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Generative v. Discriminative
classifiers – Intuition

 Want to Learn: h:X a Y
 X – features
 Y – target classes

 Bayes optimal classifier – P(Y|X)
 Generative classifier, e.g., Naïve Bayes:

 Assume some functional form for P(X|Y), P(Y)
 Estimate parameters of P(X|Y), P(Y) directly from training data
 Use Bayes rule to calculate P(Y|X= x)
 This is a ‘generative’ model

 Indirect computation of P(Y|X) through Bayes rule
 But, can generate a sample of the data, P(X) = ∑y P(y) P(X|y)

 Discriminative classifiers, e.g., Logistic Regression:
 Assume some functional form for P(Y|X)
 Estimate parameters of P(Y|X) directly from training data
 This is the ‘discriminative’ model

 Directly learn P(Y|X)
 But cannot obtain a sample of the data, because P(X) is not available
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Logistic Regression
Logistic
function
(or Sigmoid):

 Learn P(Y|X) directly!
 Assume a particular functional form
 Sigmoid applied to a linear function

of the data:

Z

Features can be discrete or continuous!
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Logistic Regression –
a Linear classifier
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Very convenient!

implies

implies

implies

linear
classification

rule!
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Logistic regression v. Naïve Bayes

 Consider learning f: X  Y, where
  X is a vector of real-valued features, < X1 … Xn >
  Y is boolean

 Could use a Gaussian Naïve Bayes classifier
  assume all Xi are conditionally independent given Y
  model P(Xi | Y = yk) as Gaussian N(µik,σi)
  model P(Y) as Bernoulli(θ,1-θ)

  What does that imply about the form of P(Y|X)?

Cool!!!!
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Derive form for P(Y|X) for continuous Xi
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Ratio of class-conditional probabilities
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Derive form for P(Y|X) for continuous Xi
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Gaussian Naïve Bayes v. Logistic Regression

 Representation equivalence
 But only in a special case!!! (GNB with class-independent variances)

 But what’s the difference???
 LR makes no assumptions about P(X|Y) in learning!!!
 Loss function!!!

 Optimize different functions ! Obtain different solutions

Set of Gaussian 
Naïve Bayes parameters

(feature variance 
independent of class label)

Set of Logistic 
Regression parameters
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Logistic regression for more
than 2 classes

 Logistic regression in more general case, where
Y 2 {Y1 ... YR} : learn R-1 sets of weights
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Logistic regression more generally

 Logistic regression in more general case, where Y 2
{Y1 ... YR} : learn R-1 sets of weights

for k<R

for k=R (normalization, so no weights for this class)

Features can be discrete or continuous!
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Announcements

 Don’t forget recitation tomorrow

 And start the homework early
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Loss functions: Likelihood v.
Conditional Likelihood

 Generative (Naïve Bayes) Loss function:
Data likelihood

 Discriminative models cannot compute P(xj|w)!
 But, discriminative (logistic regression) loss function:

Conditional Data Likelihood

 Doesn’t waste effort learning P(X) – focuses on P(Y|X) all that matters for
classification
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Expressing Conditional Log Likelihood
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Maximizing Conditional Log Likelihood

Good news: l(w) is concave function of w ! no locally optimal
solutions

Bad news: no closed-form solution to maximize l(w)

Good news: concave functions easy to optimize
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Optimizing concave function –
Gradient ascent

 Conditional likelihood for Logistic Regression is concave
! Find optimum with gradient ascent

 Gradient ascent is simplest of optimization approaches
 e.g., Conjugate gradient ascent much better (see reading)

Gradient:

Learning rate, η>0

Update rule:
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Maximize Conditional Log Likelihood:
Gradient ascent
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Gradient Descent for LR

Gradient ascent algorithm: iterate until change < ε

For i = 1… n,

repeat
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That’s all M(C)LE.  How about MAP?

 One common approach is to define priors on w
 Normal distribution, zero mean, identity covariance
 “Pushes” parameters towards zero

 Corresponds to Regularization
 Helps avoid very large weights and overfitting
 More on this later in the semester

 MAP estimate
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M(C)AP as Regularization

Penalizes high weights, also applicable in linear regression
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Gradient of M(C)AP
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MLE vs MAP

 Maximum conditional likelihood estimate

 Maximum conditional a posteriori estimate
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Naïve Bayes vs Logistic Regression

Consider Y boolean, Xi continuous, X=<X1 ... Xn>

Number of parameters:
 NB: 4n +1
 LR: n+1

Estimation method:
 NB parameter estimates are uncoupled
 LR parameter estimates are coupled
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G. Naïve Bayes vs. Logistic Regression 1

 Generative and Discriminative classifiers

  Asymptotic comparison (# training examples  infinity)
  when model correct

  GNB, LR produce identical classifiers

  when model incorrect
  LR is less biased – does not assume conditional independence

 therefore LR expected to outperform GNB

[Ng & Jordan, 2002]
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G. Naïve Bayes vs. Logistic Regression 2

 Generative and Discriminative classifiers

 Non-asymptotic analysis
  convergence rate of parameter estimates, n = # of attributes in X

 Size of training data to get close to infinite data solution
 GNB needs O(log n) samples
 LR needs O(n) samples

 GNB converges more quickly to its (perhaps less helpful)
asymptotic estimates

[Ng & Jordan, 2002]
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Some
experiments
from UCI
data sets

Naïve bayes
Logistic Regression
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What you should know about
Logistic Regression (LR)

 Gaussian Naïve Bayes with class-independent variances
representationally equivalent to LR
 Solution differs because of objective (loss) function

 In general, NB and LR make different assumptions
 NB: Features independent given class ! assumption on P(X|Y)
 LR: Functional form of P(Y|X), no assumption on P(X|Y)

 LR is a linear classifier
 decision rule is a hyperplane

 LR optimized by conditional likelihood
 no closed-form solution
 concave ! global optimum with gradient ascent
 Maximum conditional a posteriori corresponds to regularization

 Convergence rates
 GNB (usually) needs less data
 LR (usually) gets to better solutions in the limit
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Linear separability

 A dataset is linearly separable iff 9 a
separating hyperplane:
  9 w, such that:

 w0 + ∑i wi xi > 0; if x={x1,…,xn} is a positive example
 w0 + ∑i wi xi < 0; if x={x1,…,xn} is a negative example
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Not linearly separable data

 Some datasets are not linearly separable!
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Addressing non-linearly separable
data – Option 1, non-linear features

 Choose non-linear features, e.g.,
 Typical linear features: w0 + ∑i wi xi

 Example of non-linear features:
 Degree 2 polynomials, w0 + ∑i wi xi  + ∑ij wij xi xj

 Classifier hw(x) still linear in parameters w
 Usually easy to learn (closed-form or convex/concave optimization)
 Data is linearly separable in higher dimensional spaces
 More discussion later this semester
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Addressing non-linearly separable
data – Option 2, non-linear classifier

 Choose a classifier hw(x) that is non-linear in parameters w, e.g.,
 Decision trees, neural networks, nearest neighbor,…

 More general than linear classifiers
 But, can often be harder to learn (non-convex/concave

optimization required)
 But, but, often very useful
 (BTW. Later this semester, we’ll see that these options are not

that different)
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A small dataset: Miles Per Gallon

From the UCI repository (thanks to Ross Quinlan)

40 Records

mpg cylinders displacement horsepower weight acceleration modelyear maker

good 4 low low low high 75to78 asia

bad 6 medium medium medium medium 70to74 america

bad 4 medium medium medium low 75to78 europe

bad 8 high high high low 70to74 america

bad 6 medium medium medium medium 70to74 america

bad 4 low medium low medium 70to74 asia

bad 4 low medium low low 70to74 asia

bad 8 high high high low 75to78 america

: : : : : : : :

: : : : : : : :

: : : : : : : :

bad 8 high high high low 70to74 america

good 8 high medium high high 79to83 america

bad 8 high high high low 75to78 america

good 4 low low low low 79to83 america

bad 6 medium medium medium high 75to78 america

good 4 medium low low low 79to83 america

good 4 low low medium high 79to83 america

bad 8 high high high low 70to74 america

good 4 low medium low medium 75to78 europe

bad 5 medium medium medium medium 75to78 europe

Suppose we want to
predict MPG
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A Decision Stump
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Recursion Step

Take the
Original
Dataset..

And partition it
according
to the value of
the attribute
we split on

Records
in which
cylinders

= 4

Records
in which
cylinders

= 5

Records
in which
cylinders

= 6

Records
in which
cylinders

= 8
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Recursion Step

Records in
which

cylinders = 4

Records in
which

cylinders = 5

Records in
which

cylinders = 6

Records in
which

cylinders = 8

Build tree from
These records..

Build tree from
These records..

Build tree from
These records..

Build tree from
These records..
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Second level of tree

Recursively build a tree from the seven
records in which there are four cylinders and
the maker was based in Asia

(Similar recursion in the
other cases)
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The final tree
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Classification of a new example

 Classifying a test
example – traverse tree
and report leaf label
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Are all decision trees equal?

 Many trees can represent the same concept
 But, not all trees will have the same size!

 e.g., φ = AÆB ∨ ¬AÆC  ((A and B) or (not A and C))
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Learning decision trees is hard!!!

 Learning the simplest (smallest) decision tree is
an NP-complete problem [Hyafil & Rivest ’76]

 Resort to a greedy heuristic:
 Start from empty decision tree
 Split on next best attribute (feature)
 Recurse

©2005-2007 Carlos Guestrin 42

Choosing a good attribute

TTT
TFT

FFF
FTF
FFF
TTF

TFT
TTT
YX2X1
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Measuring uncertainty

 Good split if we are more certain about
classification after split
 Deterministic good (all true or all false)
 Uniform distribution bad

P(Y=C) = 1/4P(Y=B) = 1/4 P(Y=D) = 1/4P(Y=A) = 1/4

P(Y=C) = 1/8P(Y=B) = 1/4 P(Y=D) = 1/8P(Y=A) = 1/2

©2005-2007 Carlos Guestrin 44

Entropy

Entropy H(X) of a random variable Y

More uncertainty, more entropy!
Information Theory interpretation: H(Y) is the expected number of bits needed

to encode a randomly drawn value of Y  (under most efficient code)
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Andrew Moore’s Entropy in a nutshell

Low Entropy High Entropy
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Low Entropy High Entropy
..the values (locations of
soup) unpredictable...
almost uniformly sampled
throughout our dining room

..the values (locations
of soup) sampled
entirely from within
the soup bowl

Andrew Moore’s Entropy in a nutshell
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Information gain

 Advantage of attribute – decrease in uncertainty
 Entropy of Y before you split

 Entropy after split
 Weight by probability of following each branch, i.e.,

normalized number of records

 Information gain is difference

TTT
TFT

FFF
TTF

TFT
TTT
YX2X1
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Learning decision trees

 Start from empty decision tree
 Split on next best attribute (feature)

 Use, for example, information gain to select attribute
 Split on

 Recurse
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Information Gain Example
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Look at all the
information
gains…

Suppose we want to
predict MPG
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A Decision Stump
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Base Case
One

Don’t split a
node if all
matching

records have
the same

output value
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Base Case
Two

Don’t split a
node if none

of the
attributes
can create

multiple non-
empty

children
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Base Case Two:
No attributes

can distinguish
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Base Cases
 Base Case One: If all records in current data subset have the same

output then don’t recurse
 Base Case Two: If all records have exactly the same set of input

attributes then don’t recurse
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Base Cases: An idea
 Base Case One: If all records in current data subset have the same

output then don’t recurse
 Base Case Two: If all records have exactly the same set of input

attributes then don’t recurse

Proposed Base Case 3:

If all attributes have zero information
gain then don’t recurse

•Is this a good idea?
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The problem with Base Case 3

a b y

0 0 0

0 1 1

1 0 1

1 1 0

y = a XOR b

The information gains:
The resulting decision
tree:
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If we omit Base Case 3:

a b y

0 0 0

0 1 1

1 0 1

1 1 0

y = a XOR b

The resulting decision tree:
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Basic Decision Tree Building
Summarized
BuildTree(DataSet,Output)
 If all output values are the same in DataSet, return a leaf node that says

“predict this unique output”
 If all input values are the same, return a leaf node that says “predict the

majority output”
 Else find attribute X with highest Info Gain
 Suppose X has nX distinct values (i.e. X has arity nX).

 Create and return a non-leaf node with nX children.
 The i’th child should be built by calling

BuildTree(DSi,Output)
Where DSi built consists of all those records in DataSet for which X = ith

distinct value of X.
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Real-Valued inputs

 What should we do if some of the inputs are real-valued?
mpg cylinders displacementhorsepower weight acceleration modelyear maker

good 4 97 75 2265 18.2 77 asia

bad 6 199 90 2648 15 70 america

bad 4 121 110 2600 12.8 77 europe

bad 8 350 175 4100 13 73 america

bad 6 198 95 3102 16.5 74 america

bad 4 108 94 2379 16.5 73 asia

bad 4 113 95 2228 14 71 asia

bad 8 302 139 3570 12.8 78 america

: : : : : : : :

: : : : : : : :

: : : : : : : :

good 4 120 79 2625 18.6 82 america

bad 8 455 225 4425 10 70 america

good 4 107 86 2464 15.5 76 europe

bad 5 131 103 2830 15.9 78 europe

Infinite number of possible split values!!!

Finite dataset, only finite number of relevant splits!

Idea One: Branch on each possible real value
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“One branch for each numeric
value” idea:

Hopeless: with such high branching factor will shatter
the dataset and overfit
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Threshold splits

 Binary tree, split on attribute X
 One branch: X < t
 Other branch: X ¸ t
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Choosing threshold split

 Binary tree, split on attribute X
 One branch: X < t
 Other branch: X ¸ t

 Search through possible values of t
 Seems hard!!!

 But only finite number of t’s are important
 Sort data according to X into {x1,…,xm}
 Consider split points of the form xi + (xi+1 – xi)/2
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A better idea: thresholded splits

 Suppose X is real valued
 Define IG(Y|X:t) as H(Y) - H(Y|X:t)
 Define H(Y|X:t) =

H(Y|X < t) P(X < t) + H(Y|X >= t) P(X >= t)

 IG(Y|X:t) is the information gain for predicting Y if all you
know is whether X is greater than or less than t

 Then define IG*(Y|X) = maxt IG(Y|X:t)
 For each real-valued attribute, use IG*(Y|X) for

assessing its suitability as a split
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Example with MPG
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Example tree using reals
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What you need to know about
decision trees

 Decision trees are one of the most popular data
mining tools
 Easy to understand
 Easy to implement
 Easy to use
 Computationally cheap (to solve heuristically)

 Information gain to select attributes (ID3, C4.5,…)
 Presented for classification, can be used for

regression and density estimation too
 It’s possible to get in trouble with overfitting (more

next lecture)
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