle child. What happens next? 10

Alt Bar Fri Hun Pat Price Rain Res Type Est
F T F F Some $$ T F Thai 10-30



Decision Trees

• For example, what is the output of the decision tree on this pattern?

• First check: value of Patrons? Some.
• Where do we go next? To the middle child. Leaf node, output is will wait. 11

Alt Bar Fri Hun Pat Price Rain Res Type Est
F T F F Some $$ T F Thai 10-30



Decision Trees

• What is the output of the decision tree on this pattern?

• First check: ???
12

Alt Bar Fri Hun Pat Price Rain Res Type Est
F T F F Full $$ T F Thai 10-30



Decision Trees

• What is the output of the decision tree on this pattern?

• First check: value of Patrons? Full.
• Where do we go next? 13

Alt Bar Fri Hun Pat Price Rain Res Type Est
F T F F Full $$ T F Thai 10-30



Decision Trees

• What is the output of the decision tree on this pattern?

• First check: value of Patrons? Full.
• Where do we go next? To the right child. 14

Alt Bar Fri Hun Pat Price Rain Res Type Est
F T F F Full $$ T F Thai 10-30



Decision Trees

• What is the output of the decision tree on this pattern?

• Next check: ???
15

Alt Bar Fri Hun Pat Price Rain Res Type Est
F T F F Full $$ T F Thai 10-30



Decision Trees

• What is the output of the decision tree on this pattern?

• Next check: value of WaitEstimate? 10-30.
• Where do we go next? To the second-from-the-right child. 16

Alt Bar Fri Hun Pat Price Rain Res Type Est
F T F F Full $$ T F Thai 10-30



Decision Trees

• What is the output of the decision tree on this pattern?

• Next check: value of Hungry? False.
• Where do we go next? To the left child. 17

Alt Bar Fri Hun Pat Price Rain Res Type Est
F T F F Full $$ T F Thai 10-30



Decision Trees

• What is the output of the decision tree on this pattern?

• We arrived at a leaf node.
• Output: will wait. 18

Alt Bar Fri Hun Pat Price Rain Res Type Est
F T F F Full $$ T F Thai 10-30



Decision Trees

• At this point, it should be clear how to apply a decision tree to 
classify a pattern.

• Obviously, there are lots and lots of different decision trees that 
we can come up with.
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Decision Trees

• At this point, it should be clear how to apply a decision tree to 
classify a pattern.

• Obviously, there are lots and lots of different decision trees that 
we can come up with.

• Here is a different decision tree. 20



Decision Trees

• The natural question is: how can we construct a good decision 
tree?

• The next slides address that question.
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Decision Tree Learning

• DTL_TopLevel is the top level function for decision tree 
learning.

• It defines two variables (attributes and default), and 
calls the DTL function.
– DTL (explained in the next slides) is an auxiliary function that 

does the actual work.

• DTL is recursive, so the job of DTL_TopLevel is to just 
make the first call to DTL, with the right arguments. 22

function DTL_TopLevel(examples) returns a decision tree
attributes = list of all attributes in the examples
default = MODE(examples)
return DTL(examples, attributes, default)



Decision Tree Learning

Credit: This pseudocode is from: S. Russell and P. Norvig, "Artificial Intelligence: A 
Modern Approach", third edition (2009), Prentice Hall.
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function DTL(examples, attributes, default) returns a decision tree
if examples is empty then return default
else if all examples have the same class then return the class
else if attributes is empty then return MODE(examples)
else

best = CHOOSE-ATTRIBUTE(attributes, examples)
tree = a new decision tree with root test best
for each value vi of best do

examplesi = {elements of examples with best = vi}
subtree = DTL(examplesi, attributes - best, MODE(examples))
add a branch to tree with label vi and subtree subtree

return tree



Decision Tree Learning

• Notice that the function is recursive (the line of the recursive call is 
highlighted).

• This function builds the entire tree, and its recursive calls build each individual 
subtree, and each individual leaf node. 24

function DTL(examples, attributes, default) returns a decision tree
if examples is empty then return default
else if all examples have the same class then return the class
else if attributes is empty then return MODE(examples)
else

best = CHOOSE-ATTRIBUTE(attributes, examples)
tree = a new decision tree with root test best
for each value vi of best do

examplesi = {elements of examples with best = vi}
subtree = DTL(examplesi, attributes - best, MODE(examples))
add a branch to tree with label vi and subtree subtree

return tree



DTL: Arguments

• examples: A set of training examples. Remember, each training example is a 
pair, consisting of a pattern and a class label.

• attributes: A list of attributes that we can choose to test.
• default: A default class to output if no better choice is available (details later). 25

function DTL(examples, attributes, default) returns a decision tree
if examples is empty then return default
else if all examples have the same class then return the class
else if attributes is empty then return MODE(examples)
else

best = CHOOSE-ATTRIBUTE(attributes, examples)
tree = a new decision tree with root test best
for each value vi of best do

examplesi = {elements of examples with best = vi}
subtree = DTL(examplesi, attributes - best, MODE(examples))
add a branch to tree with label vi and subtree subtree

return tree



DTL: Return Type

• The function returns a decision tree.
• However, notice the highlighted line, that says that if there are no examples, 

we should return default. What does that mean?
26

function DTL(examples, attributes, default) returns a decision tree
if examples is empty then return default
else if all examples have the same class then return the class
else if attributes is empty then return MODE(examples)
else

best = CHOOSE-ATTRIBUTE(attributes, examples)
tree = a new decision tree with root test best
for each value vi of best do

examplesi = {elements of examples with best = vi}
subtree = DTL(examplesi, attributes - best, MODE(examples))
add a branch to tree with label vi and subtree subtree

return tree



DTL: Return Type

• The function returns a decision tree.
• However, notice the highlighted line, that says that if there are no examples, 

we should return default. What does that mean?
• It means we should return a leaf node, that outputs class default. 27

function DTL(examples, attributes, default) returns a decision tree
if examples is empty then return default
else if all examples have the same class then return the class
else if attributes is empty then return MODE(examples)
else

best = CHOOSE-ATTRIBUTE(attributes, examples)
tree = a new decision tree with root test best
for each value vi of best do

examplesi = {elements of examples with best = vi}
subtree = DTL(examplesi, attributes - best, MODE(examples))
add a branch to tree with label vi and subtree subtree

return tree



DTL: Return Type

• This is the only reason we have a default argument to the DTL function.
• If there are no examples, obviously we need to create a leaf node.
• The default argument tells us what class to store at the leaf node.

28

function DTL(examples, attributes, default) returns a decision tree
if examples is empty then return default
else if all examples have the same class then return the class
else if attributes is empty then return MODE(examples)
else

best = CHOOSE-ATTRIBUTE(attributes, examples)
tree = a new decision tree with root test best
for each value vi of best do

examplesi = {elements of examples with best = vi}
subtree = DTL(examplesi, attributes - best, MODE(examples))
add a branch to tree with label vi and subtree subtree

return tree



DTL: Base Cases

• First base case: the examples are empty. As discussed before, we return a leaf 
node with output class default.

• Second base case: all examples have the same class. We just return a leaf node 
with that class as its output. 29

function DTL(examples, attributes, default) returns a decision tree
if examples is empty then return default
else if all examples have the same class then return the class
else if attributes is empty then return MODE(examples)
else

best = CHOOSE-ATTRIBUTE(attributes, examples)
tree = a new decision tree with root test best
for each value vi of best do

examplesi = {elements of examples with best = vi}
subtree = DTL(examplesi, attributes - best, MODE(examples))
add a branch to tree with label vi and subtree subtree

return tree



DTL: Base Cases

• Third base case: attributes is empty. We have run out of questions to ask. 
• In this case, we have to return a leaf node. What class should we store there?

30

function DTL(examples, attributes, default) returns a decision tree
if examples is empty then return default
else if all examples have the same class then return the class
else if attributes is empty then return MODE(examples)
else

best = CHOOSE-ATTRIBUTE(attributes, examples)
tree = a new decision tree with root test best
for each value vi of best do

examplesi = {elements of examples with best = vi}
subtree = DTL(examplesi, attributes - best, MODE(examples))
add a branch to tree with label vi and subtree subtree

return tree



DTL: Base Cases

• Third base case: attributes is empty. We have run out of questions to ask. 
• In this case, we have to return a leaf node, with output class MODE(examples).
• MODE is an auxiliary function, that returns the most common class among the 

examples. 31

function DTL(examples, attributes, default) returns a decision tree
if examples is empty then return default
else if all examples have the same class then return the class
else if attributes is empty then return MODE(examples)
else

best = CHOOSE-ATTRIBUTE(attributes, examples)
tree = a new decision tree with root test best
for each value vi of best do

examplesi = {elements of examples with best = vi}
subtree = DTL(examplesi, attributes - best, MODE(examples))
add a branch to tree with label vi and subtree subtree

return tree



DTL: Recursive Case

• The highlighted code shows the recursive case.
• The first thing we do, is call CHOOSE-ATTRIBUTE.
• CHOOSE-ATTRIBUTE is an auxiliary function that chooses the attribute we 

should check at this node. 32

function DTL(examples, attributes, default) returns a decision tree
if examples is empty then return default
else if all examples have the same class then return the class
else if attributes is empty then return MODE(examples)
else

best = CHOOSE-ATTRIBUTE(attributes, examples)
tree = a new decision tree with root test best
for each value vi of best do

examplesi = {elements of examples with best = vi}
subtree = DTL(examplesi, attributes - best, MODE(examples))
add a branch to tree with label vi and subtree subtree

return tree



DTL: Recursive Case

• We will talk A LOT about the CHOOSE-ATTRIBUTE function, a bit later.
• For now, just accept that this function will do its job and choose an attribute, 

which we store at variable best.
33

function DTL(examples, attributes, default) returns a decision tree
if examples is empty then return default
else if all examples have the same class then return the class
else if attributes is empty then return MODE(examples)
else

best = CHOOSE-ATTRIBUTE(attributes, examples)
tree = a new decision tree with root test best
for each value vi of best do

examplesi = {elements of examples with best = vi}
subtree = DTL(examplesi, attributes - best, MODE(examples))
add a branch to tree with label vi and subtree subtree

return tree



DTL: Recursive Case

• Here we create the tree that we are going to return. 
• We store in that tree (probably in some member variable) the fact that we will 

be testing the attribute best.
• Next??? 34

function DTL(examples, attributes, default) returns a decision tree
if examples is empty then return default
else if all examples have the same class then return the class
else if attributes is empty then return MODE(examples)
else

best = CHOOSE-ATTRIBUTE(attributes, examples)
tree = a new decision tree with root test best
for each value vi of best do

examplesi = {elements of examples with best = vi}
subtree = DTL(examplesi, attributes - best, MODE(examples))
add a branch to tree with label vi and subtree subtree

return tree



DTL: Recursive Case

• Next, we need to create the children of that tree.
• How? With recursive calls to DTL, with appropriate arguments.
• How many children do we create?

35

function DTL(examples, attributes, default) returns a decision tree
if examples is empty then return default
else if all examples have the same class then return the class
else if attributes is empty then return MODE(examples)
else

best = CHOOSE-ATTRIBUTE(attributes, examples)
tree = a new decision tree with root test best
for each value vi of best do

examplesi = {elements of examples with best = vi}
subtree = DTL(examplesi, attributes - best, MODE(examples))
add a branch to tree with label vi and subtree subtree

return tree



DTL: Recursive Case

• Next, we need to create the children of that tree.
• How? With recursive calls to DTL, with appropriate arguments.
• How many children do we create? As many as the values of attribute best.

36

function DTL(examples, attributes, default) returns a decision tree
if examples is empty then return default
else if all examples have the same class then return the class
else if attributes is empty then return MODE(examples)
else

best = CHOOSE-ATTRIBUTE(attributes, examples)
tree = a new decision tree with root test best
for each value vi of best do

examplesi = {elements of examples with best = vi}
subtree = DTL(examplesi, attributes - best, MODE(examples))
add a branch to tree with label vi and subtree subtree

return tree



DTL: Recursive Case

• The highlighted loop creates the children (the subtrees of tree).
• Each iteration creates one child.

37

function DTL(examples, attributes, default) returns a decision tree
if examples is empty then return default
else if all examples have the same class then return the class
else if attributes is empty then return MODE(examples)
else

best = CHOOSE-ATTRIBUTE(attributes, examples)
tree = a new decision tree with root test best
for each value vi of best do

examplesi = {elements of examples with best = vi}
subtree = DTL(examplesi, attributes - best, MODE(examples))
add a branch to tree with label vi and subtree subtree

return tree



DTL: Recursive Case

• Remember, each child (subtree) corresponds to a value vi of best.
• To create that child, we need to call DTL with appropriate values for examples, 

attributes, and default.
• What examples should we use? 38

function DTL(examples, attributes, default) returns a decision tree
if examples is empty then return default
else if all examples have the same class then return the class
else if attributes is empty then return MODE(examples)
else

best = CHOOSE-ATTRIBUTE(attributes, examples)
tree = a new decision tree with root test best
for each value vi of best do

examplesi = {elements of examples with best = vi}
subtree = DTL(examplesi, attributes - best, MODE(examples))
add a branch to tree with label vi and subtree subtree

return tree



DTL: Recursive Case

• Remember, each child (subtree) corresponds to a value vi of best.
• To create that child, we need to call DTL with appropriate values for examples, 

attributes, and default.
• What examples should we use? The subset of examples where best = vi. 39

function DTL(examples, attributes, default) returns a decision tree
if examples is empty then return default
else if all examples have the same class then return the class
else if attributes is empty then return MODE(examples)
else

best = CHOOSE-ATTRIBUTE(attributes, examples)
tree = a new decision tree with root test best
for each value vi of best do

examplesi = {elements of examples with best = vi}
subtree = DTL(examplesi, attributes - best, MODE(examples))
add a branch to tree with label vi and subtree subtree

return tree



DTL: Recursive Case

• What attributes do we use? 

40

function DTL(examples, attributes, default) returns a decision tree
if examples is empty then return default
else if all examples have the same class then return the class
else if attributes is empty then return MODE(examples)
else

best = CHOOSE-ATTRIBUTE(attributes, examples)
tree = a new decision tree with root test best
for each value vi of best do

examplesi = {elements of examples with best = vi}
subtree = DTL(examplesi, attributes - best, MODE(examples))
add a branch to tree with label vi and subtree subtree

return tree



DTL: Recursive Case

• What attributes do we use? Everything in the attributes variable, except for best.
• Why are we leaving best out?
• What happens if we use the same attribute twice in a path?

41

function DTL(examples, attributes, default) returns a decision tree
if examples is empty then return default
else if all examples have the same class then return the class
else if attributes is empty then return MODE(examples)
else

best = CHOOSE-ATTRIBUTE(attributes, examples)
tree = a new decision tree with root test best
for each value vi of best do

examplesi = {elements of examples with best = vi}
subtree = DTL(examplesi, attributes - best, MODE(examples))
add a branch to tree with label vi and subtree subtree

return tree



Using an Attribute Twice in a Path

• What happens the second time we use Patrons? as the 
attribute in this example?

42

Patrons?
None

Some
Full

Raining?

No Yes

Patrons?
None

Some
Full



Using an Attribute Twice in a Path

• What happens the second time we use Patrons? as the 
attribute in this example?

• It is useless. All patterns getting to this node already have 
Patrons? = Full. 

• Therefore, all patterns will go to the right subtree. 
43

Patrons?
None

Some
Full

Raining?

No Yes

Patrons?
None

Some
Full



DTL: Recursive Case

• Finally, in our recursive call to DTL, what should be the value of default?
• This will be used as output for a leaf node, if examplesi are empty.
• First of all, why would examplesi ever be empty?

44

function DTL(examples, attributes, default) returns a decision tree
if examples is empty then return default
else if all examples have the same class then return the class
else if attributes is empty then return MODE(examples)
else

best = CHOOSE-ATTRIBUTE(attributes, examples)
tree = a new decision tree with root test best
for each value vi of best do

examplesi = {elements of examples with best = vi}
subtree = DTL(examplesi, attributes - best, MODE(examples))
add a branch to tree with label vi and subtree subtree

return tree



DTL: Recursive Case

• Finally, in our recursive call to DTL, what should be the value of default?
• This will be used as output for a leaf node, if examplesi are empty.
• First of all, why would examplesi ever be empty? 
• It may just happen that no training examples have best = vi.

45

function DTL(examples, attributes, default) returns a decision tree
if examples is empty then return default
else if all examples have the same class then return the class
else if attributes is empty then return MODE(examples)
else

best = CHOOSE-ATTRIBUTE(attributes, examples)
tree = a new decision tree with root test best
for each value vi of best do

examplesi = {elements of examples with best = vi}
subtree = DTL(examplesi, attributes - best, MODE(examples))
add a branch to tree with label vi and subtree subtree

return tree



DTL: Recursive Case

• So, what should be the value of default?

46

function DTL(examples, attributes, default) returns a decision tree
if examples is empty then return default
else if all examples have the same class then return the class
else if attributes is empty then return MODE(examples)
else

best = CHOOSE-ATTRIBUTE(attributes, examples)
tree = a new decision tree with root test best
for each value vi of best do

examplesi = {elements of examples with best = vi}
subtree = DTL(examplesi, attributes - best, MODE(examples))
add a branch to tree with label vi and subtree subtree

return tree



DTL: Recursive Case

• So, what should be the value of default?
• It should be MODE(examples): the most frequent class among the examples.

47

function DTL(examples, attributes, default) returns a decision tree
if examples is empty then return default
else if all examples have the same class then return the class
else if attributes is empty then return MODE(examples)
else

best = CHOOSE-ATTRIBUTE(attributes, examples)
tree = a new decision tree with root test best
for each value vi of best do

examplesi = {elements of examples with best = vi}
subtree = DTL(examplesi, attributes - best, MODE(examples))
add a branch to tree with label vi and subtree subtree

return tree



DTL: Recursive Case

• Once the recursive call to DTL has returned a subtree, we add that to our tree.

48

function DTL(examples, attributes, default) returns a decision tree
if examples is empty then return default
else if all examples have the same class then return the class
else if attributes is empty then return MODE(examples)
else

best = CHOOSE-ATTRIBUTE(attributes, examples)
tree = a new decision tree with root test best
for each value vi of best do

examplesi = {elements of examples with best = vi}
subtree = DTL(examplesi, attributes - best, MODE(examples))
add a branch to tree with label vi and subtree subtree

return tree



DTL: Recursive Case

• Finally, once all recursive calls to DTL have returned, we return the tree we have 
created.

• Are we done? 
49

function DTL(examples, attributes, default) returns a decision tree
if examples is empty then return default
else if all examples have the same class then return the class
else if attributes is empty then return MODE(examples)
else

best = CHOOSE-ATTRIBUTE(attributes, examples)
tree = a new decision tree with root test best
for each value vi of best do

examplesi = {elements of examples with best = vi}
subtree = DTL(examplesi, attributes - best, MODE(examples))
add a branch to tree with label vi and subtree subtree

return tree



DTL: Recursive Case

• Finally, once all recursive calls to DTL have returned, we return the tree we have 
created.

• Are we done? Almost, except that we still need to talk how CHOOSE-ATTRIBUTE 
works. 50

function DTL(examples, attributes, default) returns a decision tree
if examples is empty then return default
else if all examples have the same class then return the class
else if attributes is empty then return MODE(examples)
else

best = CHOOSE-ATTRIBUTE(attributes, examples)
tree = a new decision tree with root test best
for each value vi of best do

examplesi = {elements of examples with best = vi}
subtree = DTL(examplesi, attributes - best, MODE(examples))
add a branch to tree with label vi and subtree subtree

return tree



Choosing an Attribute

Credit: This figure is from: S. Russell and P. Norvig, "Artificial Intelligence: A 
Modern Approach", third edition (2009), Prentice Hall.

51



Choosing an Attribute

• Here we see two different attributes chosen at the root of the 
decision tree.
– At each node, green stands for a training example that waited, red 

stands for a training example that did not wait.

• Which attribute seems better (more useful) to you?

52



Choosing an Attribute

• Here we see two different attributes chosen at the root of the 
decision tree.
– At each node, green stands for a training example that waited, red 

stands for a training example that did not wait.

• Which attribute seems better (more useful) to you?
• The Patrons attribute is more useful, because it separates 

better the greens from the reds.
53



Choosing an Attribute

• How can we quantify how well an attribute separates training 
examples from different classes?

• We need to define two new quantities:
– Entropy.
– Information gain.

• These quantities are computed with specific formulas.
• Information gain will be used to choose the best attribute. 54



Entropy – Two-Class Example
• Suppose that we have a set X of training examples.

– K1 examples have class label A.
– K2 examples have class label B.

• Let K = K1 + K2.
• Then the entropy of the set X depends only on the two 

ratios: 
𝐾𝐾1

𝐾𝐾
and 

𝐾𝐾2

𝐾𝐾
. The entropy H is defined as:

• Note: logarithms in this discussion are always base 2.

55

H
𝐾𝐾1

𝐾𝐾
,
𝐾𝐾2

𝐾𝐾
= −

𝐾𝐾1

𝐾𝐾
log2

𝐾𝐾1

𝐾𝐾
−
𝐾𝐾2

𝐾𝐾
log2

𝐾𝐾2

𝐾𝐾



Entropy – General Formula
• In the general case:
• Suppose that we have a set X of training examples.
• Suppose there are N different class labels L1, …, LN.

– K1 examples have class label L1.
– K2 examples have class label L2.
– In general, Ki examples have class label Li.

• Let K = K1 + K2 + … + KN.
• Then the entropy H of the set X is given by this formula:

56
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Making Sense of Entropy

• If this is the first time you see the definition of entropy, it 
probably does not look very intuitive.

• We will look at several specific examples, so that you see how 
entropy behaves.

• The lowest possible entropy value is 0.
– The lower the entropy is, the more uneven the distribution of classes is.
– Zero entropy means all training examples have the same class.

• The highest possible entropy value is log2N (N=number of classes).
– The higher the entropy is, the more even the distribution of classes is.
– Entropy log2N means that the number of training examples for each class is 

equal. K1 = K2 = … = KN. 57
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Example 1

• We have a set X of training examples, of two classes.
– 200 examples have class label A.
– 200 examples have class label B.

• What is the entropy of X?

58
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Example 1

• We have a set X of training examples, of two classes.
– 200 examples have class label A.
– 200 examples have class label B.

• What is the entropy of X?

H
200
400

,
200
400

= −
200
400

log2
200
400

−
200
400

log2
200
400

= −0.5log20.5 − 0.5 log20.5
= −0.5 ∗ −1 − 0.5 ∗ −1 = 1.

• The classes are evenly split.
• Therefore, H has the largest possible value: log22 = 1.
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Example 2
• We have a set X of training examples, of two classes.

– 20 examples have class label A.
– 500 examples have class label B.

• What is the entropy of X?

H
20

520
,
500
520

= −
20

520
log2

20
520

−
500
520

log2
500
520

= −0.0385 log20.0385 − 0.9615 log20.9615

= −0.0385 ∗ −4.6990 − 0.9615 ∗ −0.0566
= 0.235.
• The classes are pretty unevenly split.
• Therefore, H has a smallish value, relatively close to 0. 60
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Example 3

• We have a set X of training examples, of two classes.
– 20 examples have class label A.
– 5000 examples have class label B.

• What is the entropy of X?

H
20

5020
,
5000
5020

= −
20

5020
log2

20
5020

−
5000
5020

log2
5000
5020

= −0.0040 log20.0040 − 0.9960 log20.9960
= −0.0040 ∗ −7.9658 − 0.9960 ∗ −0.0058 = 0.038.
• The classes are even more unevenly split.
• Therefore, H is even smaller than it was in Example 2.
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Example 4
• We have a set X of training examples, of two classes.

– 0 examples have class label A.
– 200 examples have class label B.

• What is the entropy of X?

H
0

200
,
200
200

= −
0

200
log2

0
200

−
200
200

log2
200
200

= −0 log20 − 1 log21
= −0 ∗ (−∞) − 1 ∗ 0 = 0 ∗ ∞ = ? ? ? .
• This is an interesting case. Who wins, 0 or infinity?
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Example 4
• We have a set X of training examples, of two classes.

– 0 examples have class label A.
– 200 examples have class label B.

• What is the entropy of X?

H
0

200
,
200
200

= −
0

200
log2

0
200

−
200
200

log2
200
200

= −0 log20 − 1 log21
= −0 ∗ ∞ − 1 ∗ 0 = −0 ∗ ∞ = 0.
• This is an interesting case. Who wins, 0 or infinity?
• We will skip the mathematical proof, but 0 wins.
• Makes sense, most uneven split possible  lowest H possible. 63
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Example 5
• We have a set X of training examples, of three classes.

– 50 examples have class label A.
– 15 examples have class label B.
– 25 examples have class label C.

• What is the entropy of X?

H
50
90

,
15
90

,
25
90

= −
50
90

log2
50
90

−
15
90

log2
15
90

−
25
90

log2
25
90

= −0.556 log20.556 − 0.167 log20.167 − 0.278 log20.278

= −0.556 ∗ −0.847 − 0.167 ∗ −2.582 − 0.278 ∗ −1.847

= 1.416
• Since we have three classes, the entropy can be greater than 1.
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Information Gain – Example with 
Two Classes, Two Values

• Suppose that, at some node N1, we have a set X of training 
examples.
– K1 examples have class label A.
– K2 examples have class label B.

• Let K = K1 + K2.
• Suppose that, at that node N1, we are using a question Q1 with 

only two possible answers: R1 and R2. 
• K3 examples of class A and K4 examples of class B give answer R1.
• K5 examples of class A and K6 examples of class B give answer R2.
• Obviously, K3 + K5 = K1, K4 + K6 = K2
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• Information gain of question Q at node N1 = 
Entropy at N1 – weighted average of entropies at N2 and N3

Node N1
K1 examples of class A
K2 examples of class B

K3 examples of class A
K4 examples of class B

K5 examples of class A
K6 examples of class B

Node N2 Node N3
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• Information gain of question Q at node N1 =

H(K1/K, K2/K)   – [(K3+K4)/K]    *  H(K3/(K3+K4), K4/(K3+K4))  

– [(K5+K6)/K]   *  H(K5/(K5+K6), K6/(K5+K6))
Entropy of 
node N1

Entropy of node N3

Entropy of node N2Weight of node N2

Weight of node N3
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Information Gain – General Formula
• Setting: 

– We have a parent node R, with a set E of K training examples.
– We choose a certain attribute T at that node.
– Attribute T has L values.
– Based on their values on attribute T, the training examples 

split into L subsets: E1, …, EL.
– Each Ei has Ki training examples.

• Then, the information gain of attribute T at node R is:

• Note: H(E) and H(Ei) refer to the entropy of the training 
examples at each set, based on their class labels. 68
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Information Gain – Behavior

• Overall, we like attributes that yield as high 
information gain as possible.

• To get that, we want the entropy of the subsets Ei to 
be small.
– This happens when the attribute splits the training examples 

nicely, so that different classes get concentrated on different 
subsets Ei.
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Information Gain – Example 1

• What is the information gain in this example?
– H(E) = ???
– H(E1) = ???
– H(E2) = ???
– H(E3) = ???
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Information Gain – Example 1

• What is the information gain in this example?
– H(E) = 1, since classes are evenly split at the top.
– H(E1) = 0, since we only have will not wait cases on the left child.
– H(E2) = 0, since we only have will wait cases on the middle child.

– H(E3) = −2
6

log2
2
6
− 4

6
log2

4
6

= 0.9183.

𝐼𝐼 𝐸𝐸, Patrons = 𝐻𝐻(𝐸𝐸) − 2
12

∗ 𝐻𝐻(𝐸𝐸1) − 4
12

∗ 𝐻𝐻(𝐸𝐸2) − 6
12

∗ 𝐻𝐻 𝐸𝐸3

= 1 − 2
12

∗ 0 − 4
12

∗ 0 − 6
12

∗ 0.9183 = 0.5409
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Information Gain – Example 2

• What is the information gain in this example?
– H(E) = ???
– H(E1) = ???
– H(E2) = ???
– H(E3) = ???
– H(E4) = ???
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Information Gain – Example 2

• What is the information gain in this example?
– H(E) = 1, since classes are evenly split.
– H(E1) = H(E2) = H(E3) = H(E4) = 1, classes at all children are also evenly split.

𝐼𝐼 𝐸𝐸, Type =

= 𝐻𝐻 𝐸𝐸 −
2

12
∗ 𝐻𝐻 𝐸𝐸1 −

2
12

∗ 𝐻𝐻 𝐸𝐸2 −
4

12
∗ 𝐻𝐻 𝐸𝐸3 −

4
12

∗ 𝐻𝐻 𝐸𝐸4

= 1 −
2

12
∗ 1 −

2
12

∗ 1 −
4

12
∗ 1 −

4
12

∗ 1 = 0
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CHOOSE-ATTRIBUTE

• We now finally have a specific way to implement CHOOSE-ATTRIBUTE:
• CHOOSE-ATTRIBUTE can be implemented so that it returns the attribute that 

achieves the highest information gain on the given examples.
74

function DTL(examples, attributes, default) returns a decision tree
if examples is empty then return default
else if all examples have the same class then return the class
else if attributes is empty then return MODE(examples)
else

best = CHOOSE-ATTRIBUTE(attributes, examples)
tree = a new decision tree with root test best
for each value vi of best do

examplesi = {elements of examples with best = vi}
subtree = DTL(examplesi, attributes - best, MODE(examples))
add a branch to tree with label vi and subtree subtree

return tree



CHOOSE-ATTRIBUTE

• However, there are also alternative ways to define CHOOSE-ATTRIBUTE.
• A common approach is for CHOOSE-ATTRIBUTE to choose randomly.
• This way we construct randomized trees, that can be combined into random 

forests. We will look at that in more detail. 75

function DTL(examples, attributes, default) returns a decision tree
if examples is empty then return default
else if all examples have the same class then return the class
else if attributes is empty then return MODE(examples)
else

best = CHOOSE-ATTRIBUTE(attributes, examples)
tree = a new decision tree with root test best
for each value vi of best do

examplesi = {elements of examples with best = vi}
subtree = DTL(examplesi, attributes - best, MODE(examples))
add a branch to tree with label vi and subtree subtree

return tree



Recap on Decision Trees

• Decision trees are a popular pattern recognition 
methods.

• Learning a decision tree is done by recursively:
– Picking an attribute at the root.
– Sending the training examples to different children of the 

root, based on their values on the chosen attribute.
– Learning each of the children.

• Choosing attributes can be done based on 
information gain.
– We prefer attributes that concentrate different classes on 

different children.
– Attributes can also be chosen randomly.
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